// // GeometryCache.cpp // interface/src/renderer // // Created by Andrzej Kapolka on 6/21/13. // Copyright 2013 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include "GeometryCache.h" #include #include #include #include #include #include #include "TextureCache.h" #include "RenderUtilsLogging.h" #include "standardTransformPNTC_vert.h" #include "standardDrawTexture_frag.h" #include "gpu/StandardShaderLib.h" //#define WANT_DEBUG const int GeometryCache::UNKNOWN_ID = -1; static const uint FLOATS_PER_VERTEX = 3; static const uint VERTICES_PER_TRIANGLE = 3; static const uint TRIANGLES_PER_QUAD = 2; static const uint CUBE_FACES = 6; static const uint CUBE_VERTICES_PER_FACE = 4; static const uint CUBE_VERTICES = CUBE_FACES * CUBE_VERTICES_PER_FACE; static const uint CUBE_VERTEX_POINTS = CUBE_VERTICES * FLOATS_PER_VERTEX; static const uint CUBE_INDICES = CUBE_FACES * TRIANGLES_PER_QUAD * VERTICES_PER_TRIANGLE; static const uint SPHERE_LATITUDES = 24; static const uint SPHERE_MERIDIANS = SPHERE_LATITUDES * 2; static const uint SPHERE_INDICES = SPHERE_MERIDIANS * (SPHERE_LATITUDES - 1) * TRIANGLES_PER_QUAD * VERTICES_PER_TRIANGLE; static const gpu::Element POSITION_ELEMENT{ gpu::VEC3, gpu::FLOAT, gpu::XYZ }; static const gpu::Element NORMAL_ELEMENT{ gpu::VEC3, gpu::FLOAT, gpu::XYZ }; static const gpu::Element COLOR_ELEMENT{ gpu::VEC4, gpu::NUINT8, gpu::RGBA }; static const gpu::Element TRANSFORM_ELEMENT{ gpu::MAT4, gpu::FLOAT, gpu::XYZW }; static gpu::Stream::FormatPointer SOLID_STREAM_FORMAT; static gpu::Stream::FormatPointer INSTANCED_SOLID_STREAM_FORMAT; static const uint SHAPE_VERTEX_STRIDE = sizeof(glm::vec3) * 2; // vertices and normals static const uint SHAPE_NORMALS_OFFSET = sizeof(glm::vec3); void GeometryCache::ShapeData::setupVertices(gpu::BufferPointer& vertexBuffer, const VVertex& vertices) { vertexBuffer->append(vertices); _positionView = gpu::BufferView(vertexBuffer, 0, vertexBuffer->getSize(), SHAPE_VERTEX_STRIDE, POSITION_ELEMENT); _normalView = gpu::BufferView(vertexBuffer, SHAPE_NORMALS_OFFSET, vertexBuffer->getSize(), SHAPE_VERTEX_STRIDE, NORMAL_ELEMENT); } void GeometryCache::ShapeData::setupIndices(gpu::BufferPointer& indexBuffer, const VIndex& indices, const VIndex& wireIndices) { _indices = indexBuffer; if (!indices.empty()) { _indexOffset = indexBuffer->getSize(); _indexCount = indices.size(); indexBuffer->append(indices); } if (!wireIndices.empty()) { _wireIndexOffset = indexBuffer->getSize(); _wireIndexCount = wireIndices.size(); indexBuffer->append(wireIndices); } } void GeometryCache::ShapeData::setupBatch(gpu::Batch& batch) const { batch.setInputBuffer(gpu::Stream::POSITION, _positionView); batch.setInputBuffer(gpu::Stream::NORMAL, _normalView); } void GeometryCache::ShapeData::draw(gpu::Batch& batch) const { if (_indexCount) { setupBatch(batch); batch.setIndexBuffer(gpu::UINT16, _indices, _indexOffset); batch.drawIndexed(gpu::TRIANGLES, _indexCount); } } void GeometryCache::ShapeData::drawWire(gpu::Batch& batch) const { if (_wireIndexCount) { setupBatch(batch); batch.setIndexBuffer(gpu::UINT16, _indices, _wireIndexOffset); batch.drawIndexed(gpu::LINES, _wireIndexCount); } } void GeometryCache::ShapeData::drawInstances(gpu::Batch& batch, size_t count) const { if (_indexCount) { setupBatch(batch); batch.setIndexBuffer(gpu::UINT16, _indices, _indexOffset); batch.drawIndexedInstanced(count, gpu::TRIANGLES, _indexCount); } } void GeometryCache::ShapeData::drawWireInstances(gpu::Batch& batch, size_t count) const { if (_wireIndexCount) { setupBatch(batch); batch.setIndexBuffer(gpu::UINT16, _indices, _wireIndexOffset); batch.drawIndexedInstanced(count, gpu::LINES, _wireIndexCount); } } const VVertex& icosahedronVertices() { static const float phi = (1.0 + sqrt(5.0)) / 2.0; static const float a = 0.5; static const float b = 1.0 / (2.0 * phi); static const VVertex vertices{ // vec3(0, b, -a), vec3(-b, a, 0), vec3(b, a, 0), // vec3(0, b, a), vec3(b, a, 0), vec3(-b, a, 0), // vec3(0, b, a), vec3(-a, 0, b), vec3(0, -b, a), // vec3(0, b, a), vec3(0, -b, a), vec3(a, 0, b), // vec3(0, b, -a), vec3(a, 0, -b), vec3(0, -b, -a),// vec3(0, b, -a), vec3(0, -b, -a), vec3(-a, 0, -b), // vec3(0, -b, a), vec3(-b, -a, 0), vec3(b, -a, 0), // vec3(0, -b, -a), vec3(b, -a, 0), vec3(-b, -a, 0), // vec3(-b, a, 0), vec3(-a, 0, -b), vec3(-a, 0, b), // vec3(-b, -a, 0), vec3(-a, 0, b), vec3(-a, 0, -b), // vec3(b, a, 0), vec3(a, 0, b), vec3(a, 0, -b), // vec3(b, -a, 0), vec3(a, 0, -b), vec3(a, 0, b), // vec3(0, b, a), vec3(-b, a, 0), vec3(-a, 0, b), // vec3(0, b, a), vec3(a, 0, b), vec3(b, a, 0), // vec3(0, b, -a), vec3(-a, 0, -b), vec3(-b, a, 0), // vec3(0, b, -a), vec3(b, a, 0), vec3(a, 0, -b), // vec3(0, -b, -a), vec3(-b, -a, 0), vec3(-a, 0, -b), // vec3(0, -b, -a), vec3(a, 0, -b), vec3(b, -a, 0), // vec3(0, -b, a), vec3(-a, 0, b), vec3(-b, -a, 0), // vec3(0, -b, a), vec3(b, -a, 0), vec3(a, 0, b) }; // return vertices; } const VVertex& tetrahedronVertices() { static const float a = 1.0f / sqrt(2.0f); static const auto A = vec3(0, 1, a); static const auto B = vec3(0, -1, a); static const auto C = vec3(1, 0, -a); static const auto D = vec3(-1, 0, -a); static const VVertex vertices{ A, B, C, D, B, A, C, D, A, C, B, D, }; return vertices; } VVertex tesselate(const VVertex& startingTriangles, int count) { VVertex triangles = startingTriangles; if (0 != (triangles.size() % 3)) { throw std::runtime_error("Bad number of vertices for tesselation"); } for (size_t i = 0; i < triangles.size(); ++i) { triangles[i] = glm::normalize(triangles[i]); } VVertex newTriangles; while (count) { newTriangles.clear(); newTriangles.reserve(triangles.size() * 4); for (size_t i = 0; i < triangles.size(); i += 3) { const vec3& a = triangles[i]; const vec3& b = triangles[i + 1]; const vec3& c = triangles[i + 2]; vec3 ab = glm::normalize(a + b); vec3 bc = glm::normalize(b + c); vec3 ca = glm::normalize(c + a); newTriangles.push_back(a); newTriangles.push_back(ab); newTriangles.push_back(ca); newTriangles.push_back(b); newTriangles.push_back(bc); newTriangles.push_back(ab); newTriangles.push_back(c); newTriangles.push_back(ca); newTriangles.push_back(bc); newTriangles.push_back(ab); newTriangles.push_back(bc); newTriangles.push_back(ca); } triangles.swap(newTriangles); --count; } return triangles; } // FIXME solids need per-face vertices, but smooth shaded // components do not. Find a way to support using draw elements // or draw arrays as appropriate // Maybe special case cone and cylinder since they combine flat // and smooth shading void GeometryCache::buildShapes() { auto vertexBuffer = std::make_shared(); auto indexBuffer = std::make_shared(); uint16_t startingIndex = 0; // Cube startingIndex = _shapeVertices->getSize() / SHAPE_VERTEX_STRIDE; { ShapeData& shapeData = _shapes[Cube]; VVertex vertices; // front vertices.push_back(vec3(1, 1, 1)); vertices.push_back(vec3(0, 0, 1)); vertices.push_back(vec3(-1, 1, 1)); vertices.push_back(vec3(0, 0, 1)); vertices.push_back(vec3(-1, -1, 1)); vertices.push_back(vec3(0, 0, 1)); vertices.push_back(vec3(1, -1, 1)); vertices.push_back(vec3(0, 0, 1)); // right vertices.push_back(vec3(1, 1, 1)); vertices.push_back(vec3(1, 0, 0)); vertices.push_back(vec3(1, -1, 1)); vertices.push_back(vec3(1, 0, 0)); vertices.push_back(vec3(1, -1, -1)); vertices.push_back(vec3(1, 0, 0)); vertices.push_back(vec3(1, 1, -1)); vertices.push_back(vec3(1, 0, 0)); // top vertices.push_back(vec3(1, 1, 1)); vertices.push_back(vec3(0, 1, 0)); vertices.push_back(vec3(1, 1, -1)); vertices.push_back(vec3(0, 1, 0)); vertices.push_back(vec3(-1, 1, -1)); vertices.push_back(vec3(0, 1, 0)); vertices.push_back(vec3(-1, 1, 1)); vertices.push_back(vec3(0, 1, 0)); // left vertices.push_back(vec3(-1, 1, 1)); vertices.push_back(vec3(-1, 0, 0)); vertices.push_back(vec3(-1, 1, -1)); vertices.push_back(vec3(-1, 0, 0)); vertices.push_back(vec3(-1, -1, -1)); vertices.push_back(vec3(-1, 0, 0)); vertices.push_back(vec3(-1, -1, 1)); vertices.push_back(vec3(-1, 0, 0)); // bottom vertices.push_back(vec3(-1, -1, -1)); vertices.push_back(vec3(0, -1, 0)); vertices.push_back(vec3(1, -1, -1)); vertices.push_back(vec3(0, -1, 0)); vertices.push_back(vec3(1, -1, 