mirror of
https://thingvellir.net/git/overte
synced 2025-03-27 23:52:03 +01:00
Merge branch 'master' of https://github.com/highfidelity/hifi into reregister-and-scale-after-model-change
This commit is contained in:
commit
1891062dd2
51 changed files with 1051 additions and 276 deletions
|
@ -213,7 +213,6 @@ function AttachedEntitiesManager() {
|
|||
var props = Entities.getEntityProperties(entityID);
|
||||
if (props.parentID == MyAvatar.sessionUUID) {
|
||||
grabData = getEntityCustomData('grabKey', entityID, {});
|
||||
grabbableData = getEntityCustomData('grabbableKey', entityID, {});
|
||||
var wearableData = getEntityCustomData('wearable', entityID, DEFAULT_WEARABLE_DATA);
|
||||
var currentJointName = MyAvatar.getJointNames()[props.parentJointIndex];
|
||||
wearableData.joints[currentJointName] = [props.localPosition, props.localRotation];
|
||||
|
|
|
@ -1006,7 +1006,7 @@ function MyController(hand) {
|
|||
|
||||
// else this thing isn't physical. grab it by reparenting it (but not if we've already
|
||||
// grabbed it).
|
||||
if (grabbableData.refCount < 1) {
|
||||
if (refCount < 1) {
|
||||
this.setState(this.state == STATE_SEARCHING ? STATE_NEAR_GRABBING : STATE_EQUIP);
|
||||
return;
|
||||
} else {
|
||||
|
@ -1120,7 +1120,6 @@ function MyController(hand) {
|
|||
var controllerRotation = Quat.multiply(MyAvatar.orientation, avatarControllerPose.rotation);
|
||||
|
||||
var grabbedProperties = Entities.getEntityProperties(this.grabbedEntity, GRABBABLE_PROPERTIES);
|
||||
var grabbableData = getEntityCustomData(GRABBABLE_DATA_KEY, this.grabbedEntity, DEFAULT_GRABBABLE_DATA);
|
||||
|
||||
if (this.state == STATE_CONTINUE_DISTANCE_HOLDING && this.bumperSqueezed() &&
|
||||
this.hasPresetOffsets()) {
|
||||
|
@ -1307,7 +1306,6 @@ function MyController(hand) {
|
|||
|
||||
this.nearGrabbing = function() {
|
||||
var now = Date.now();
|
||||
var grabbableData = getEntityCustomData(GRABBABLE_DATA_KEY, this.grabbedEntity, DEFAULT_GRABBABLE_DATA);
|
||||
|
||||
if (this.state == STATE_NEAR_GRABBING && this.triggerSmoothedReleased()) {
|
||||
this.setState(STATE_RELEASE);
|
||||
|
@ -1330,10 +1328,9 @@ function MyController(hand) {
|
|||
var handRotation = (this.hand === RIGHT_HAND) ? MyAvatar.getRightPalmRotation() : MyAvatar.getLeftPalmRotation();
|
||||
var handPosition = this.getHandPosition();
|
||||
|
||||
var grabbableData = getEntityCustomData(GRABBABLE_DATA_KEY, this.grabbedEntity, DEFAULT_GRABBABLE_DATA);
|
||||
|
||||
var hasPresetPosition = false;
|
||||
if (this.state != STATE_NEAR_GRABBING && this.hasPresetOffsets()) {
|
||||
var grabbableData = getEntityCustomData(GRABBABLE_DATA_KEY, this.grabbedEntity, DEFAULT_GRABBABLE_DATA);
|
||||
// if an object is "equipped" and has a predefined offset, use it.
|
||||
this.ignoreIK = grabbableData.ignoreIK ? grabbableData.ignoreIK : false;
|
||||
this.offsetPosition = this.getPresetPosition();
|
||||
|
@ -1676,7 +1673,6 @@ function MyController(hand) {
|
|||
};
|
||||
|
||||
this.activateEntity = function(entityID, grabbedProperties, wasLoaded) {
|
||||
var grabbableData = getEntityCustomData(GRABBABLE_DATA_KEY, entityID, DEFAULT_GRABBABLE_DATA);
|
||||
var data = getEntityCustomData(GRAB_USER_DATA_KEY, entityID, {});
|
||||
var now = Date.now();
|
||||
|
||||
|
|
60
examples/data_visualization/photo_sphere.js
Normal file
60
examples/data_visualization/photo_sphere.js
Normal file
|
@ -0,0 +1,60 @@
|
|||
// photo_sphere.js
|
||||
//
|
||||
// Created by James B. Pollack @imgntn on 3/11/2015
|
||||
// Copyright 2016 High Fidelity, Inc.
|
||||
//
|
||||
// This script creates a photo sphere around you.
