// // ViveControllerManager.cpp // input-plugins/src/input-plugins // // Created by Sam Gondelman on 6/29/15. // Copyright 2013 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include "ViveControllerManager.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "OpenVrHelpers.h" extern PoseData _nextSimPoseData; vr::IVRSystem* acquireOpenVrSystem(); void releaseOpenVrSystem(); static const char* CONTROLLER_MODEL_STRING = "vr_controller_05_wireless_b"; const quint64 CALIBRATION_TIMELAPSE = 2 * USECS_PER_SECOND; static const char* MENU_PARENT = "Avatar"; static const char* MENU_NAME = "Vive Controllers"; static const char* MENU_PATH = "Avatar" ">" "Vive Controllers"; static const char* RENDER_CONTROLLERS = "Render Hand Controllers"; static const int MIN_PUCK_COUNT = 2; static const int MIN_FEET_AND_HIPS = 3; static const int MIN_FEET_HIPS_CHEST = 4; static const int FIRST_FOOT = 0; static const int SECOND_FOOT = 1; static const int HIP = 2; static const int CHEST = 3; const char* ViveControllerManager::NAME { "OpenVR" }; static glm::mat4 computeOffset(glm::mat4 defaultToReferenceMat, glm::mat4 defaultJointMat, controller::Pose puckPose) { glm::mat4 poseMat = createMatFromQuatAndPos(puckPose.rotation, puckPose.translation); glm::mat4 referenceJointMat = defaultToReferenceMat * defaultJointMat; return glm::inverse(poseMat) * referenceJointMat; } static bool sortPucksYPosition(std::pair firstPuck, std::pair secondPuck) { return (firstPuck.second.translation.y < firstPuck.second.translation.y); } bool ViveControllerManager::isSupported() const { return openVrSupported(); } bool ViveControllerManager::activate() { InputPlugin::activate(); _container->addMenu(MENU_PATH); _container->addMenuItem(PluginType::INPUT_PLUGIN, MENU_PATH, RENDER_CONTROLLERS, [this] (bool clicked) { this->setRenderControllers(clicked); }, true, true); if (!_system) { _system = acquireOpenVrSystem(); } Q_ASSERT(_system); enableOpenVrKeyboard(_container); // register with UserInputMapper auto userInputMapper = DependencyManager::get(); userInputMapper->registerDevice(_inputDevice); _registeredWithInputMapper = true; return true; } void ViveControllerManager::deactivate() { InputPlugin::deactivate(); disableOpenVrKeyboard(); _container->removeMenuItem(MENU_NAME, RENDER_CONTROLLERS); _container->removeMenu(MENU_PATH); if (_system) { _container->makeRenderingContextCurrent(); releaseOpenVrSystem(); _system = nullptr; } _inputDevice->_poseStateMap.clear(); // unregister with UserInputMapper auto userInputMapper = DependencyManager::get(); userInputMapper->removeDevice(_inputDevice->_deviceID); _registeredWithInputMapper = false; } void ViveControllerManager::pluginUpdate(float deltaTime, const controller::InputCalibrationData& inputCalibrationData) { if (!_system) { return; } auto userInputMapper = DependencyManager::get(); handleOpenVrEvents(); if (openVrQuitRequested()) { deactivate(); return; } // because update mutates the internal state we need to lock userInputMapper->withLock([&, this]() { _inputDevice->update(deltaTime, inputCalibrationData); }); if (_inputDevice->_trackedControllers == 0 && _registeredWithInputMapper) { userInputMapper->removeDevice(_inputDevice->_deviceID); _registeredWithInputMapper = false; _inputDevice->_poseStateMap.clear(); } if (!