1)); vertices.push_back(vec3(0, -1, 0)); vertices.push_back(vec3(-1, -1, 1)); vertices.push_back(vec3(0, -1, 0)); // back vertices.push_back(vec3(1, -1, -1)); vertices.push_back(vec3(0, 0, -1)); vertices.push_back(vec3(-1, -1, -1)); vertices.push_back(vec3(0, 0, -1)); vertices.push_back(vec3(-1, 1, -1)); vertices.push_back(vec3(0, 0, -1)); vertices.push_back(vec3(1, 1, -1)); vertices.push_back(vec3(0, 0, -1)); for (size_t i = 0; i < vertices.size(); ++i) { if (0 == i % 2) { vertices[i] *= 0.5f; } } shapeData.setupVertices(_shapeVertices, vertices); VIndex indices{ 0, 1, 2, 2, 3, 0, // front 4, 5, 6, 6, 7, 4, // right 8, 9, 10, 10, 11, 8, // top 12, 13, 14, 14, 15, 12, // left 16, 17, 18, 18, 19, 16, // bottom 20, 21, 22, 22, 23, 20 // back }; for (int i = 0; i < indices.size(); ++i) { indices[i] += startingIndex; } VIndex wireIndices{ 0, 1, 1, 2, 2, 3, 3, 0, // front 20, 21, 21, 22, 22, 23, 23, 20, // back 0, 23, 1, 22, 2, 21, 3, 20 // sides }; for (int i = 0; i < wireIndices.size(); ++i) { indices[i] += startingIndex; } shapeData.setupIndices(_shapeIndices, indices, wireIndices); } // Tetrahedron startingIndex = _shapeVertices->getSize() / SHAPE_VERTEX_STRIDE; { ShapeData& shapeData = _shapes[Tetrahedron]; size_t vertexCount = 4; VVertex vertices; { VVertex originalVertices = tetrahedronVertices(); vertexCount = originalVertices.size(); vertices.reserve(originalVertices.size() * 2); for (size_t i = 0; i < originalVertices.size(); i += 3) { vec3 faceNormal; for (size_t j = 0; j < 3; ++j) { faceNormal += originalVertices[i + j]; } faceNormal = glm::normalize(faceNormal); for (size_t j = 0; j < 3; ++j) { vertices.push_back(glm::normalize(originalVertices[i + j]) * 0.5f); vertices.push_back(faceNormal); } } } shapeData.setupVertices(_shapeVertices, vertices); VIndex indices; for (size_t i = 0; i < vertexCount; i += 3) { for (size_t j = 0; j < 3; ++j) { indices.push_back(i + j + startingIndex); } } VIndex wireIndices{ 0, 1, 1, 2, 2, 0, 0, 3, 1, 3, 2, 3, }; for (int i = 0; i < wireIndices.size(); ++i) { wireIndices[i] += startingIndex; } shapeData.setupIndices(_shapeIndices, indices, wireIndices); } // Sphere // FIXME this uses way more vertices than required. Should find a way to calculate the indices // using shared vertices for better vertex caching startingIndex = _shapeVertices->getSize() / SHAPE_VERTEX_STRIDE; { ShapeData& shapeData = _shapes[Sphere]; VVertex vertices; VIndex indices; { VVertex originalVertices = tesselate(icosahedronVertices(), 3); vertices.reserve(originalVertices.size() * 2); for (size_t i = 0; i < originalVertices.size(); i += 3) { for (int j = 0; j < 3; ++j) { vertices.push_back(originalVertices[i + j] * 0.5f); vertices.push_back(originalVertices[i + j]); indices.push_back(i + j + startingIndex); } } } shapeData.setupVertices(_shapeVertices, vertices); // FIXME don't use solid indices for wire drawing. shapeData.setupIndices(_shapeIndices, indices, indices); } // Icosahedron startingIndex = _shapeVertices->getSize() / SHAPE_VERTEX_STRIDE; { ShapeData& shapeData = _shapes[Icosahedron]; VVertex vertices; VIndex indices; { const VVertex& originalVertices = icosahedronVertices(); vertices.reserve(originalVertices.size() * 2); for (size_t i = 0; i < originalVertices.size(); i += 3) { vec3 faceNormal; for (size_t j = 0; j < 3; ++j) { faceNormal += originalVertices[i + j]; } faceNormal = glm::normalize(faceNormal); for (int j = 0; j < 3; ++j) { vertices.push_back(glm::normalize(originalVertices[i + j]) * 0.5f); vertices.push_back(faceNormal); indices.push_back(i + j + startingIndex); } } } shapeData.setupVertices(_shapeVertices, vertices); // FIXME don't use solid indices for wire drawing. shapeData.setupIndices(_shapeIndices, indices, indices); } //Triangle, //Quad, //Circle, //Octahetron, //Dodecahedron, //Torus, //Cone, //Cylinder, // Line startingIndex = _shapeVertices->getSize() / SHAPE_VERTEX_STRIDE; { ShapeData& shapeData = _shapes[Line]; shapeData.setupVertices(_shapeVertices, VVertex{ vec3(-0.5, 0, 0), vec3(-0.5, 0, 0), vec3(0.5f, 0, 0), vec3(0.5f, 0, 0) }); VIndex wireIndices; wireIndices.push_back(0 + startingIndex); wireIndices.push_back(1 + startingIndex); shapeData.setupIndices(_shapeIndices, VIndex(), wireIndices); } } gpu::Stream::FormatPointer& getSolidStreamFormat() { if (!SOLID_STREAM_FORMAT) { SOLID_STREAM_FORMAT = std::make_shared(); // 1 for everyone SOLID_STREAM_FORMAT->setAttribute(gpu::Stream::POSITION, gpu::Stream::POSITION, POSITION_ELEMENT); SOLID_STREAM_FORMAT->setAttribute(gpu::Stream::NORMAL, gpu::Stream::NORMAL, NORMAL_ELEMENT); } return SOLID_STREAM_FORMAT; } gpu::Stream::FormatPointer& getInstancedSolidStreamFormat() { if (!INSTANCED_SOLID_STREAM_FORMAT) { INSTANCED_SOLID_STREAM_FORMAT = std::make_shared(); // 1 for everyone INSTANCED_SOLID_STREAM_FORMAT->setAttribute(gpu::Stream::POSITION, gpu::Stream::POSITION, POSITION_ELEMENT); INSTANCED_SOLID_STREAM_FORMAT->setAttribute(gpu::Stream::NORMAL, gpu::Stream::NORMAL, NORMAL_ELEMENT); INSTANCED_SOLID_STREAM_FORMAT->setAttribute(gpu::Stream::COLOR, gpu::Stream::COLOR, COLOR_ELEMENT, 0, gpu::Stream::PER_INSTANCE); INSTANCED_SOLID_STREAM_FORMAT->setAttribute(gpu::Stream::INSTANCE_XFM, gpu::Stream::INSTANCE_XFM, TRANSFORM_ELEMENT, 0, gpu::Stream::PER_INSTANCE); } return INSTANCED_SOLID_STREAM_FORMAT; } GeometryCache::GeometryCache() { const qint64 GEOMETRY_DEFAULT_UNUSED_MAX_SIZE = DEFAULT_UNUSED_MAX_SIZE; setUnusedResourceCacheSize(GEOMETRY_DEFAULT_UNUSED_MAX_SIZE); buildShapes(); } GeometryCache::~GeometryCache() { #ifdef WANT_DEBUG qCDebug(renderutils) << "GeometryCache::~GeometryCache()... "; qCDebug(renderutils) << " _registeredLine3DVBOs.size():" << _registeredLine3DVBOs.size(); qCDebug(renderutils) << " _line3DVBOs.size():" << _line3DVBOs.size(); qCDebug(renderutils) << " BatchItemDetails... population:" << GeometryCache::BatchItemDetails::population; #endif //def WANT_DEBUG } QSharedPointer GeometryCache::createResource(const QUrl& url, const QSharedPointer& fallback, bool delayLoad, const void* extra) { // NetworkGeometry is no longer a subclass of Resource, but requires this method because, it is pure virtual. assert(false); return QSharedPointer(); } void setupBatchInstance(gpu::Batch& batch, gpu::BufferPointer transformBuffer, gpu::BufferPointer colorBuffer) { gpu::BufferView colorView(colorBuffer, COLOR_ELEMENT); batch.setInputBuffer(gpu::Stream::COLOR, colorView); gpu::BufferView instanceXfmView(transformBuffer, 0, transformBuffer->getSize(), TRANSFORM_ELEMENT); batch.setInputBuffer(gpu::Stream::INSTANCE_XFM, instanceXfmView); } void GeometryCache::renderShape(gpu::Batch& batch, Shape shape) { batch.setInputFormat(getSolidStreamFormat()); _shapes[shape].draw(batch); } void GeometryCache::renderWireShape(gpu::Batch& batch, Shape shape) { batch.setInputFormat(getSolidStreamFormat()); _shapes[shape].drawWire(batch); } void GeometryCache::renderShapeInstances(gpu::Batch& batch, Shape shape, size_t count, gpu::BufferPointer& transformBuffer, gpu::BufferPointer& colorBuffer) { batch.setInputFormat(getInstancedSolidStreamFormat()); setupBatchInstance(batch, transformBuffer, colorBuffer); _shapes[shape].drawInstances(batch, count); } void GeometryCache::renderWireShapeInstances(gpu::Batch& batch, Shape shape, size_t count, gpu::BufferPointer& transformBuffer, gpu::BufferPointer& colorBuffer) { batch.setInputFormat(getInstancedSolidStreamFormat()); setupBatchInstance(batch, transformBuffer, colorBuffer); _shapes[shape].drawWireInstances(batch, count); } void GeometryCache::renderCubeInstances(gpu::Batch& batch, size_t count, gpu::BufferPointer transformBuffer, gpu::BufferPointer colorBuffer) { renderShapeInstances(batch, Cube, count, transformBuffer, colorBuffer); } void GeometryCache::renderWireCubeInstances(gpu::Batch& batch, size_t count, gpu::BufferPointer transformBuffer, gpu::BufferPointer colorBuffer) { renderWireShapeInstances(batch, Cube, count, transformBuffer, colorBuffer); } void GeometryCache::renderCube(gpu::Batch& batch) { renderShape(batch, Cube); } void GeometryCache::renderWireCube(gpu::Batch& batch) { renderWireShape(batch, Cube); } void GeometryCache::renderSphereInstances(gpu::Batch& batch, size_t count, gpu::BufferPointer transformBuffer, gpu::BufferPointer colorBuffer) { renderShapeInstances(batch, Sphere, count, transformBuffer, colorBuffer); } void GeometryCache::renderSphere(gpu::Batch& batch) { renderShape(batch, Sphere); } void GeometryCache::renderWireSphere(gpu::Batch& batch) { renderWireShape(batch, Sphere); } void GeometryCache::renderGrid(gpu::Batch& batch, int xDivisions, int yDivisions, const glm::vec4& color) { IntPair key(xDivisions, yDivisions); Vec3Pair colorKey(glm::vec3(color.x, color.y, yDivisions), glm::vec3(color.z, color.y, xDivisions)); int vertices = (xDivisions + 1 + yDivisions + 1) * 2; if (!