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
var photoSphere, light;
|
||||
|
||||
//equirectangular
|
||||
var url = 'http://hifi-content.s3.amazonaws.com/james/projection_objects/IMG_9167.JPG';
|
||||
|
||||
var MODEL_URL = 'http://hifi-content.s3.amazonaws.com/james/projection_objects/photosphere2.fbx';
|
||||
|
||||
function createPhotoSphere() {
|
||||
|
||||
var textureString = 'photo:"' + url + '"'
|
||||
|
||||
var properties = {
|
||||
type: 'Model',
|
||||
modelURL: MODEL_URL,
|
||||
name: 'hifi-photo-sphere',
|
||||
dimensions: {
|
||||
x: 32,
|
||||
y: 32,
|
||||
z: 32
|
||||
},
|
||||
position: MyAvatar.position,
|
||||
textures: textureString
|
||||
}
|
||||
photoSphere = Entities.addEntity(properties);
|
||||
}
|
||||
|
||||
function createLight() {
|
||||
var properties = {
|
||||
name: 'hifi-photo-sphere-light',
|
||||
type: 'Light',
|
||||
dimensions: {
|
||||
x: 36,
|
||||
y: 36,
|
||||
z: 36,
|
||||
},
|
||||
intensity: 4.0,
|
||||
falloffRadius: 22,
|
||||
position: MyAvatar.position
|
||||
}
|
||||
light = Entities.addEntity(properties);
|
||||
}
|
||||
|
||||
function cleanup() {
|
||||
Entities.deleteEntity(photoSphere);
|
||||
Entities.deleteEntity(light);
|
||||
}
|
||||
|
||||
Script.scriptEnding.connect(cleanup);
|
||||
createPhotoSphere();
|
||||
createLight();
|
|
@ -243,6 +243,41 @@
|
|||
|
||||
}
|
||||
|
||||
function userDataChanger(groupName, keyName, checkBoxElement, userDataElement, defaultValue) {
|
||||
var properties = {};
|
||||
var parsedData = {};
|
||||
try {
|
||||
parsedData = JSON.parse(userDataElement.value);
|
||||
} catch(e) {}
|
||||
|
||||
if (!(groupName in parsedData)) {
|
||||
parsedData[groupName] = {}
|
||||
}
|
||||
delete parsedData[groupName][keyName];
|
||||
if (checkBoxElement.checked !== defaultValue) {
|
||||
parsedData[groupName][keyName] = checkBoxElement.checked;
|
||||
}
|
||||
|
||||
if (Object.keys(parsedData[groupName]).length == 0) {
|
||||
delete parsedData[groupName];
|
||||
}
|
||||
if (Object.keys(parsedData).length > 0) {
|
||||
properties['userData'] = JSON.stringify(parsedData);
|
||||
} else {
|
||||
properties['userData'] = '';
|
||||
}
|
||||
|
||||
userDataElement.value = properties['userData'];
|
||||
|
||||
EventBridge.emitWebEvent(
|
||||
JSON.stringify({
|
||||
type: "update",
|
||||
properties: properties,
|
||||
})
|
||||
);
|
||||
};
|
||||
|
||||
|
||||
function loaded() {
|
||||
openEventBridge(function() {
|
||||
var allSections = [];
|
||||
|
@ -305,6 +340,11 @@
|
|||
var elCollideMyAvatar = document.getElementById("property-collide-myAvatar");
|
||||
var elCollideOtherAvatar = document.getElementById("property-collide-otherAvatar");
|
||||
var elCollisionSoundURL = document.getElementById("property-collision-sound-url");
|
||||
|
||||
var elGrabbable = document.getElementById("property-grabbable");
|
||||
var elWantsTrigger = document.getElementById("property-wants-trigger");
|
||||
var elIgnoreIK = document.getElementById("property-ignore-ik");
|
||||
|
||||
var elLifetime = document.getElementById("property-lifetime");
|
||||
var elScriptURL = document.getElementById("property-script-url");
|
||||
var elScriptTimestamp = document.getElementById("property-script-timestamp");
|
||||
|
@ -408,7 +448,7 @@
|
|||
var elXTextureURL = document.getElementById("property-x-texture-url");
|
||||
var elYTextureURL = document.getElementById("property-y-texture-url");
|
||||
var elZTextureURL = document.getElementById("property-z-texture-url");
