overte-thingvellir/interface/src/devices/Leapmotion.cpp
David Rowe e20df0e2bf Delete Leap and RealSense devices on shutdown
Leaving them running prevents a clean shutdown on Windows when running
Interface.exe from a command line: the interface.exe process stays alive
preventing Interface from being run again from the command line without
manually terminating the running process.
2015-05-07 18:28:49 -07:00

248 lines
8.9 KiB
C++

//
// Leapmotion.cpp
// interface/src/devices
//
// Created by Sam Cake on 6/2/2014
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "Leapmotion.h"
#include "Menu.h"
#include <NumericalConstants.h>
const int PALMROOT_NUM_JOINTS = 3;
const int FINGER_NUM_JOINTS = 4;
const int HAND_NUM_JOINTS = FINGER_NUM_JOINTS*5+PALMROOT_NUM_JOINTS;
const DeviceTracker::Name Leapmotion::NAME = "Leapmotion";
// find the index of a joint from
// the side: true = right
// the finger & the bone:
// finger in [0..4] : bone in [0..3] a finger phalange
// [-1] up the hand branch : bone in [0..2] <=> [ hand, forearm, arm]
MotionTracker::Index evalJointIndex(bool isRightSide, int finger, int bone) {
MotionTracker::Index offset = 1 // start after root
+ (int(isRightSide) * HAND_NUM_JOINTS) // then offset for side
+ PALMROOT_NUM_JOINTS; // then add the arm/forearm/hand chain
if (finger >= 0) {
// from there go down in the correct finger and bone
return offset + (finger * FINGER_NUM_JOINTS) + bone;
} else {
// or go back up for the correct root bone
return offset - 1 - bone;
}
}
// static
void Leapmotion::init() {
DeviceTracker* device = DeviceTracker::getDevice(NAME);
if (!device) {
// create a new Leapmotion and register it
Leapmotion* leap = new Leapmotion();
DeviceTracker::registerDevice(NAME, leap);
}
}
// static
void Leapmotion::destroy() {
DeviceTracker::destroyDevice(NAME);
}
// static
Leapmotion* Leapmotion::getInstance() {
DeviceTracker* device = DeviceTracker::getDevice(NAME);
if (!device) {
// create a new Leapmotion and register it
device = new Leapmotion();
DeviceTracker::registerDevice(NAME, device);
}
return dynamic_cast< Leapmotion* > (device);
}
Leapmotion::Leapmotion() :
MotionTracker(),
_active(false)
{
// Create the Leapmotion joint hierarchy
std::vector< Semantic > sides;
sides.push_back("joint_L_");
sides.push_back("joint_R_");
std::vector< Semantic > rootBones;
rootBones.push_back("elbow");
rootBones.push_back("wrist");
rootBones.push_back("hand");
std::vector< Semantic > fingers;
fingers.push_back("thumb");
fingers.push_back("index");
fingers.push_back("middle");
fingers.push_back("ring");
fingers.push_back("pinky");
std::vector< Semantic > fingerBones;
fingerBones.push_back("1");
fingerBones.push_back("2");
fingerBones.push_back("3");
fingerBones.push_back("4");
std::vector< Index > palms;
for (unsigned int s = 0; s < sides.size(); s++) {
Index rootJoint = 0;
for (unsigned int rb = 0; rb < rootBones.size(); rb++) {
rootJoint = addJoint(sides[s] + rootBones[rb], rootJoint);
}
// capture the hand index for debug
palms.push_back(rootJoint);
for (unsigned int f = 0; f < fingers.size(); f++) {
for (unsigned int b = 0; b < fingerBones.size(); b++) {
rootJoint = addJoint(sides[s] + fingers[f] + fingerBones[b], rootJoint);
}
}
}
#ifdef HAVE_LEAPMOTION
if (Menu::getInstance()->isOptionChecked(MenuOption::LeapMotionOnHMD)) {
_controller.setPolicyFlags(Leap::Controller::POLICY_OPTIMIZE_HMD);
}
#endif
}
Leapmotion::~Leapmotion() {
}
#ifdef HAVE_LEAPMOTION
glm::quat quatFromLeapBase(float sideSign, const Leap::Matrix& basis) {
// fix the handness to right and always...
glm::vec3 xAxis = glm::normalize(sideSign * glm::vec3(basis.xBasis.x, basis.xBasis.y, basis.xBasis.z));
glm::vec3 yAxis = glm::normalize(glm::vec3(basis.yBasis.x, basis.yBasis.y, basis.yBasis.z));
glm::vec3 zAxis = glm::normalize(glm::vec3(basis.zBasis.x, basis.zBasis.y, basis.zBasis.z));
xAxis = glm::normalize(glm::cross(yAxis, zAxis));
glm::quat orientation = (glm::quat_cast(glm::mat3(xAxis, yAxis, zAxis)));
return orientation;
}
glm::vec3 vec3FromLeapVector(const Leap::Vector& vec) {
return glm::vec3(vec.x * METERS_PER_MILLIMETER, vec.y * METERS_PER_MILLIMETER, vec.z * METERS_PER_MILLIMETER);
}
#endif
void Leapmotion::update() {
#ifdef HAVE_LEAPMOTION
bool wasActive = _active;
_active = _controller.isConnected();
if (_active || wasActive) {
// Go through all the joints and increment their counter since last update.