_gridBuffers.contains(key)) { auto verticesBuffer = std::make_shared(); GLfloat* vertexData = new GLfloat[vertices * 2]; GLfloat* vertex = vertexData; for (int i = 0; i <= xDivisions; i++) { float x = (float)i / xDivisions; *(vertex++) = x; *(vertex++) = 0.0f; *(vertex++) = x; *(vertex++) = 1.0f; } for (int i = 0; i <= yDivisions; i++) { float y = (float)i / yDivisions; *(vertex++) = 0.0f; *(vertex++) = y; *(vertex++) = 1.0f; *(vertex++) = y; } verticesBuffer->append(sizeof(GLfloat) * vertices * 2, (gpu::Byte*) vertexData); delete[] vertexData; _gridBuffers[key] = verticesBuffer; } if (!_gridColors.contains(colorKey)) { auto colorBuffer = std::make_shared(); _gridColors[colorKey] = colorBuffer; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); int* colorData = new int[vertices]; int* colorDataAt = colorData; for(int v = 0; v < vertices; v++) { *(colorDataAt++) = compactColor; } colorBuffer->append(sizeof(int) * vertices, (gpu::Byte*) colorData); delete[] colorData; } gpu::BufferPointer verticesBuffer = _gridBuffers[key]; gpu::BufferPointer colorBuffer = _gridColors[colorKey]; const int VERTICES_SLOT = 0; const int COLOR_SLOT = 1; auto streamFormat = std::make_shared(); // 1 for everyone streamFormat->setAttribute(gpu::Stream::POSITION, VERTICES_SLOT, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0); streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_SLOT, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); gpu::BufferView verticesView(verticesBuffer, 0, verticesBuffer->getSize(), streamFormat->getAttributes().at(gpu::Stream::POSITION)._element); gpu::BufferView colorView(colorBuffer, streamFormat->getAttributes().at(gpu::Stream::COLOR)._element); batch.setInputFormat(streamFormat); batch.setInputBuffer(VERTICES_SLOT, verticesView); batch.setInputBuffer(COLOR_SLOT, colorView); batch.draw(gpu::LINES, vertices, 0); } // TODO: why do we seem to create extra BatchItemDetails when we resize the window?? what's that?? void GeometryCache::renderGrid(gpu::Batch& batch, int x, int y, int width, int height, int rows, int cols, const glm::vec4& color, int id) { #ifdef WANT_DEBUG qCDebug(renderutils) << "GeometryCache::renderGrid(x["<(); if (registered) { _registeredAlternateGridBuffers[id] = verticesBuffer; _lastRegisteredAlternateGridBuffers[id] = key; } else { _alternateGridBuffers[key] = verticesBuffer; } GLfloat* vertexData = new GLfloat[vertices * 2]; GLfloat* vertex = vertexData; int dx = width / cols; int dy = height / rows; int tx = x; int ty = y; // Draw horizontal grid lines for (int i = rows + 1; --i >= 0; ) { *(vertex++) = x; *(vertex++) = ty; *(vertex++) = x + width; *(vertex++) = ty; ty += dy; } // Draw vertical grid lines for (int i = cols + 1; --i >= 0; ) { *(vertex++) = tx; *(vertex++) = y; *(vertex++) = tx; *(vertex++) = y + height; tx += dx; } verticesBuffer->append(sizeof(GLfloat) * vertices * 2, (gpu::Byte*) vertexData); delete[] vertexData; } if (!_gridColors.contains(colorKey)) { auto colorBuffer = std::make_shared(); _gridColors[colorKey] = colorBuffer; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); int* colorData = new int[vertices]; int* colorDataAt = colorData; for(int v = 0; v < vertices; v++) { *(colorDataAt++) = compactColor; } colorBuffer->append(sizeof(int) * vertices, (gpu::Byte*) colorData); delete[] colorData; } gpu::BufferPointer verticesBuffer = registered ? _registeredAlternateGridBuffers[id] : _alternateGridBuffers[key]; gpu::BufferPointer colorBuffer = _gridColors[colorKey]; const int VERTICES_SLOT = 0; const int COLOR_SLOT = 1; auto streamFormat = std::make_shared(); // 1 for everyone streamFormat->setAttribute(gpu::Stream::POSITION, VERTICES_SLOT, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0); streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_SLOT, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); gpu::BufferView verticesView(verticesBuffer, 0, verticesBuffer->getSize(), streamFormat->getAttributes().at(gpu::Stream::POSITION)._element); gpu::BufferView colorView(colorBuffer, streamFormat->getAttributes().at(gpu::Stream::COLOR)._element); batch.setInputFormat(streamFormat); batch.setInputBuffer(VERTICES_SLOT, verticesView); batch.setInputBuffer(COLOR_SLOT, colorView); batch.draw(gpu::LINES, vertices, 0); } void GeometryCache::updateVertices(int id, const QVector& points, const glm::vec4& color) { BatchItemDetails& details = _registeredVertices[id]; if (details.isCreated) { details.clear(); #ifdef WANT_DEBUG qCDebug(renderutils) << "updateVertices()... RELEASING REGISTERED"; #endif // def WANT_DEBUG } const int FLOATS_PER_VERTEX = 2; details.isCreated = true; details.vertices = points.size(); details.vertexSize = FLOATS_PER_VERTEX; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); details.vertices = points.size(); details.vertexSize = FLOATS_PER_VERTEX; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); GLfloat* vertexData = new GLfloat[details.vertices * FLOATS_PER_VERTEX]; GLfloat* vertex = vertexData; int* colorData = new int[details.vertices]; int* colorDataAt = colorData; foreach (const glm::vec2& point, points) { *(vertex++) = point.x; *(vertex++) = point.y; *(colorDataAt++) = compactColor; } details.verticesBuffer->append(sizeof(GLfloat) * FLOATS_PER_VERTEX * details.vertices, (gpu::Byte*) vertexData); details.colorBuffer->append(sizeof(int) * details.vertices, (gpu::Byte*) colorData); delete[] vertexData; delete[] colorData; #ifdef WANT_DEBUG qCDebug(renderutils) << "new registered linestrip buffer made -- _registeredVertices.size():" << _registeredVertices.size(); #endif } void GeometryCache::updateVertices(int id, const QVector& points, const glm::vec4& color) { BatchItemDetails& details = _registeredVertices[id]; if (details.isCreated) { details.clear(); #ifdef WANT_DEBUG qCDebug(renderutils) << "updateVertices()... RELEASING REGISTERED"; #endif // def WANT_DEBUG } const int FLOATS_PER_VERTEX = 3; details.isCreated = true; details.vertices = points.size(); details.vertexSize = FLOATS_PER_VERTEX; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); details.vertices = points.size(); details.vertexSize = FLOATS_PER_VERTEX; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); GLfloat* vertexData = new GLfloat[details.vertices * FLOATS_PER_VERTEX]; GLfloat* vertex = vertexData; int* colorData = new int[details.vertices]; int* colorDataAt = colorData; foreach (const glm::vec3& point, points) { *(vertex++) = point.x; *(vertex++) = point.y; *(vertex++) = point.z; *(colorDataAt++) = compactColor; } details.verticesBuffer->append(sizeof(GLfloat) * FLOATS_PER_VERTEX * details.vertices, (gpu::Byte*) vertexData); details.colorBuffer->append(sizeof(int) * details.vertices, (gpu::Byte*) colorData); delete[] vertexData; delete[] colorData; #ifdef WANT_DEBUG qCDebug(renderutils) << "new registered linestrip buffer made -- _registeredVertices.size():" << _registeredVertices.size(); #endif } void GeometryCache::updateVertices(int id, const QVector& points, const QVector& texCoords, const glm::vec4& color) { BatchItemDetails& details = _registeredVertices[id]; if (details.isCreated) { details.clear(); #ifdef WANT_DEBUG qCDebug(renderutils) << "updateVertices()... RELEASING REGISTERED"; #endif // def WANT_DEBUG } const int FLOATS_PER_VERTEX = 5; details.isCreated = true; details.vertices = points.size(); details.vertexSize = FLOATS_PER_VERTEX; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::TEXCOORD, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV), 3 * sizeof(float)); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); assert(points.size() == texCoords.size()); details.vertices = points.size(); details.vertexSize = FLOATS_PER_VERTEX; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); GLfloat* vertexData = new GLfloat[details.vertices * FLOATS_PER_VERTEX]; GLfloat* vertex = vertexData; int* colorData = new int[details.vertices]; int* colorDataAt = colorData; for (int i = 0; i < points.size(); i++) { glm::vec3 point = points[i]; glm::vec2 texCoord = texCoords[i]; *(vertex++) = point.x; *(vertex++) = point.y; *(vertex++) = point.z; *(vertex++) = texCoord.x; *(vertex++) = texCoord.y; *(colorDataAt++) = compactColor; } details.verticesBuffer->append(sizeof(GLfloat) * FLOATS_PER_VERTEX * details.vertices, (gpu::Byte*) vertexData); details.colorBuffer->append(sizeof(int) * details.vertices, (gpu::Byte*) colorData); delete[] vertexData; delete[] colorData; #ifdef WANT_DEBUG qCDebug(renderutils) << "new registered linestrip buffer made -- _registeredVertices.size():" << _registeredVertices.size(); #endif } void GeometryCache::renderVertices(gpu::Batch& batch, gpu::Primitive primitiveType, int id) { BatchItemDetails& details = _registeredVertices[id]; if (details.isCreated) { batch.setInputFormat(details.streamFormat); batch.setInputStream(0, *details.stream); batch.draw(primitiveType, details.vertices, 0); } } void GeometryCache::renderBevelCornersRect(gpu::Batch& batch, int x, int y, int width, int height, int bevelDistance, const glm::vec4& color, int id) { bool registered = (id != UNKNOWN_ID); Vec3Pair key(glm::vec3(x, y, 0.0f), glm::vec3(width, height, bevelDistance)); BatchItemDetails& details = registered ? _registeredBevelRects[id] : _bevelRects[key]; // if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed if (registered && details.isCreated) { Vec3Pair& lastKey = _lastRegisteredBevelRects[id]; if (lastKey != key) { details.clear(); _lastRegisteredBevelRects[id] = key; #ifdef WANT_DEBUG qCDebug(renderutils) << "renderBevelCornersRect()... RELEASING REGISTERED"; #endif // def WANT_DEBUG } #ifdef WANT_DEBUG else { qCDebug(renderutils) << "renderBevelCornersRect()... REUSING PREVIOUSLY REGISTERED"; } #endif // def WANT_DEBUG } if (!details.isCreated) { static const int FLOATS_PER_VERTEX = 2; // vertices static const int NUM_VERTICES = 8; static const int NUM_FLOATS = NUM_VERTICES * FLOATS_PER_VERTEX; details.isCreated = true; details.vertices = NUM_VERTICES; details.vertexSize = FLOATS_PER_VERTEX; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ)); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); GLfloat vertexBuffer[NUM_FLOATS]; // only vertices, no normals because we're a 2D quad int vertexPoint = 0; // Triangle strip points // 3 ------ 5 // // / \ // // 1 7 // // | | // // 2 8 // // \ / // // 4 ------ 6 // // 1 vertexBuffer[vertexPoint++] = x; vertexBuffer[vertexPoint++] = y + height - bevelDistance; // 2 vertexBuffer[vertexPoint++] = x; vertexBuffer[vertexPoint++] = y + bevelDistance; // 3 vertexBuffer[vertexPoint++] = x + bevelDistance; vertexBuffer[vertexPoint++] = y + height; // 4 vertexBuffer[vertexPoint++] = x + bevelDistance; vertexBuffer[vertexPoint++] = y; // 5 vertexBuffer[vertexPoint++] = x + width - bevelDistance; vertexBuffer[vertexPoint++] = y + height; // 6 vertexBuffer[vertexPoint++] = x + width - bevelDistance; vertexBuffer[vertexPoint++] = y; // 7 vertexBuffer[vertexPoint++] = x + width; vertexBuffer[vertexPoint++] = y + height - bevelDistance; // 8 vertexBuffer[vertexPoint++] = x + width; vertexBuffer[vertexPoint++] = y + bevelDistance; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); int colors[NUM_VERTICES] = { compactColor, compactColor, compactColor, compactColor, compactColor, compactColor, compactColor, compactColor }; details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer); details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors); } batch.setInputFormat(details.streamFormat); batch.setInputStream(0, *details.stream); batch.draw(gpu::TRIANGLE_STRIP, details.vertices, 0); } void GeometryCache::renderQuad(gpu::Batch& batch, const glm::vec2& minCorner, const glm::vec2& maxCorner, const glm::vec4& color, int id) { bool registered = (id != UNKNOWN_ID); Vec4Pair key(glm::vec4(minCorner.x, minCorner.y, maxCorner.x, maxCorner.y), color); BatchItemDetails& details = registered ? _registeredQuad2D[id] : _quad2D[key]; // if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed if (registered && details.isCreated) { Vec4Pair & lastKey = _lastRegisteredQuad2D[id]; if (lastKey != key) { details.clear(); _lastRegisteredQuad2D[id] = key; #ifdef WANT_DEBUG qCDebug(renderutils) << "renderQuad() 2D ... RELEASING REGISTERED"; #endif // def WANT_DEBUG } #ifdef WANT_DEBUG else { qCDebug(renderutils) << "renderQuad() 2D ... REUSING PREVIOUSLY REGISTERED"; } #endif // def WANT_DEBUG } const int FLOATS_PER_VERTEX = 2; // vertices const int VERTICES = 4; // 1 quad = 4 vertices if (!details.isCreated) { details.isCreated = true; details.vertices = VERTICES; details.vertexSize = FLOATS_PER_VERTEX; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); float vertexBuffer[VERTICES * FLOATS_PER_VERTEX] = { minCorner.x, minCorner.y, maxCorner.x, minCorner.y, minCorner.x, maxCorner.y, maxCorner.x, maxCorner.y, }; const int NUM_COLOR_SCALARS_PER_QUAD = 4; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); int colors[NUM_COLOR_SCALARS_PER_QUAD] = { compactColor, compactColor, compactColor, compactColor }; details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer); details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors); } batch.setInputFormat(details.streamFormat); batch.setInputStream(0, *details.stream); batch.draw(gpu::TRIANGLE_STRIP, 4, 0); } //void GeometryCache::renderUnitCube(gpu::Batch& batch) { // static const glm::vec4 color(1); // renderSolidCube(batch, 1, color); //} void GeometryCache::renderUnitQuad(gpu::Batch& batch, const glm::vec4& color, int id) { static const glm::vec2 topLeft(-1, 1); static const glm::vec2 bottomRight(1, -1); static const glm::vec2 texCoordTopLeft(0.0f, 1.0f); static const glm::vec2 texCoordBottomRight(1.0f, 0.0f); renderQuad(batch, topLeft, bottomRight, texCoordTopLeft, texCoordBottomRight, color, id); } void GeometryCache::renderQuad(gpu::Batch& batch, const glm::vec2& minCorner, const glm::vec2& maxCorner, const glm::vec2& texCoordMinCorner, const glm::vec2& texCoordMaxCorner, const glm::vec4& color, int id) { bool registered = (id != UNKNOWN_ID); Vec4PairVec4 key(Vec4Pair(glm::vec4(minCorner.x, minCorner.y, maxCorner.x, maxCorner.y), glm::vec4(texCoordMinCorner.x, texCoordMinCorner.y, texCoordMaxCorner.x, texCoordMaxCorner.y)), color); BatchItemDetails& details = registered ? _registeredQuad2DTextures[id] : _quad2DTextures[key]; // if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed if (registered && details.isCreated) { Vec4PairVec4& lastKey = _lastRegisteredQuad2DTexture[id]; if (lastKey != key) { details.clear(); _lastRegisteredQuad2DTexture[id] = key; #ifdef WANT_DEBUG qCDebug(renderutils) << "renderQuad() 2D+texture ... RELEASING REGISTERED"; #endif // def WANT_DEBUG } #ifdef WANT_DEBUG else { qCDebug(renderutils) << "renderQuad() 2D+texture ... REUSING PREVIOUSLY REGISTERED"; } #endif // def WANT_DEBUG } const int FLOATS_PER_VERTEX = 2 * 2; // text coords & vertices const int VERTICES = 4; // 1 quad = 4 vertices const int NUM_POS_COORDS = 2; const int VERTEX_TEXCOORD_OFFSET = NUM_POS_COORDS * sizeof(float); if (!details.isCreated) { details.isCreated = true; details.vertices = VERTICES; details.vertexSize = FLOATS_PER_VERTEX; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::TEXCOORD, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV), VERTEX_TEXCOORD_OFFSET); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); float vertexBuffer[VERTICES * FLOATS_PER_VERTEX] = { minCorner.x, minCorner.y, texCoordMinCorner.x, texCoordMinCorner.y, maxCorner.x, minCorner.y, texCoordMaxCorner.x, texCoordMinCorner.y, minCorner.x, maxCorner.y, texCoordMinCorner.x, texCoordMaxCorner.y, maxCorner.x, maxCorner.y, texCoordMaxCorner.x, texCoordMaxCorner.y, }; const int