|
||||
|
||||
|
||||
var elPreviewCameraButton = document.getElementById("preview-camera-button");
|
||||
|
||||
if (window.EventBridge !== undefined) {
|
||||
|
@ -518,13 +558,30 @@
|
|||
elCollisionless.checked = properties.collisionless;
|
||||
elDynamic.checked = properties.dynamic;
|
||||
|
||||
|
||||
elCollideStatic.checked = properties.collidesWith.indexOf("static") > -1;
|
||||
elCollideKinematic.checked = properties.collidesWith.indexOf("kinematic") > -1;
|
||||
elCollideDynamic.checked = properties.collidesWith.indexOf("dynamic") > -1;
|
||||
elCollideMyAvatar.checked = properties.collidesWith.indexOf("myAvatar") > -1;
|
||||
elCollideOtherAvatar.checked = properties.collidesWith.indexOf("otherAvatar") > -1;
|
||||
|
||||
elGrabbable.checked = properties.dynamic;
|
||||
elWantsTrigger.checked = false;
|
||||
elIgnoreIK.checked = false;
|
||||
var parsedUserData = {}
|
||||
try {
|
||||
parsedUserData = JSON.parse(properties.userData);
|
||||
} catch(e) {}
|
||||
if ("grabbableKey" in parsedUserData) {
|
||||
if ("grabbable" in parsedUserData["grabbableKey"]) {
|
||||
elGrabbable.checked = parsedUserData["grabbableKey"].grabbable;
|
||||
}
|
||||
if ("wantsTrigger" in parsedUserData["grabbableKey"]) {
|
||||
elWantsTrigger.checked = parsedUserData["grabbableKey"].wantsTrigger;
|
||||
}
|
||||
if ("ignoreIK" in parsedUserData["grabbableKey"]) {
|
||||
elIgnoreIK.checked = parsedUserData["grabbableKey"].ignoreIK;
|
||||
}
|
||||
}
|
||||
|
||||
elCollisionSoundURL.value = properties.collisionSoundURL;
|
||||
elLifetime.value = properties.lifetime;
|
||||
|
@ -737,9 +794,6 @@
|
|||
elCollisionless.addEventListener('change', createEmitCheckedPropertyUpdateFunction('collisionless'));
|
||||
elDynamic.addEventListener('change', createEmitCheckedPropertyUpdateFunction('dynamic'));
|
||||
|
||||
|
||||
|
||||
|
||||
elCollideDynamic.addEventListener('change', function() {
|
||||
updateCheckedSubProperty("collidesWith", properties.collidesWith, elCollideDynamic, 'dynamic');
|
||||
});
|
||||
|
@ -758,6 +812,15 @@
|
|||
updateCheckedSubProperty("collidesWith", properties.collidesWith, elCollideOtherAvatar, 'otherAvatar');
|
||||
});
|
||||
|
||||
elGrabbable.addEventListener('change', function() {
|
||||
userDataChanger("grabbableKey", "grabbable", elGrabbable, elUserData, properties.dynamic);
|
||||
});
|
||||
elWantsTrigger.addEventListener('change', function() {
|
||||
userDataChanger("grabbableKey", "wantsTrigger", elWantsTrigger, elUserData, false);
|
||||
});
|
||||
elIgnoreIK.addEventListener('change', function() {
|
||||
userDataChanger("grabbableKey", "ignoreIK", elIgnoreIK, elUserData, false);
|
||||
});
|
||||
|
||||
elCollisionSoundURL.addEventListener('change', createEmitTextPropertyUpdateFunction('collisionSoundURL'));
|
||||
|
||||
|
@ -954,7 +1017,7 @@
|
|||
action: "previewCamera"
|
||||
}));
|
||||
});
|
||||
|
||||
|
||||
window.onblur = function() {
|
||||
// Fake a change event
|
||||
var ev = document.createEvent("HTMLEvents");
|
||||
|
@ -1476,6 +1539,29 @@
|
|||
</div>
|
||||
</div>
|
||||
|
||||
<div class = "sub-section-header"> Grabbable: </div>
|
||||
<div class = "sub-props-checkbox-group">
|
||||
<div class="property">
|
||||
<span class="label">grabbable</span>
|
||||
<span class="value">
|
||||
<input type='checkbox' id="property-grabbable">
|
||||
</span>
|
||||
</div>
|
||||
|
||||
<div class="property">
|
||||
<span class="label">triggerable</span>
|
||||
<span class="value">