_registeredWithInputMapper && _inputDevice->_trackedControllers > 0) { userInputMapper->registerDevice(_inputDevice); _registeredWithInputMapper = true; } } void ViveControllerManager::InputDevice::update(float deltaTime, const controller::InputCalibrationData& inputCalibrationData) { _poseStateMap.clear(); _buttonPressedMap.clear(); _validTrackedObjects.clear(); // While the keyboard is open, we defer strictly to the keyboard values if (isOpenVrKeyboardShown()) { _axisStateMap.clear(); return; } PerformanceTimer perfTimer("ViveControllerManager::update"); auto leftHandDeviceIndex = _system->GetTrackedDeviceIndexForControllerRole(vr::TrackedControllerRole_LeftHand); auto rightHandDeviceIndex = _system->GetTrackedDeviceIndexForControllerRole(vr::TrackedControllerRole_RightHand); handleHandController(deltaTime, leftHandDeviceIndex, inputCalibrationData, true); handleHandController(deltaTime, rightHandDeviceIndex, inputCalibrationData, false); // collect poses for all generic trackers for (int i = 0; i < vr::k_unMaxTrackedDeviceCount; i++) { handleTrackedObject(i, inputCalibrationData); handleHmd(i, inputCalibrationData); } // handle haptics { Locker locker(_lock); if (_leftHapticDuration > 0.0f) { hapticsHelper(deltaTime, true); } if (_rightHapticDuration > 0.0f) { hapticsHelper(deltaTime, false); } } int numTrackedControllers = 0; if (leftHandDeviceIndex != vr::k_unTrackedDeviceIndexInvalid) { numTrackedControllers++; } if (rightHandDeviceIndex != vr::k_unTrackedDeviceIndexInvalid) { numTrackedControllers++; } _trackedControllers = numTrackedControllers; if (checkForCalibrationEvent()) { quint64 currentTime = usecTimestampNow(); if (!_timeTilCalibrationSet) { _timeTilCalibrationSet = true; _timeTilCalibration = currentTime + CALIBRATION_TIMELAPSE; } if (currentTime > _timeTilCalibration && !_triggersPressedHandled) { _triggersPressedHandled = true; calibrateOrUncalibrate(inputCalibrationData); } } else { _triggersPressedHandled = false; _timeTilCalibrationSet = false; } updateCalibratedLimbs(); } void ViveControllerManager::InputDevice::handleTrackedObject(uint32_t deviceIndex, const controller::InputCalibrationData& inputCalibrationData) { uint32_t poseIndex = controller::TRACKED_OBJECT_00 + deviceIndex; if (_system->IsTrackedDeviceConnected(deviceIndex) && _system->GetTrackedDeviceClass(deviceIndex) == vr::TrackedDeviceClass_GenericTracker && _nextSimPoseData.vrPoses[deviceIndex].bPoseIsValid && poseIndex <= controller::TRACKED_OBJECT_15) { // process pose const mat4& mat = _nextSimPoseData.poses[deviceIndex]; const vec3 linearVelocity = _nextSimPoseData.linearVelocities[deviceIndex]; const vec3 angularVelocity = _nextSimPoseData.angularVelocities[deviceIndex]; controller::Pose pose(extractTranslation(mat), glmExtractRotation(mat), linearVelocity, angularVelocity); // transform into avatar frame glm::mat4 controllerToAvatar = glm::inverse(inputCalibrationData.avatarMat) * inputCalibrationData.sensorToWorldMat; _poseStateMap[poseIndex] = pose.transform(controllerToAvatar); _validTrackedObjects.push_back(std::make_pair(poseIndex, _poseStateMap[poseIndex])); } else { controller::Pose invalidPose; _poseStateMap[poseIndex] = invalidPose; } } void ViveControllerManager::InputDevice::calibrateOrUncalibrate(const controller::InputCalibrationData& inputCalibration) { if (!_calibrated) { calibrate(inputCalibration); } else { uncalibrate(); } } void ViveControllerManager::InputDevice::calibrate(const controller::InputCalibrationData& inputCalibration) { // convert the hmd head from sensor space to avatar space glm::mat4 hmdSensorFlippedMat = inputCalibration.hmdSensorMat * Matrices::Y_180; glm::mat4 sensorToAvatarMat = glm::inverse(inputCalibration.avatarMat) * inputCalibration.sensorToWorldMat; glm::mat4 hmdAvatarMat = sensorToAvatarMat * hmdSensorFlippedMat; // cancel the roll and pitch for the hmd head glm::quat hmdRotation = cancelOutRollAndPitch(glmExtractRotation(hmdAvatarMat)); glm::vec3 hmdTranslation = extractTranslation(hmdAvatarMat); glm::mat4 currentHmd = createMatFromQuatAndPos(hmdRotation, hmdTranslation); // calculate the offset from the centerOfEye to defaultHeadMat glm::mat4 defaultHeadOffset = glm::inverse(inputCalibration.defaultCenterEyeMat) * inputCalibration.defaultHeadMat; glm::mat4 currentHead = currentHmd * defaultHeadOffset; // calculate the defaultToRefrenceXform glm::mat4 defaultToReferenceMat = currentHead * glm::inverse(inputCalibration.defaultHeadMat); int puckCount = (int)_validTrackedObjects.size(); if (puckCount == MIN_PUCK_COUNT) { _config = Config::Feet; } else if (puckCount == MIN_FEET_AND_HIPS) { _config = Config::FeetAndHips; } else if (puckCount >= MIN_FEET_HIPS_CHEST) { _config = Config::FeetHipsAndChest; } else { return; } std::sort(_validTrackedObjects.begin(), _validTrackedObjects.end(), sortPucksYPosition); auto& firstFoot = _validTrackedObjects[FIRST_FOOT]; auto& secondFoot = _validTrackedObjects[SECOND_FOOT]; controller::Pose& firstFootPose = firstFoot.second; controller::Pose& secondFootPose = secondFoot.second; if (firstFootPose.translation.x < secondFootPose.translation.x) { _jointToPuckMap[controller::LEFT_FOOT] = firstFoot.first; _pucksOffset[firstFoot.first] = computeOffset(defaultToReferenceMat, inputCalibration.defaultLeftFoot, firstFootPose); _jointToPuckMap[controller::RIGHT_FOOT] = secondFoot.first; _pucksOffset[secondFoot.first] = computeOffset(defaultToReferenceMat, inputCalibration.defaultRightFoot, secondFootPose); } else { _jointToPuckMap[controller::LEFT_FOOT] = secondFoot.first; _pucksOffset[secondFoot.first] = computeOffset(defaultToReferenceMat, inputCalibration.defaultLeftFoot, secondFootPose); _jointToPuckMap[controller::RIGHT_FOOT] = firstFoot.first; _pucksOffset[firstFoot.first] = computeOffset(defaultToReferenceMat, inputCalibration.defaultRightFoot, firstFootPose); } if (_config == Config::Feet) { // done } else if (_config == Config::FeetAndHips) { _jointToPuckMap[controller::HIPS] = _validTrackedObjects[HIP].first; _pucksOffset[_validTrackedObjects[HIP].first] = computeOffset(defaultToReferenceMat, inputCalibration.defaultHips, _validTrackedObjects[HIP].second); } else if (_config == Config::FeetHipsAndChest) { _jointToPuckMap[controller::HIPS] = _validTrackedObjects[HIP].first; _pucksOffset[_validTrackedObjects[HIP].first] = computeOffset(defaultToReferenceMat, inputCalibration.defaultHips, _validTrackedObjects[HIP].second); _jointToPuckMap[controller::SPINE2] = _validTrackedObjects[CHEST].first; _pucksOffset[_validTrackedObjects[CHEST].first] = computeOffset(defaultToReferenceMat, inputCalibration.defaultSpine2, _validTrackedObjects[CHEST].second); } _calibrated = true; } void ViveControllerManager::InputDevice::uncalibrate() { _pucksOffset.clear(); _jointToPuckMap.clear(); _calibrated = false; } void ViveControllerManager::InputDevice::updateCalibratedLimbs() { _poseStateMap[controller::LEFT_FOOT] = addOffsetToPuckPose(controller::LEFT_FOOT); _poseStateMap[controller::RIGHT_FOOT] = addOffsetToPuckPose(controller::RIGHT_FOOT); _poseStateMap[controller::HIPS] = addOffsetToPuckPose(controller::HIPS); _poseStateMap[controller::SPINE2] = addOffsetToPuckPose(controller::SPINE2); } controller::Pose ViveControllerManager::InputDevice::addOffsetToPuckPose(int joint) const { auto puck = _jointToPuckMap.find(joint); if (puck != _jointToPuckMap.end()) { uint32_t puckIndex = puck->second; auto puckPose = _poseStateMap.find(puckIndex); auto puckOffset = _pucksOffset.find(puckIndex); if ((puckPose != _poseStateMap.end()) && (puckOffset != _pucksOffset.end())) { return puckPose->second.postTransform(puckOffset->second); } } return controller::Pose(); } void ViveControllerManager::InputDevice::handleHmd(uint32_t deviceIndex, const controller::InputCalibrationData& inputCalibrationData) { uint32_t poseIndex = controller::TRACKED_OBJECT_00 + deviceIndex; if (_system->IsTrackedDeviceConnected(deviceIndex) && _system->GetTrackedDeviceClass(deviceIndex) == vr::TrackedDeviceClass_HMD && _nextSimPoseData.vrPoses[deviceIndex].bPoseIsValid) { const mat4& mat = _nextSimPoseData.poses[deviceIndex]; const vec3 linearVelocity = _nextSimPoseData.linearVelocities[deviceIndex]; const vec3 angularVelocity = _nextSimPoseData.angularVelocities[deviceIndex]; handleHeadPoseEvent(inputCalibrationData, mat, linearVelocity, angularVelocity); } } void ViveControllerManager::InputDevice::handleHandController(float deltaTime, uint32_t deviceIndex, const controller::InputCalibrationData& inputCalibrationData, bool isLeftHand) { if (_system->IsTrackedDeviceConnected(deviceIndex) && _system->GetTrackedDeviceClass(deviceIndex) == vr::TrackedDeviceClass_Controller && _nextSimPoseData.vrPoses[deviceIndex].bPoseIsValid) { // process pose const mat4& mat = _nextSimPoseData.poses[deviceIndex]; const vec3 linearVelocity = _nextSimPoseData.linearVelocities[deviceIndex]; const vec3 angularVelocity = _nextSimPoseData.angularVelocities[deviceIndex]; handlePoseEvent(deltaTime, inputCalibrationData, mat, linearVelocity, angularVelocity, isLeftHand); vr::VRControllerState_t controllerState = vr::VRControllerState_t(); if (_system->GetControllerState(deviceIndex, &controllerState, sizeof(vr::VRControllerState_t))) { // process each button for (uint32_t i = 0; i < vr::k_EButton_Max; ++i) { auto mask = vr::ButtonMaskFromId((vr::EVRButtonId)i); bool pressed = 0 != (controllerState.ulButtonPressed & mask); bool touched = 0 != (controllerState.ulButtonTouched & mask); handleButtonEvent(deltaTime, i, pressed, touched, isLeftHand); } // process each axis for (uint32_t i = 0; i < vr::k_unControllerStateAxisCount; i++) { handleAxisEvent(deltaTime, i, controllerState.rAxis[i].x, controllerState.rAxis[i].y, isLeftHand); } // pseudo buttons the depend on both of the above for-loops partitionTouchpad(controller::LS, controller::LX, controller::LY, controller::LS_CENTER, controller::LS_X, controller::LS_Y); partitionTouchpad(controller::RS, controller::RX, controller::RY, controller::RS_CENTER, controller::RS_X, controller::RS_Y); } } } void ViveControllerManager::InputDevice::partitionTouchpad(int sButton, int xAxis, int yAxis, int centerPseudoButton, int xPseudoButton, int yPseudoButton) { // Populate the L/RS_CENTER/OUTER pseudo buttons, corresponding to a partition of the L/RS space based on the X/Y values. const float CENTER_DEADBAND = 0.6f; const float DIAGONAL_DIVIDE_IN_RADIANS = PI / 4.0f; if (_buttonPressedMap.find(sButton) != _buttonPressedMap.end()) { float absX = abs(_axisStateMap[xAxis]); float absY = abs(_axisStateMap[yAxis]); glm::vec2 cartesianQuadrantI(absX, absY); float angle = glm::atan(cartesianQuadrantI.y / cartesianQuadrantI.x); float radius = glm::length(cartesianQuadrantI); bool isCenter = radius < CENTER_DEADBAND; _buttonPressedMap.insert(isCenter ? centerPseudoButton : ((angle < DIAGONAL_DIVIDE_IN_RADIANS) ? xPseudoButton :yPseudoButton)); } } void ViveControllerManager::InputDevice::focusOutEvent() { _axisStateMap.clear(); _buttonPressedMap.clear(); }; // These functions do translation from the Steam IDs to the standard controller IDs void ViveControllerManager::InputDevice::handleAxisEvent(float deltaTime, uint32_t axis, float x, float y, bool isLeftHand) { //FIX ME? It enters here every frame: probably we want to enter only if an event occurs axis += vr::k_EButton_Axis0; using namespace controller; if (axis == vr::k_EButton_SteamVR_Touchpad) { glm::vec2 stick(x, y); if (isLeftHand) { stick = _filteredLeftStick.process(deltaTime, stick); } else { stick = _filteredRightStick.process(deltaTime, stick); } _axisStateMap[isLeftHand ? LX : RX] = stick.x; _axisStateMap[isLeftHand ? LY : RY] = stick.y; } else if (axis == vr::k_EButton_SteamVR_Trigger) { _axisStateMap[isLeftHand ? LT : RT] = x; // The click feeling on the Vive controller trigger represents a value of *precisely* 1.0, // so we can expose that as an additional button if (x >= 1.0f) { _buttonPressedMap.insert(isLeftHand ? LT_CLICK : RT_CLICK); } } } // An enum for buttons which do not exist in the StandardControls enum enum ViveButtonChannel { LEFT_APP_MENU = controller::StandardButtonChannel::NUM_STANDARD_BUTTONS, RIGHT_APP_MENU }; bool ViveControllerManager::InputDevice::checkForCalibrationEvent() { auto& endOfMap = _buttonPressedMap.end(); auto& leftTrigger = _buttonPressedMap.find(controller::LT); auto& rightTrigger = _buttonPressedMap.find(controller::RT); auto& leftAppButton = _buttonPressedMap.find(LEFT_APP_MENU); auto& rightAppButton = _buttonPressedMap.find(RIGHT_APP_MENU); return ((leftTrigger != endOfMap && leftAppButton != endOfMap) && (rightTrigger != endOfMap && rightAppButton != endOfMap)); } // These functions do translation from the Steam IDs to the standard controller IDs void ViveControllerManager::InputDevice::handleButtonEvent(float deltaTime, uint32_t button, bool pressed, bool touched, bool isLeftHand) { using namespace controller; if (pressed) { if (button == vr::k_EButton_ApplicationMenu) { _buttonPressedMap.insert(isLeftHand ? LEFT_APP_MENU : RIGHT_APP_MENU); } else if (button == vr::k_EButton_Grip) { _axisStateMap[isLeftHand ? LEFT_GRIP : RIGHT_GRIP] = 1.0f; } else if (button == vr::k_EButton_SteamVR_Trigger) { _buttonPressedMap.insert(isLeftHand ? LT : RT); } else if (button == vr::k_EButton_SteamVR_Touchpad) { _buttonPressedMap.insert(isLeftHand ? LS : RS); } } else { if (button == vr::k_EButton_Grip) { _axisStateMap[isLeftHand ? LEFT_GRIP : RIGHT_GRIP] = 0.0f; } } if (touched) { if (button == vr::k_EButton_SteamVR_Touchpad) { _buttonPressedMap.insert(isLeftHand ? LS_TOUCH : RS_TOUCH); } } } void ViveControllerManager::InputDevice::handleHeadPoseEvent(const controller::InputCalibrationData& inputCalibrationData, const mat4& mat, const vec3& linearVelocity, const vec3& angularVelocity) { //perform a 180 flip to make the HMD face the +z instead of -z, beacuse the head faces +z glm::mat4 matYFlip = mat * Matrices::Y_180; controller::Pose pose(extractTranslation(matYFlip), glmExtractRotation(matYFlip), linearVelocity, angularVelocity); glm::mat4 sensorToAvatar = glm::inverse(inputCalibrationData.avatarMat) * inputCalibrationData.sensorToWorldMat; glm::mat4 defaultHeadOffset = glm::inverse(inputCalibrationData.defaultCenterEyeMat) * inputCalibrationData.defaultHeadMat; controller::Pose hmdHeadPose = pose.transform(sensorToAvatar); _poseStateMap[controller::HEAD] = hmdHeadPose.postTransform(defaultHeadOffset); } void ViveControllerManager::InputDevice::handlePoseEvent(float deltaTime, const controller::InputCalibrationData& inputCalibrationData, const mat4& mat, const vec3& linearVelocity, const vec3& angularVelocity, bool isLeftHand) { auto pose = openVrControllerPoseToHandPose(isLeftHand, mat, linearVelocity, angularVelocity); // transform into avatar frame glm::mat4 controllerToAvatar = glm::inverse(inputCalibrationData.avatarMat) * inputCalibrationData.sensorToWorldMat; _poseStateMap[isLeftHand ? controller::LEFT_HAND : controller::RIGHT_HAND] = pose.transform(controllerToAvatar); } bool ViveControllerManager::InputDevice::triggerHapticPulse(float strength, float duration, controller::Hand hand) { Locker locker(_lock); if (hand == controller::BOTH || hand == controller::LEFT) { if (strength == 0.0f) { _leftHapticStrength = 0.0f; _leftHapticDuration = 0.0f; } else { _leftHapticStrength = (duration > _leftHapticDuration) ? strength : _leftHapticStrength; _leftHapticDuration = std::max(duration, _leftHapticDuration); } } if (hand == controller::BOTH || hand == controller::RIGHT) { if (strength == 0.0f) { _rightHapticStrength = 0.0f; _rightHapticDuration = 0.0f; } else { _rightHapticStrength = (duration > _rightHapticDuration) ? strength : _rightHapticStrength; _rightHapticDuration = std::max(duration, _rightHapticDuration); } } return true; } void ViveControllerManager::InputDevice::hapticsHelper(float deltaTime, bool leftHand) { auto handRole = leftHand ? vr::TrackedControllerRole_LeftHand : vr::TrackedControllerRole_RightHand; auto deviceIndex = _system->GetTrackedDeviceIndexForControllerRole(handRole); if (_system->IsTrackedDeviceConnected(deviceIndex) && _system->GetTrackedDeviceClass(deviceIndex) == vr::TrackedDeviceClass_Controller && _nextSimPoseData.vrPoses[deviceIndex].bPoseIsValid) { float strength = leftHand ? _leftHapticStrength : _rightHapticStrength; float duration = leftHand ? _leftHapticDuration : _rightHapticDuration; // Vive Controllers only support duration up to 4 ms, which is short enough that any variation feels more like strength const float MAX_HAPTIC_TIME = 3999.0f; // in microseconds float hapticTime = strength * MAX_HAPTIC_TIME; if (hapticTime < duration * 1000.0f) { _system->TriggerHapticPulse(deviceIndex, 0, hapticTime); } float remainingHapticTime = duration - (hapticTime / 1000.0f + deltaTime * 1000.0f); // in milliseconds if (leftHand) { _leftHapticDuration = remainingHapticTime; } else { _rightHapticDuration = remainingHapticTime; } } } controller::Input::NamedVector ViveControllerManager::InputDevice::getAvailableInputs() const { using namespace controller; QVector availableInputs{ // Trackpad analogs makePair(LX, "LX"), makePair(LY, "LY"), makePair(RX, "RX"), makePair(RY, "RY"), // capacitive touch on the touch pad makePair(LS_TOUCH, "LSTouch"), makePair(RS_TOUCH, "RSTouch"), // touch pad press makePair(LS, "LS"), makePair(RS, "RS"), // Differentiate where we are in the touch pad click makePair(LS_CENTER, "LSCenter"), makePair(LS_X, "LSX"), makePair(LS_Y, "LSY"), makePair(RS_CENTER, "RSCenter"), makePair(RS_X, "RSX"), makePair(RS_Y, "RSY"), // triggers makePair(LT, "LT"), makePair(RT, "RT"), // Trigger clicks makePair(LT_CLICK, "LTClick"), makePair(RT_CLICK, "RTClick"), // low profile side grip button. makePair(LEFT_GRIP, "LeftGrip"), makePair(RIGHT_GRIP, "RightGrip"), // 3d location of controller makePair(LEFT_HAND, "LeftHand"), makePair(RIGHT_HAND, "RightHand"), makePair(LEFT_FOOT, "LeftFoot"), makePair(RIGHT_FOOT, "RightFoot"), makePair(HIPS, "Hips"), makePair(SPINE2, "Spine2"), makePair(HEAD, "Head"), // 16 tracked poses makePair(TRACKED_OBJECT_00, "TrackedObject00"), makePair(TRACKED_OBJECT_01, "TrackedObject01"), makePair(TRACKED_OBJECT_02, "TrackedObject02"), makePair(TRACKED_OBJECT_03, "TrackedObject03"), makePair(TRACKED_OBJECT_04, "TrackedObject04"), makePair(TRACKED_OBJECT_05, "TrackedObject05"), makePair(TRACKED_OBJECT_06, "TrackedObject06"), makePair(TRACKED_OBJECT_07, "TrackedObject07"), makePair(TRACKED_OBJECT_08, "TrackedObject08"), makePair(TRACKED_OBJECT_09, "TrackedObject09"), makePair(TRACKED_OBJECT_10, "TrackedObject10"), makePair(TRACKED_OBJECT_11, "TrackedObject11"), makePair(TRACKED_OBJECT_12, "TrackedObject12"), makePair(TRACKED_OBJECT_13, "TrackedObject13"), makePair(TRACKED_OBJECT_14, "TrackedObject14"), makePair(TRACKED_OBJECT_15, "TrackedObject15"), // app button above trackpad. Input::NamedPair(Input(_deviceID, LEFT_APP_MENU, ChannelType::BUTTON), "LeftApplicationMenu"), Input::NamedPair(Input(_deviceID, RIGHT_APP_MENU, ChannelType::BUTTON), "RightApplicationMenu"), }; return availableInputs; } QString ViveControllerManager::InputDevice::getDefaultMappingConfig() const { static const QString MAPPING_JSON = PathUtils::resourcesPath() + "/controllers/vive.json"; return MAPPING_JSON; }