NUM_COLOR_SCALARS_PER_QUAD = 4; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); int colors[NUM_COLOR_SCALARS_PER_QUAD] = { compactColor, compactColor, compactColor, compactColor }; details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer); details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors); } batch.setInputFormat(details.streamFormat); batch.setInputStream(0, *details.stream); batch.draw(gpu::TRIANGLE_STRIP, 4, 0); } void GeometryCache::renderQuad(gpu::Batch& batch, const glm::vec3& minCorner, const glm::vec3& maxCorner, const glm::vec4& color, int id) { bool registered = (id != UNKNOWN_ID); Vec3PairVec4 key(Vec3Pair(minCorner, maxCorner), color); BatchItemDetails& details = registered ? _registeredQuad3D[id] : _quad3D[key]; // if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed if (registered && details.isCreated) { Vec3PairVec4& lastKey = _lastRegisteredQuad3D[id]; if (lastKey != key) { details.clear(); _lastRegisteredQuad3D[id] = key; #ifdef WANT_DEBUG qCDebug(renderutils) << "renderQuad() 3D ... RELEASING REGISTERED"; #endif // def WANT_DEBUG } #ifdef WANT_DEBUG else { qCDebug(renderutils) << "renderQuad() 3D ... REUSING PREVIOUSLY REGISTERED"; } #endif // def WANT_DEBUG } const int FLOATS_PER_VERTEX = 3; // vertices const int VERTICES = 4; // 1 quad = 4 vertices if (!details.isCreated) { details.isCreated = true; details.vertices = VERTICES; details.vertexSize = FLOATS_PER_VERTEX; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); float vertexBuffer[VERTICES * FLOATS_PER_VERTEX] = { minCorner.x, minCorner.y, minCorner.z, maxCorner.x, minCorner.y, minCorner.z, minCorner.x, maxCorner.y, maxCorner.z, maxCorner.x, maxCorner.y, maxCorner.z, }; const int NUM_COLOR_SCALARS_PER_QUAD = 4; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); int colors[NUM_COLOR_SCALARS_PER_QUAD] = { compactColor, compactColor, compactColor, compactColor }; details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer); details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors); } batch.setInputFormat(details.streamFormat); batch.setInputStream(0, *details.stream); batch.draw(gpu::TRIANGLE_STRIP, 4, 0); } void GeometryCache::renderQuad(gpu::Batch& batch, const glm::vec3& topLeft, const glm::vec3& bottomLeft, const glm::vec3& bottomRight, const glm::vec3& topRight, const glm::vec2& texCoordTopLeft, const glm::vec2& texCoordBottomLeft, const glm::vec2& texCoordBottomRight, const glm::vec2& texCoordTopRight, const glm::vec4& color, int id) { #ifdef WANT_DEBUG qCDebug(renderutils) << "renderQuad() vec3 + texture VBO..."; qCDebug(renderutils) << " topLeft:" << topLeft; qCDebug(renderutils) << " bottomLeft:" << bottomLeft; qCDebug(renderutils) << " bottomRight:" << bottomRight; qCDebug(renderutils) << " topRight:" << topRight; qCDebug(renderutils) << " texCoordTopLeft:" << texCoordTopLeft; qCDebug(renderutils) << " texCoordBottomRight:" << texCoordBottomRight; qCDebug(renderutils) << " color:" << color; #endif //def WANT_DEBUG bool registered = (id != UNKNOWN_ID); Vec3PairVec4Pair key(Vec3Pair(topLeft, bottomRight), Vec4Pair(glm::vec4(texCoordTopLeft.x,texCoordTopLeft.y,texCoordBottomRight.x,texCoordBottomRight.y), color)); BatchItemDetails& details = registered ? _registeredQuad3DTextures[id] : _quad3DTextures[key]; // if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed if (registered && details.isCreated) { Vec3PairVec4Pair& lastKey = _lastRegisteredQuad3DTexture[id]; if (lastKey != key) { details.clear(); _lastRegisteredQuad3DTexture[id] = key; #ifdef WANT_DEBUG qCDebug(renderutils) << "renderQuad() 3D+texture ... RELEASING REGISTERED"; #endif // def WANT_DEBUG } #ifdef WANT_DEBUG else { qCDebug(renderutils) << "renderQuad() 3D+texture ... REUSING PREVIOUSLY REGISTERED"; } #endif // def WANT_DEBUG } const int FLOATS_PER_VERTEX = 3 + 2; // 3d vertices + text coords const int VERTICES = 4; // 1 quad = 4 vertices const int NUM_POS_COORDS = 3; const int VERTEX_TEXCOORD_OFFSET = NUM_POS_COORDS * sizeof(float); if (!details.isCreated) { details.isCreated = true; details.vertices = VERTICES; details.vertexSize = FLOATS_PER_VERTEX; // NOTE: this isn't used for BatchItemDetails maybe we can get rid of it auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::TEXCOORD, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV), VERTEX_TEXCOORD_OFFSET); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); float vertexBuffer[VERTICES * FLOATS_PER_VERTEX] = { bottomLeft.x, bottomLeft.y, bottomLeft.z, texCoordBottomLeft.x, texCoordBottomLeft.y, bottomRight.x, bottomRight.y, bottomRight.z, texCoordBottomRight.x, texCoordBottomRight.y, topLeft.x, topLeft.y, topLeft.z, texCoordTopLeft.x, texCoordTopLeft.y, topRight.x, topRight.y, topRight.z, texCoordTopRight.x, texCoordTopRight.y, }; const int NUM_COLOR_SCALARS_PER_QUAD = 4; int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); int colors[NUM_COLOR_SCALARS_PER_QUAD] = { compactColor, compactColor, compactColor, compactColor }; details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer); details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors); } batch.setInputFormat(details.streamFormat); batch.setInputStream(0, *details.stream); batch.draw(gpu::TRIANGLE_STRIP, 4, 0); } void GeometryCache::renderDashedLine(gpu::Batch& batch, const glm::vec3& start, const glm::vec3& end, const glm::vec4& color, const float dash_length, const float gap_length, int id) { bool registered = (id != UNKNOWN_ID); Vec3PairVec2Pair key(Vec3Pair(start, end), Vec2Pair(glm::vec2(color.x, color.y), glm::vec2(color.z, color.w))); BatchItemDetails& details = registered ? _registeredDashedLines[id] : _dashedLines[key]; // if this is a registered , and we have buffers, then check to see if the geometry changed and rebuild if needed if (registered && details.isCreated) { if (_lastRegisteredDashedLines[id] != key) { details.clear(); _lastRegisteredDashedLines[id] = key; #ifdef WANT_DEBUG qCDebug(renderutils) << "renderDashedLine()... RELEASING REGISTERED"; #endif // def WANT_DEBUG } } if (!details.isCreated) { int compactColor = ((int(color.x * 255.0f) & 0xFF)) | ((int(color.y * 255.0f) & 0xFF) << 8) | ((int(color.z * 255.0f) & 0xFF) << 16) | ((int(color.w * 255.0f) & 0xFF) << 24); // draw each line segment with appropriate gaps const float SEGMENT_LENGTH = dash_length + gap_length; float length = glm::distance(start, end); float segmentCount = length / SEGMENT_LENGTH; int segmentCountFloor = (int)glm::floor(segmentCount); glm::vec3 segmentVector = (end - start) / segmentCount; glm::vec3 dashVector = segmentVector / SEGMENT_LENGTH * dash_length; glm::vec3 gapVector = segmentVector / SEGMENT_LENGTH * gap_length; const int FLOATS_PER_VERTEX = 3; details.vertices = (segmentCountFloor + 1) * 2; details.vertexSize = FLOATS_PER_VERTEX; details.isCreated = true; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); int* colorData = new int[details.vertices]; int* colorDataAt = colorData; GLfloat* vertexData = new GLfloat[details.vertices * FLOATS_PER_VERTEX]; GLfloat* vertex = vertexData; glm::vec3 point = start; *(vertex++) = point.x; *(vertex++) = point.y; *(vertex++) = point.z; *(colorDataAt++) = compactColor; for (int i = 0; i < segmentCountFloor; i++) { point += dashVector; *(vertex++) = point.x; *(vertex++) = point.y; *(vertex++) = point.z; *(colorDataAt++) = compactColor; point += gapVector; *(vertex++) = point.x; *(vertex++) = point.y; *(vertex++) = point.z; *(colorDataAt++) = compactColor; } *(vertex++) = end.x; *(vertex++) = end.y; *(vertex++) = end.z; *(colorDataAt++) = compactColor; details.verticesBuffer->append(sizeof(GLfloat) * FLOATS_PER_VERTEX * details.vertices, (gpu::Byte*) vertexData); details.colorBuffer->append(sizeof(int) * details.vertices, (gpu::Byte*) colorData); delete[] vertexData; delete[] colorData; #ifdef WANT_DEBUG if (registered) { qCDebug(renderutils) << "new registered dashed line buffer made -- _registeredVertices:" << _registeredDashedLines.size(); } else { qCDebug(renderutils) << "new dashed lines buffer made -- _dashedLines:" << _dashedLines.size(); } #endif } batch.setInputFormat(details.streamFormat); batch.setInputStream(0, *details.stream); batch.draw(gpu::LINES, details.vertices, 