|
||||
<input type='checkbox' id="property-wants-trigger">
|
||||
</span>
|
||||
</div>
|
||||
|
||||
<div class="property">
|
||||
<span class="label">ignore inverse-kinematics</span>
|
||||
<span class="value">
|
||||
<input type='checkbox' id="property-ignore-ik">
|
||||
</span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
|
|
|
@ -36,11 +36,11 @@ var AUDIO_LISTENER_MODE_CUSTOM = "Audio from custom position";
|
|||
|
||||
// be sure that the audio listener options are in the right order (same as the enumerator)
|
||||
var AUDIO_LISTENER_OPTIONS = [
|
||||
// MyAvatar.FROM_HEAD (0)
|
||||
// MyAvatar.audioListenerModeHead (0)
|
||||
AUDIO_LISTENER_MODE_FROM_HEAD,
|
||||
// MyAvatar.FROM_CAMERA (1)
|
||||
// MyAvatar.audioListenerModeCamera (1)
|
||||
AUDIO_LISTENER_MODE_FROM_CAMERA,
|
||||
// MyAvatar.CUSTOM (2)
|
||||
// MyAvatar.audioListenerCustom (2)
|
||||
AUDIO_LISTENER_MODE_CUSTOM
|
||||
];
|
||||
var AUDIO_STEREO_INPUT = "Stereo Input";
|
||||
|
|
|
@ -166,7 +166,8 @@ Item {
|
|||
color: root.fontColor;
|
||||
font.pixelSize: root.fontSize
|
||||
visible: root.expanded;
|
||||
text: "Downloads: ";
|
||||
text: "Downloads: " + root.downloads + "/" + root.downloadLimit +
|
||||
", Pending: " + root.downloadsPending;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2058,18 +2058,21 @@ void Application::keyPressEvent(QKeyEvent* event) {
|
|||
if (isShifted) {
|
||||
Menu::getInstance()->triggerOption(MenuOption::MiniMirror);
|
||||
} else {
|
||||
Menu::getInstance()->setIsOptionChecked(MenuOption::FullscreenMirror, !Menu::getInstance()->isOptionChecked(MenuOption::FullscreenMirror));
|
||||
if (!Menu::getInstance()->isOptionChecked(MenuOption::FullscreenMirror)) {
|
||||
bool isMirrorChecked = Menu::getInstance()->isOptionChecked(MenuOption::FullscreenMirror);
|
||||
Menu::getInstance()->setIsOptionChecked(MenuOption::FullscreenMirror, !isMirrorChecked);
|
||||
if (isMirrorChecked) {
|
||||
Menu::getInstance()->setIsOptionChecked(MenuOption::ThirdPerson, true);
|
||||
}
|
||||
cameraMenuChanged();
|
||||
}
|
||||
break;
|
||||
case Qt::Key_P:
|
||||
Menu::getInstance()->setIsOptionChecked(MenuOption::FirstPerson, !Menu::getInstance()->isOptionChecked(MenuOption::FirstPerson));
|
||||
Menu::getInstance()->setIsOptionChecked(MenuOption::ThirdPerson, !Menu::getInstance()->isOptionChecked(MenuOption::FirstPerson));
|
||||
cameraMenuChanged();
|
||||
break;
|
||||
case Qt::Key_P: {
|
||||
bool isFirstPersonChecked = Menu::getInstance()->isOptionChecked(MenuOption::FirstPerson);
|
||||
Menu::getInstance()->setIsOptionChecked(MenuOption::FirstPerson, !isFirstPersonChecked);
|
||||
Menu::getInstance()->setIsOptionChecked(MenuOption::ThirdPerson, isFirstPersonChecked);
|
||||
cameraMenuChanged();
|
||||
break;
|
||||
}
|
||||
|
||||
case Qt::Key_Slash:
|
||||
Menu::getInstance()->triggerOption(MenuOption::Stats);
|
||||
|
|
|
@ -972,7 +972,6 @@ void Avatar::renderJointConnectingCone(gpu::Batch& batch, glm::vec3 position1, g
|
|||
glm::vec3 perpCos = glm::normalize(glm::cross(axis, perpSin));
|
||||
perpSin = glm::cross(perpCos, axis);
|
||||
|
||||
float anglea = 0.0f;
|
||||
float angleb = 0.0f;
|
||||
QVector<glm::vec3> points;
|
||||
|
||||
|
@ -980,7 +979,7 @@ void Avatar::renderJointConnectingCone(gpu::Batch& batch, glm::vec3 position1, g
|
|||
|
||||
// the rectangles that comprise the sides of the cone section are
|
||||
// referenced by "a" and "b" in one dimension, and "1", and "2" in the other dimension.