// Increment all counters once after controller first becomes inactive so that each joint reports itself as inactive.
// TODO C++11 for (auto jointIt = _jointsArray.begin(); jointIt != _jointsArray.end(); jointIt++) {
for (JointTracker::Vector::iterator jointIt = _jointsArray.begin(); jointIt != _jointsArray.end(); jointIt++) {
(*jointIt).tickNewFrame();
}
}
if (!_active) {
return;
}
// Get the most recent frame and report some basic information
const Leap::Frame frame = _controller.frame();
static int64_t lastFrameID = -1;
int64_t newFrameID = frame.id();
// If too soon then exit
if (lastFrameID >= newFrameID)
return;
glm::vec3 delta(0.0f);
glm::quat handOri;
if (!frame.hands().isEmpty()) {
for (int handNum = 0; handNum < frame.hands().count(); handNum++) {
const Leap::Hand hand = frame.hands()[handNum];
int side = (hand.isRight() ? 1 : -1);
JointTracker* parentJointTracker = _jointsArray.data();
int rootBranchIndex = -1;
Leap::Arm arm = hand.arm();
if (arm.isValid()) {
glm::quat ori = quatFromLeapBase(float(side), arm.basis());
glm::vec3 pos = vec3FromLeapVector(arm.elbowPosition());
JointTracker* elbow = editJointTracker(evalJointIndex((side > 0), rootBranchIndex, 2)); // 2 is the index of the elbow joint
elbow->editAbsFrame().setTranslation(pos);
elbow->editAbsFrame().setRotation(ori);
elbow->updateLocFromAbsTransform(parentJointTracker);
elbow->activeFrame();
parentJointTracker = elbow;
pos = vec3FromLeapVector(arm.wristPosition());
JointTracker* wrist = editJointTracker(evalJointIndex((side > 0), rootBranchIndex, 1)); // 1 is the index of the wrist joint
wrist->editAbsFrame().setTranslation(pos);
wrist->editAbsFrame().setRotation(ori);
wrist->updateLocFromAbsTransform(parentJointTracker);
wrist->activeFrame();
parentJointTracker = wrist;
}
JointTracker* palmJoint = NULL;
{
glm::vec3 pos = vec3FromLeapVector(hand.palmPosition());
glm::quat ori = quatFromLeapBase(float(side), hand.basis());
palmJoint = editJointTracker(evalJointIndex((side > 0), rootBranchIndex, 0)); // 0 is the index of the palm joint
palmJoint->editAbsFrame().setTranslation(pos);
palmJoint->editAbsFrame().setRotation(ori);
palmJoint->updateLocFromAbsTransform(parentJointTracker);
palmJoint->activeFrame();
}
// Check if the hand has any fingers
const Leap::FingerList fingers = hand.fingers();
if (!fingers.isEmpty()) {
// For every fingers in the list
for (int i = 0; i < fingers.count(); ++i) {
// Reset the parent joint to the palmJoint for every finger traversal
parentJointTracker = palmJoint;
// surprisingly, Leap::Finger::Type start at 0 for thumb a until 4 for the pinky
Index fingerIndex = evalJointIndex((side > 0), int(fingers[i].type()), 0);
// let's update the finger's joints
for (int b = 0; b < FINGER_NUM_JOINTS; b++) {
Leap::Bone::Type type = Leap::Bone::Type(b + Leap::Bone::TYPE_METACARPAL);
Leap::Bone bone = fingers[i].bone(type);
JointTracker* ljointTracker = editJointTracker(fingerIndex + b);
if (bone.isValid()) {
Leap::Vector bp = bone.nextJoint();
ljointTracker->editAbsFrame().setTranslation(vec3FromLeapVector(bp));
ljointTracker->editAbsFrame().setRotation(quatFromLeapBase(float(side), bone.basis()));
ljointTracker->updateLocFromAbsTransform(parentJointTracker);
ljointTracker->activeFrame();
}
parentJointTracker = ljointTracker;
}
}
}
}
}
lastFrameID = newFrameID;
#endif
}