0); } int GeometryCache::BatchItemDetails::population = 0; GeometryCache::BatchItemDetails::BatchItemDetails() : verticesBuffer(NULL), colorBuffer(NULL), streamFormat(NULL), stream(NULL), vertices(0), vertexSize(0), isCreated(false) { population++; #ifdef WANT_DEBUG qCDebug(renderutils) << "BatchItemDetails()... population:" << population << "**********************************"; #endif } GeometryCache::BatchItemDetails::BatchItemDetails(const GeometryCache::BatchItemDetails& other) : verticesBuffer(other.verticesBuffer), colorBuffer(other.colorBuffer), streamFormat(other.streamFormat), stream(other.stream), vertices(other.vertices), vertexSize(other.vertexSize), isCreated(other.isCreated) { population++; #ifdef WANT_DEBUG qCDebug(renderutils) << "BatchItemDetails()... population:" << population << "**********************************"; #endif } GeometryCache::BatchItemDetails::~BatchItemDetails() { population--; clear(); #ifdef WANT_DEBUG qCDebug(renderutils) << "~BatchItemDetails()... population:" << population << "**********************************"; #endif } void GeometryCache::BatchItemDetails::clear() { isCreated = false; verticesBuffer.reset(); colorBuffer.reset(); streamFormat.reset(); stream.reset(); } void GeometryCache::renderLine(gpu::Batch& batch, const glm::vec3& p1, const glm::vec3& p2, const glm::vec4& color1, const glm::vec4& color2, int id) { bool registered = (id != UNKNOWN_ID); Vec3Pair key(p1, p2); BatchItemDetails& details = registered ? _registeredLine3DVBOs[id] : _line3DVBOs[key]; int compactColor1 = ((int(color1.x * 255.0f) & 0xFF)) | ((int(color1.y * 255.0f) & 0xFF) << 8) | ((int(color1.z * 255.0f) & 0xFF) << 16) | ((int(color1.w * 255.0f) & 0xFF) << 24); int compactColor2 = ((int(color2.x * 255.0f) & 0xFF)) | ((int(color2.y * 255.0f) & 0xFF) << 8) | ((int(color2.z * 255.0f) & 0xFF) << 16) | ((int(color2.w * 255.0f) & 0xFF) << 24); // if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed if (registered && details.isCreated) { Vec3Pair& lastKey = _lastRegisteredLine3D[id]; if (lastKey != key) { details.clear(); _lastRegisteredLine3D[id] = key; #ifdef WANT_DEBUG qCDebug(renderutils) << "renderLine() 3D ... RELEASING REGISTERED line"; #endif // def WANT_DEBUG } #ifdef WANT_DEBUG else { qCDebug(renderutils) << "renderLine() 3D ... REUSING PREVIOUSLY REGISTERED line"; } #endif // def WANT_DEBUG } const int FLOATS_PER_VERTEX = 3; const int vertices = 2; if (!details.isCreated) { details.isCreated = true; details.vertices = vertices; details.vertexSize = FLOATS_PER_VERTEX; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); float vertexBuffer[vertices * FLOATS_PER_VERTEX] = { p1.x, p1.y, p1.z, p2.x, p2.y, p2.z }; const int NUM_COLOR_SCALARS = 2; int colors[NUM_COLOR_SCALARS] = { compactColor1, compactColor2 }; details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer); details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors); #ifdef WANT_DEBUG if (id == UNKNOWN_ID) { qCDebug(renderutils) << "new renderLine() 3D VBO made -- _line3DVBOs.size():" << _line3DVBOs.size(); } else { qCDebug(renderutils) << "new registered renderLine() 3D VBO made -- _registeredLine3DVBOs.size():" << _registeredLine3DVBOs.size(); } #endif } // this is what it takes to render a quad batch.setInputFormat(details.streamFormat); batch.setInputStream(0, *details.stream); batch.draw(gpu::LINES, 2, 0); } void GeometryCache::renderLine(gpu::Batch& batch, const glm::vec2& p1, const glm::vec2& p2, const glm::vec4& color1, const glm::vec4& color2, int id) { bool registered = (id != UNKNOWN_ID); Vec2Pair key(p1, p2); BatchItemDetails& details = registered ? _registeredLine2DVBOs[id] : _line2DVBOs[key]; int compactColor1 = ((int(color1.x * 255.0f) & 0xFF)) | ((int(color1.y * 255.0f) & 0xFF) << 8) | ((int(color1.z * 255.0f) & 0xFF) << 16) | ((int(color1.w * 255.0f) & 0xFF) << 24); int compactColor2 = ((int(color2.x * 255.0f) & 0xFF)) | ((int(color2.y * 255.0f) & 0xFF) << 8) | ((int(color2.z * 255.0f) & 0xFF) << 16) | ((int(color2.w * 255.0f) & 0xFF) << 24); // if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed if (registered && details.isCreated) { Vec2Pair& lastKey = _lastRegisteredLine2D[id]; if (lastKey != key) { details.clear(); _lastRegisteredLine2D[id] = key; #ifdef WANT_DEBUG qCDebug(renderutils) << "renderLine() 2D ... RELEASING REGISTERED line"; #endif // def WANT_DEBUG } #ifdef WANT_DEBUG else { qCDebug(renderutils) << "renderLine() 2D ... REUSING PREVIOUSLY REGISTERED line"; } #endif // def WANT_DEBUG } const int FLOATS_PER_VERTEX = 2; const int vertices = 2; if (!details.isCreated) { details.isCreated = true; details.vertices = vertices; details.vertexSize = FLOATS_PER_VERTEX; auto verticesBuffer = std::make_shared(); auto colorBuffer = std::make_shared(); auto streamFormat = std::make_shared(); auto stream = std::make_shared(); details.verticesBuffer = verticesBuffer; details.colorBuffer = colorBuffer; details.streamFormat = streamFormat; details.stream = stream; details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0); details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA)); details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride); details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride); float vertexBuffer[vertices * FLOATS_PER_VERTEX] = { p1.x, p1.y, p2.x, p2.y }; const int NUM_COLOR_SCALARS = 2; int colors[NUM_COLOR_SCALARS] = { compactColor1, compactColor2 }; details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer); details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors); #ifdef WANT_DEBUG if (id == UNKNOWN_ID) { qCDebug(renderutils) << "new renderLine() 2D VBO made -- _line3DVBOs.size():" << _line2DVBOs.size(); } else { qCDebug(renderutils) << "new registered renderLine() 2D VBO made -- _registeredLine2DVBOs.size():" << _registeredLine2DVBOs.size(); } #endif } // this is what it takes to render a quad batch.setInputFormat(details.streamFormat); batch.setInputStream(0, *details.stream); batch.draw(gpu::LINES, 2, 0); } void GeometryCache::useSimpleDrawPipeline(gpu::Batch& batch, bool noBlend) { if (!_standardDrawPipeline) { auto vs = gpu::ShaderPointer(gpu::Shader::createVertex(std::string(standardTransformPNTC_vert))); auto ps = gpu::ShaderPointer(gpu::Shader::createPixel(std::string(standardDrawTexture_frag))); auto program = gpu::ShaderPointer(gpu::Shader::createProgram(vs, ps)); gpu::Shader::makeProgram((*program)); auto state = std::make_shared(); // enable decal blend state->setBlendFunction(true, gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA); _standardDrawPipeline.reset(gpu::Pipeline::create(program, state)); auto stateNoBlend = std::make_shared(); auto noBlendPS = gpu::StandardShaderLib::getDrawTextureOpaquePS(); auto programNoBlend = gpu::ShaderPointer(gpu::Shader::createProgram(vs, noBlendPS)); gpu::Shader::makeProgram((*programNoBlend)); _standardDrawPipelineNoBlend.reset(gpu::Pipeline::create(programNoBlend, stateNoBlend)); } if (noBlend) { batch.setPipeline(_standardDrawPipelineNoBlend); } else { batch.setPipeline(_standardDrawPipeline); } } GeometryReader::GeometryReader(const QUrl& url, const QByteArray& data, const QVariantHash& mapping) : _url(url), _data(data), _mapping(mapping) { } void GeometryReader::run() { try { if (_data.isEmpty()) { throw QString("Reply is NULL ?!"); } QString urlname = _url.path().toLower(); bool urlValid = true; urlValid &= !urlname.isEmpty(); urlValid &= !