|
||||
anglea = angleb;
|
||||
int anglea = angleb;
|
||||
angleb = ((float)(i+1) / (float)NUM_BODY_CONE_SIDES) * TWO_PI;
|
||||
|
||||
float sa = sinf(anglea);
|
||||
|
|
|
@ -57,7 +57,7 @@ class Avatar : public AvatarData {
|
|||
Q_PROPERTY(glm::vec3 skeletonOffset READ getSkeletonOffset WRITE setSkeletonOffset)
|
||||
|
||||
public:
|
||||
Avatar(RigPointer rig = nullptr);
|
||||
explicit Avatar(RigPointer rig = nullptr);
|
||||
~Avatar();
|
||||
|
||||
typedef render::Payload<AvatarData> Payload;
|
||||
|
|
|
@ -308,7 +308,6 @@ bool AvatarActionHold::updateArguments(QVariantMap arguments) {
|
|||
hand = _hand;
|
||||
}
|
||||
|
||||
ok = true;
|
||||
auto myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
|
||||
holderID = myAvatar->getSessionUUID();
|
||||
|
||||
|
|
|
@ -63,11 +63,11 @@ void AvatarManager::registerMetaTypes(QScriptEngine* engine) {
|
|||
}
|
||||
|
||||
AvatarManager::AvatarManager(QObject* parent) :
|
||||
_avatarFades()
|
||||
_avatarFades(),
|
||||
_myAvatar(std::make_shared<MyAvatar>(std::make_shared<Rig>()))
|
||||
{
|
||||
// register a meta type for the weak pointer we'll use for the owning avatar mixer for each avatar
|
||||
qRegisterMetaType<QWeakPointer<Node> >("NodeWeakPointer");
|
||||
_myAvatar = std::make_shared<MyAvatar>(std::make_shared<Rig>());
|
||||
|
||||
auto& packetReceiver = DependencyManager::get<NodeList>()->getPacketReceiver();
|
||||
packetReceiver.registerListener(PacketType::BulkAvatarData, this, "processAvatarDataPacket");
|
||||
|
|
|
@ -71,8 +71,8 @@ public slots:
|
|||
void updateAvatarRenderStatus(bool shouldRenderAvatars);
|
||||
|
||||
private:
|
||||
AvatarManager(QObject* parent = 0);
|
||||
AvatarManager(const AvatarManager& other);
|
||||
explicit AvatarManager(QObject* parent = 0);
|
||||
explicit AvatarManager(const AvatarManager& other);
|
||||
|
||||
void simulateAvatarFades(float deltaTime);
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
#include <display-plugins/DisplayPlugin.h>
|
||||
#include "InterfaceLogging.h"
|
||||
|
||||
AvatarUpdate::AvatarUpdate() : GenericThread(), _lastAvatarUpdate(0) {
|
||||
AvatarUpdate::AvatarUpdate() : GenericThread(), _lastAvatarUpdate(0), _isHMDMode(false) {
|
||||
setObjectName("Avatar Update"); // GenericThread::initialize uses this to set the thread name.
|
||||
Settings settings;
|
||||
const int DEFAULT_TARGET_AVATAR_SIMRATE = 60;
|
||||
|
|
|
@ -28,7 +28,7 @@ class Avatar;
|
|||
|
||||
class Head : public HeadData {
|
||||
public:
|
||||
Head(Avatar* owningAvatar);
|
||||
explicit Head(Avatar* owningAvatar);
|
||||
|
||||
void init();
|
||||
void reset();
|
||||
|
|
|
@ -1522,9 +1522,9 @@ glm::vec3 MyAvatar::applyKeyboardMotor(float deltaTime, const glm::vec3& localVe
|
|||
// (1) braking --> short timescale (aggressive motor assertion)
|
||||
// (2) pushing --> medium timescale (mild motor assertion)
|
||||
// (3) inactive --> long timescale (gentle friction for low speeds)
|
||||
float MIN_KEYBOARD_MOTOR_TIMESCALE = 0.125f;
|
||||
float MAX_KEYBOARD_MOTOR_TIMESCALE = 0.4f;
|
||||
float MIN_KEYBOARD_BRAKE_SPEED = 0.3f;
|
||||
const float MIN_KEYBOARD_MOTOR_TIMESCALE = 0.125f;
|
||||
const float MAX_KEYBOARD_MOTOR_TIMESCALE = 0.4f;
|
||||
const float MIN_KEYBOARD_BRAKE_SPEED = 0.3f;
|
||||
float timescale = MAX_KEYBOARD_MOTOR_TIMESCALE;
|
||||
bool isThrust = (glm::length2(_thrust) > EPSILON);
|
||||
if (_isPushing || isThrust ||
|
||||
|
@ -1787,7 +1787,7 @@ void MyAvatar::goToLocation(const glm::vec3& newPosition,
|
|||
<< newOrientation.x << ", " << newOrientation.y << ", " << newOrientation.z << ", " << newOrientation.w;
|
||||
|
||||
// orient the user to face the target
|
||||
glm::quat quatOrientation = newOrientation;
|
||||
glm::quat quatOrientation = cancelOutRollAndPitch(newOrientation);
|
||||
|
||||
if (shouldFaceLocation) {
|
||||
quatOrientation = newOrientation * glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f));
|
||||
|
|
|
@ -63,9 +63,9 @@ class MyAvatar : public Avatar {
|
|||
Q_PROPERTY(AudioListenerMode audioListenerMode READ getAudioListenerMode WRITE setAudioListenerMode)
|
||||
Q_PROPERTY(glm::vec3 customListenPosition READ getCustomListenPosition WRITE setCustomListenPosition)
|
||||
Q_PROPERTY(glm::quat customListenOrientation READ getCustomListenOrientation WRITE setCustomListenOrientation)
|
||||
Q_PROPERTY(AudioListenerMode FROM_HEAD READ getAudioListenerModeHead)
|
||||
Q_PROPERTY(AudioListenerMode FROM_CAMERA READ getAudioListenerModeCamera)
|
||||
Q_PROPERTY(AudioListenerMode CUSTOM READ getAudioListenerModeCustom)
|
||||
Q_PROPERTY(AudioListenerMode audioListenerModeHead READ getAudioListenerModeHead)
|
||||
Q_PROPERTY(AudioListenerMode audioListenerModeCamera READ getAudioListenerModeCamera)
|
||||
Q_PROPERTY(AudioListenerMode audioListenerModeCustom READ getAudioListenerModeCustom)
|
||||
//TODO: make gravity feature work Q_PROPERTY(glm::vec3 gravity READ getGravity WRITE setGravity)
|
||||
|
||||
|
||||
|
@ -84,7 +84,7 @@ class MyAvatar : public Avatar {
|
|||
Q_PROPERTY(float energy READ getEnergy WRITE setEnergy)
|
||||
|
||||
public:
|
||||
MyAvatar(RigPointer rig);
|
||||
explicit MyAvatar(RigPointer rig);
|
||||
~MyAvatar();
|
||||
|
||||
virtual void simulateAttachments(float deltaTime) override;
|
||||
|
|
|
@ -46,14 +46,15 @@ void MyCharacterController::updateShapeIfNecessary() {
|
|||
// NOTE: _shapeLocalOffset is already computed
|
||||
|
||||
if (_radius > 0.0f) {
|
||||
// HACK: use some simple mass property defaults for now
|
||||
float mass = 100.0f;
|
||||
btVector3 inertia(30.0f, 8.0f, 30.0f);
|
||||
|
||||
// create RigidBody if it doesn't exist
|
||||
if (!_rigidBody) {
|
||||
|
||||
// HACK: use some simple mass property defaults for now
|
||||
const float DEFAULT_AVATAR_MASS = 100.0f;
|
||||
const btVector3 DEFAULT_AVATAR_INERTIA_TENSOR(30.0f, 8.0f, 30.0f);
|
||||
|
||||
btCollisionShape* shape = new btCapsuleShape(_radius, 2.0f * _halfHeight);
|
||||