_url.path().isEmpty(); urlValid &= _url.path().toLower().endsWith(".fbx") || _url.path().toLower().endsWith(".obj"); if (urlValid) { // Let's read the binaries from the network FBXGeometry* fbxgeo = nullptr; if (_url.path().toLower().endsWith(".fbx")) { const bool grabLightmaps = true; const float lightmapLevel = 1.0f; fbxgeo = readFBX(_data, _mapping, _url.path(), grabLightmaps, lightmapLevel); } else if (_url.path().toLower().endsWith(".obj")) { fbxgeo = OBJReader().readOBJ(_data, _mapping, _url); } else { QString errorStr("usupported format"); emit onError(NetworkGeometry::ModelParseError, errorStr); } emit onSuccess(fbxgeo); } else { throw QString("url is invalid"); } } catch (const QString& error) { qCDebug(renderutils) << "Error reading " << _url << ": " << error; emit onError(NetworkGeometry::ModelParseError, error); } } NetworkGeometry::NetworkGeometry(const QUrl& url, bool delayLoad, const QVariantHash& mapping, const QUrl& textureBaseUrl) : _url(url), _mapping(mapping), _textureBaseUrl(textureBaseUrl.isValid() ? textureBaseUrl : url) { if (delayLoad) { _state = DelayState; } else { attemptRequestInternal(); } } NetworkGeometry::~NetworkGeometry() { if (_resource) { _resource->deleteLater(); } } void NetworkGeometry::attemptRequest() { if (_state == DelayState) { attemptRequestInternal(); } } void NetworkGeometry::attemptRequestInternal() { if (_url.path().toLower().endsWith(".fst")) { _mappingUrl = _url; requestMapping(_url); } else { _modelUrl = _url; requestModel(_url); } } bool NetworkGeometry::isLoaded() const { return _state == SuccessState; } bool NetworkGeometry::isLoadedWithTextures() const { if (!isLoaded()) { return false; } if (!_isLoadedWithTextures) { for (auto&& mesh : _meshes) { for (auto && part : mesh->_parts) { if ((part->diffuseTexture && !part->diffuseTexture->isLoaded()) || (part->normalTexture && !part->normalTexture->isLoaded()) || (part->specularTexture && !part->specularTexture->isLoaded()) || (part->emissiveTexture && !part->emissiveTexture->isLoaded())) { return false; } } } _isLoadedWithTextures = true; } return true; } void NetworkGeometry::setTextureWithNameToURL(const QString& name, const QUrl& url) { if (_meshes.size() > 0) { auto textureCache = DependencyManager::get(); for (size_t i = 0; i < _meshes.size(); i++) { NetworkMesh& mesh = *(_meshes[i].get()); for (size_t j = 0; j < mesh._parts.size(); j++) { NetworkMeshPart& part = *(mesh._parts[j].get()); QSharedPointer matchingTexture = QSharedPointer(); if (part.diffuseTextureName == name) { part.diffuseTexture = textureCache->getTexture(url, DEFAULT_TEXTURE, _geometry->meshes[i].isEye); } else if (part.normalTextureName == name) { part.normalTexture = textureCache->getTexture(url); } else if (part.specularTextureName == name) { part.specularTexture = textureCache->getTexture(url); } else if (part.emissiveTextureName == name) { part.emissiveTexture = textureCache->getTexture(url); } } } } else { qCWarning(renderutils) << "Ignoring setTextureWirthNameToURL() geometry not ready." << name << url; } _isLoadedWithTextures = false; } QStringList NetworkGeometry::getTextureNames() const { QStringList result; for (size_t i = 0; i < _meshes.size(); i++) { const NetworkMesh& mesh = *(_meshes[i].get()); for (size_t j = 0; j < mesh._parts.size(); j++) { const NetworkMeshPart& part = *(mesh._parts[j].get()); if (!part.diffuseTextureName.isEmpty() && part.diffuseTexture) { QString textureURL = part.diffuseTexture->getURL().toString(); result << part.diffuseTextureName + ":" + textureURL; } if (!part.normalTextureName.isEmpty() && part.normalTexture) { QString textureURL = part.normalTexture->getURL().toString(); result << part.normalTextureName + ":" + textureURL; } if (!part.specularTextureName.isEmpty() && part.specularTexture) { QString textureURL = part.specularTexture->getURL().toString(); result << part.specularTextureName + ":" + textureURL; } if (!part.emissiveTextureName.isEmpty() && part.emissiveTexture) { QString textureURL = part.emissiveTexture->getURL().toString(); result << part.emissiveTextureName + ":" + textureURL; } } } return result; } void NetworkGeometry::requestMapping(const QUrl& url) { _state = RequestMappingState; if (_resource) { _resource->deleteLater(); } _resource = new Resource(url, false); connect(_resource, &Resource::loaded, this, &NetworkGeometry::mappingRequestDone); connect(_resource, &Resource::failed, this, &NetworkGeometry::mappingRequestError); } void NetworkGeometry::requestModel(const QUrl& url) { _state = RequestModelState; if (_resource) { _resource->deleteLater(); } _modelUrl = url; _resource = new Resource(url, false); connect(_resource, &Resource::loaded, this, &NetworkGeometry::modelRequestDone); connect(_resource, &Resource::failed, this, &NetworkGeometry::modelRequestError); } void NetworkGeometry::mappingRequestDone(const QByteArray& data) { assert(_state == RequestMappingState); // parse the mapping file _mapping = FSTReader::readMapping(data); QUrl replyUrl = _mappingUrl; QString modelUrlStr = _mapping.value("filename").toString(); if (modelUrlStr.isNull()) { qCDebug(renderutils) << "Mapping file " << _url << "has no \"filename\" entry"; emit onFailure(*this, MissingFilenameInMapping); } else { // read _textureBase from mapping file, if present QString texdir = _mapping.value("texdir").toString(); if (!texdir.isNull()) { if (!texdir.endsWith('/')) { texdir += '/'; } _textureBaseUrl = replyUrl.resolved(texdir); } _modelUrl = replyUrl.resolved(modelUrlStr); requestModel(_modelUrl); } } void NetworkGeometry::mappingRequestError(QNetworkReply::NetworkError error) { assert(_state == RequestMappingState); _state = ErrorState; emit onFailure(*this, MappingRequestError); } void NetworkGeometry::modelRequestDone(const QByteArray& data) { assert(_state == RequestModelState); _state = ParsingModelState; // asynchronously parse the model file. GeometryReader* geometryReader = new GeometryReader(_modelUrl, data, _mapping); connect(geometryReader, SIGNAL(onSuccess(FBXGeometry*)), SLOT(modelParseSuccess(FBXGeometry*))); connect(geometryReader, SIGNAL(onError(int, QString)), SLOT(modelParseError(int, QString))); QThreadPool::globalInstance()->start(geometryReader); } void NetworkGeometry::modelRequestError(QNetworkReply::NetworkError error) { assert(_state == RequestModelState); _state = ErrorState; emit onFailure(*this, ModelRequestError); } static NetworkMesh* buildNetworkMesh(const FBXMesh& mesh, const QUrl& textureBaseUrl) { auto textureCache = DependencyManager::get(); NetworkMesh* networkMesh = new NetworkMesh(); int totalIndices = 0; bool checkForTexcoordLightmap = false; // process network parts foreach (const FBXMeshPart& part, mesh.parts) { NetworkMeshPart* networkPart = new NetworkMeshPart(); if (!part.diffuseTexture.filename.isEmpty()) { networkPart->diffuseTexture = textureCache->getTexture(textureBaseUrl.resolved(QUrl(part.diffuseTexture.filename)), DEFAULT_TEXTURE, mesh.isEye, part.diffuseTexture.content); networkPart->diffuseTextureName = part.diffuseTexture.name; } if (!part.normalTexture.filename.isEmpty()) { networkPart->normalTexture = textureCache->getTexture(textureBaseUrl.resolved(QUrl(part.normalTexture.filename)), NORMAL_TEXTURE, false, part.normalTexture.content); networkPart->normalTextureName = part.normalTexture.name; } if (!part.specularTexture.filename.isEmpty()) { networkPart->specularTexture = textureCache->getTexture(textureBaseUrl.resolved(QUrl(part.specularTexture.filename)), SPECULAR_TEXTURE, false, part.specularTexture.content); networkPart->specularTextureName = part.specularTexture.name; } if (!part.emissiveTexture.filename.isEmpty()) { networkPart->emissiveTexture = textureCache->getTexture(textureBaseUrl.resolved(QUrl(part.emissiveTexture.filename)), EMISSIVE_TEXTURE, false, part.emissiveTexture.content); networkPart->emissiveTextureName = part.emissiveTexture.name; checkForTexcoordLightmap = true; } networkMesh->_parts.emplace_back(networkPart); totalIndices += (part.quadIndices.size() + part.triangleIndices.size()); } // initialize index buffer { networkMesh->_indexBuffer = std::make_shared(); networkMesh->_indexBuffer->resize(totalIndices * sizeof(int)); int offset = 0; foreach(const FBXMeshPart& part, mesh.parts) { networkMesh->_indexBuffer->setSubData(offset, part.quadIndices.size() * sizeof(int), (gpu::Byte*) part.quadIndices.constData()); offset += part.quadIndices.size() * sizeof(int); networkMesh->_indexBuffer->setSubData(offset, part.triangleIndices.size() * sizeof(int), (gpu::Byte*) part.triangleIndices.constData()); offset += part.triangleIndices.size() * sizeof(int); } } // initialize vertex buffer { networkMesh->_vertexBuffer = std::make_shared(); // if we don't need to do any blending, the positions/normals can be static if (mesh.blendshapes.isEmpty()) { int normalsOffset = mesh.vertices.size() * sizeof(glm::vec3); int tangentsOffset = normalsOffset + mesh.normals.size() * sizeof(glm::vec3); int colorsOffset = tangentsOffset + mesh.tangents.size() * sizeof(glm::vec3); int texCoordsOffset = colorsOffset + mesh.colors.size() * sizeof(glm::vec3); int texCoords1Offset = texCoordsOffset + mesh.texCoords.size() * sizeof(glm::vec2); int clusterIndicesOffset = texCoords1Offset + mesh.texCoords1.size() * sizeof(glm::vec2); int clusterWeightsOffset = clusterIndicesOffset + mesh.clusterIndices.size() * sizeof(glm::vec4); networkMesh->_vertexBuffer->resize(clusterWeightsOffset + mesh.clusterWeights.size() * sizeof(glm::vec4)); networkMesh->_vertexBuffer->setSubData(0, mesh.vertices.