_rigidBody = new btRigidBody(mass, nullptr, shape, inertia);
|
||||
_rigidBody = new btRigidBody(DEFAULT_AVATAR_MASS, nullptr, shape, DEFAULT_AVATAR_INERTIA_TENSOR);
|
||||
} else {
|
||||
btCollisionShape* shape = _rigidBody->getCollisionShape();
|
||||
if (shape) {
|
||||
|
|
|
@ -21,7 +21,7 @@ class MyAvatar;
|
|||
|
||||
class MyCharacterController : public CharacterController {
|
||||
public:
|
||||
MyCharacterController(MyAvatar* avatar);
|
||||
explicit MyCharacterController(MyAvatar* avatar);
|
||||
~MyCharacterController ();
|
||||
|
||||
virtual void updateShapeIfNecessary() override;
|
||||
|
|
|
@ -193,6 +193,7 @@ void Stats::updateStats(bool force) {
|
|||
}
|
||||
|
||||
STAT_UPDATE(downloads, ResourceCache::getLoadingRequests().size());
|
||||
STAT_UPDATE(downloadLimit, ResourceCache::getRequestLimit())
|
||||
STAT_UPDATE(downloadsPending, ResourceCache::getPendingRequestCount());
|
||||
// TODO fix to match original behavior
|
||||
//stringstream downloads;
|
||||
|
|
|
@ -56,6 +56,7 @@ class Stats : public QQuickItem {
|
|||
STATS_PROPERTY(int, audioMixerKbps, 0)
|
||||
STATS_PROPERTY(int, audioMixerPps, 0)
|
||||
STATS_PROPERTY(int, downloads, 0)
|
||||
STATS_PROPERTY(int, downloadLimit, 0)
|
||||
STATS_PROPERTY(int, downloadsPending, 0)
|
||||
STATS_PROPERTY(int, triangles, 0)
|
||||
STATS_PROPERTY(int, quads, 0)
|
||||
|
@ -135,6 +136,7 @@ signals:
|
|||
void audioMixerKbpsChanged();
|
||||
void audioMixerPpsChanged();
|
||||
void downloadsChanged();
|
||||
void downloadLimitChanged();
|
||||
void downloadsPendingChanged();
|
||||
void trianglesChanged();
|
||||
void quadsChanged();
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
class AnimExpression {
|
||||
public:
|
||||
friend class AnimTests;
|
||||
AnimExpression(const QString& str);
|
||||
explicit AnimExpression(const QString& str);
|
||||
protected:
|
||||
struct Token {
|
||||
enum Type {
|
||||
|
@ -49,8 +49,8 @@ protected:
|
|||
Comma,
|
||||
Error
|
||||
};
|
||||
Token(Type type) : type {type} {}
|
||||
Token(const QStringRef& strRef) : type {Type::Identifier}, strVal {strRef.toString()} {}
|
||||
explicit Token(Type type) : type {type} {}
|
||||
explicit Token(const QStringRef& strRef) : type {Type::Identifier}, strVal {strRef.toString()} {}
|
||||
explicit Token(int val) : type {Type::Int}, intVal {val} {}
|
||||
explicit Token(bool val) : type {Type::Bool}, intVal {val} {}
|
||||
explicit Token(float val) : type {Type::Float}, floatVal {val} {}
|
||||
|
@ -82,7 +82,7 @@ protected:
|
|||
Modulus,
|
||||
UnaryMinus
|
||||
};
|
||||
OpCode(Type type) : type {type} {}
|
||||
explicit OpCode(Type type) : type {type} {}
|
||||
explicit OpCode(const QStringRef& strRef) : type {Type::Identifier}, strVal {strRef.toString()} {}
|
||||
explicit OpCode(const QString& str) : type {Type::Identifier}, strVal {str} {}
|
||||
explicit OpCode(int val) : type {Type::Int}, intVal {val} {}
|
||||
|
|
|
@ -23,6 +23,8 @@ AnimInverseKinematics::AnimInverseKinematics(const QString& id) : AnimNode(AnimN
|
|||
|
||||
AnimInverseKinematics::~AnimInverseKinematics() {
|
||||
clearConstraints();
|
||||
_accumulators.clear();
|
||||
_targetVarVec.clear();
|
||||
}
|
||||
|
||||
void AnimInverseKinematics::loadDefaultPoses(const AnimPoseVec& poses) {
|
||||
|
@ -394,6 +396,17 @@ const AnimPoseVec& AnimInverseKinematics::overlay(const AnimVariantMap& animVars
|
|||
}
|
||||
_relativePoses[i].trans = underPoses[i].trans;
|
||||
}
|
||||
|
||||
if (!_relativePoses.empty()) {
|
||||
// Sometimes the underpose itself can violate the constraints. Rather than
|
||||
// clamp the animation we dynamically expand each constraint to accomodate it.