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.vertices.constData()); networkMesh->_vertexBuffer->setSubData(normalsOffset, mesh.normals.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.normals.constData()); networkMesh->_vertexBuffer->setSubData(tangentsOffset, mesh.tangents.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.tangents.constData()); networkMesh->_vertexBuffer->setSubData(colorsOffset, mesh.colors.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.colors.constData()); networkMesh->_vertexBuffer->setSubData(texCoordsOffset, mesh.texCoords.size() * sizeof(glm::vec2), (gpu::Byte*) mesh.texCoords.constData()); networkMesh->_vertexBuffer->setSubData(texCoords1Offset, mesh.texCoords1.size() * sizeof(glm::vec2), (gpu::Byte*) mesh.texCoords1.constData()); networkMesh->_vertexBuffer->setSubData(clusterIndicesOffset, mesh.clusterIndices.size() * sizeof(glm::vec4), (gpu::Byte*) mesh.clusterIndices.constData()); networkMesh->_vertexBuffer->setSubData(clusterWeightsOffset, mesh.clusterWeights.size() * sizeof(glm::vec4), (gpu::Byte*) mesh.clusterWeights.constData()); // otherwise, at least the cluster indices/weights can be static networkMesh->_vertexStream = std::make_shared(); networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, 0, sizeof(glm::vec3)); if (mesh.normals.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, normalsOffset, sizeof(glm::vec3)); if (mesh.tangents.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, tangentsOffset, sizeof(glm::vec3)); if (mesh.colors.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, colorsOffset, sizeof(glm::vec3)); if (mesh.texCoords.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, texCoordsOffset, sizeof(glm::vec2)); if (mesh.texCoords1.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, texCoords1Offset, sizeof(glm::vec2)); if (mesh.clusterIndices.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, clusterIndicesOffset, sizeof(glm::vec4)); if (mesh.clusterWeights.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, clusterWeightsOffset, sizeof(glm::vec4)); int channelNum = 0; networkMesh->_vertexFormat = std::make_shared(); networkMesh->_vertexFormat->setAttribute(gpu::Stream::POSITION, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0); if (mesh.normals.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::NORMAL, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ)); if (mesh.tangents.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::TANGENT, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ)); if (mesh.colors.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::COLOR, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::RGB)); if (mesh.texCoords.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::TEXCOORD, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV)); if (mesh.texCoords1.size()) { networkMesh->_vertexFormat->setAttribute(gpu::Stream::TEXCOORD1, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV)); } else if (checkForTexcoordLightmap && mesh.texCoords.size()) { // need lightmap texcoord UV but doesn't have uv#1 so just reuse the same channel networkMesh->_vertexFormat->setAttribute(gpu::Stream::TEXCOORD1, channelNum - 1, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV)); } if (mesh.clusterIndices.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_INDEX, channelNum++, gpu::Element(gpu::VEC4, gpu::FLOAT, gpu::XYZW)); if (mesh.clusterWeights.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT, channelNum++, gpu::Element(gpu::VEC4, gpu::FLOAT, gpu::XYZW)); } else { int colorsOffset = mesh.tangents.size() * sizeof(glm::vec3); int texCoordsOffset = colorsOffset + mesh.colors.size() * sizeof(glm::vec3); int clusterIndicesOffset = texCoordsOffset + mesh.texCoords.size() * sizeof(glm::vec2); int clusterWeightsOffset = clusterIndicesOffset + mesh.clusterIndices.size() * sizeof(glm::vec4); networkMesh->_vertexBuffer->resize(clusterWeightsOffset + mesh.clusterWeights.size() * sizeof(glm::vec4)); networkMesh->_vertexBuffer->setSubData(0, mesh.tangents.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.tangents.constData()); networkMesh->_vertexBuffer->setSubData(colorsOffset, mesh.colors.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.colors.constData()); networkMesh->_vertexBuffer->setSubData(texCoordsOffset, mesh.texCoords.size() * sizeof(glm::vec2), (gpu::Byte*) mesh.texCoords.constData()); networkMesh->_vertexBuffer->setSubData(clusterIndicesOffset, mesh.clusterIndices.size() * sizeof(glm::vec4), (gpu::Byte*) mesh.clusterIndices.constData()); networkMesh->_vertexBuffer->setSubData(clusterWeightsOffset, mesh.clusterWeights.size() * sizeof(glm::vec4), (gpu::Byte*) mesh.clusterWeights.constData()); networkMesh->_vertexStream = std::make_shared(); if (mesh.tangents.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, 0, sizeof(glm::vec3)); if (mesh.colors.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, colorsOffset, sizeof(glm::vec3)); if (mesh.texCoords.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, texCoordsOffset, sizeof(glm::vec2)); if (mesh.clusterIndices.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, clusterIndicesOffset, sizeof(glm::vec4)); if (mesh.clusterWeights.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, clusterWeightsOffset, sizeof(glm::vec4)); int channelNum = 0; networkMesh->_vertexFormat = std::make_shared(); networkMesh->_vertexFormat->setAttribute(gpu::Stream::POSITION, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ)); if (mesh.normals.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::NORMAL, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ)); if (mesh.tangents.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::TANGENT, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ)); if (mesh.colors.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::COLOR, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::RGB)); if (mesh.texCoords.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::TEXCOORD, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV)); if (mesh.clusterIndices.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_INDEX, channelNum++, gpu::Element(gpu::VEC4, gpu::FLOAT, gpu::XYZW)); if (mesh.clusterWeights.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT, channelNum++, gpu::Element(gpu::VEC4, gpu::FLOAT, gpu::XYZW)); } } return networkMesh; } void NetworkGeometry::modelParseSuccess(FBXGeometry* geometry) { // assume owner ship of geometry pointer _geometry.reset(geometry); foreach(const FBXMesh& mesh, _geometry->meshes) { _meshes.emplace_back(buildNetworkMesh(mesh, _textureBaseUrl)); } _state = SuccessState; emit onSuccess(*this, *_geometry.get()); delete _resource; _resource = nullptr; } void NetworkGeometry::modelParseError(int error, QString str) { _state = ErrorState; emit onFailure(*this, (NetworkGeometry::Error)error); delete _resource; _resource = nullptr; } bool NetworkMeshPart::isTranslucent() const { return diffuseTexture && diffuseTexture->isTranslucent(); } bool NetworkMesh::isPartTranslucent(const FBXMesh& fbxMesh, int partIndex) const { assert(partIndex >= 0); assert((size_t)partIndex < _parts.size()); return (_parts.at(partIndex)->isTranslucent() || fbxMesh.parts.at(partIndex).opacity != 1.0f); } int NetworkMesh::getTranslucentPartCount(const FBXMesh& fbxMesh) const { int count = 0; for (size_t i = 0; i < _parts.size(); i++) { if (isPartTranslucent(fbxMesh, i)) { count++; } } return count; }