|
||||
std::map<int, RotationConstraint*>::iterator constraintItr = _constraints.begin();
|
||||
while (constraintItr != _constraints.end()) {
|
||||
int index = constraintItr->first;
|
||||
constraintItr->second->dynamicallyAdjustLimits(_relativePoses[index].rot);
|
||||
++constraintItr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!_relativePoses.empty()) {
|
||||
|
|
|
@ -25,7 +25,7 @@ class RotationConstraint;
|
|||
class AnimInverseKinematics : public AnimNode {
|
||||
public:
|
||||
|
||||
AnimInverseKinematics(const QString& id);
|
||||
explicit AnimInverseKinematics(const QString& id);
|
||||
virtual ~AnimInverseKinematics() override;
|
||||
|
||||
void loadDefaultPoses(const AnimPoseVec& poses);
|
||||
|
|
|
@ -25,7 +25,7 @@ class AnimNodeLoader : public QObject {
|
|||
Q_OBJECT
|
||||
|
||||
public:
|
||||
AnimNodeLoader(const QUrl& url);
|
||||
explicit AnimNodeLoader(const QUrl& url);
|
||||
|
||||
signals:
|
||||
void success(AnimNode::Pointer node);
|
||||
|
|
|
@ -23,8 +23,8 @@ public:
|
|||
using Pointer = std::shared_ptr<AnimSkeleton>;
|
||||
using ConstPointer = std::shared_ptr<const AnimSkeleton>;
|
||||
|
||||
AnimSkeleton(const FBXGeometry& fbxGeometry);
|
||||
AnimSkeleton(const std::vector<FBXJoint>& joints);
|
||||
explicit AnimSkeleton(const FBXGeometry& fbxGeometry);
|
||||
explicit AnimSkeleton(const std::vector<FBXJoint>& joints);
|
||||
int nameToJointIndex(const QString& jointName) const;
|
||||
const QString& getJointName(int jointIndex) const;
|
||||
int getNumJoints() const;
|
||||
|
|
|
@ -110,7 +110,7 @@ protected:
|
|||
|
||||
public:
|
||||
|
||||
AnimStateMachine(const QString& id);
|
||||
explicit AnimStateMachine(const QString& id);
|
||||
virtual ~AnimStateMachine() override;
|
||||
|
||||
virtual const AnimPoseVec& evaluate(const AnimVariantMap& animVars, float dt, Triggers& triggersOut) override;
|
||||
|
|
|
@ -37,12 +37,12 @@ public:
|
|||
static const AnimVariant False;
|
||||
|
||||
AnimVariant() : _type(Type::Bool) { memset(&_val, 0, sizeof(_val)); }
|
||||
AnimVariant(bool value) : _type(Type::Bool) { _val.boolVal = value; }
|
||||
AnimVariant(int value) : _type(Type::Int) { _val.intVal = value; }
|
||||
AnimVariant(float value) : _type(Type::Float) { _val.floats[0] = value; }
|
||||
AnimVariant(const glm::vec3& value) : _type(Type::Vec3) { *reinterpret_cast<glm::vec3*>(&_val) = value; }
|
||||
AnimVariant(const glm::quat& value) : _type(Type::Quat) { *reinterpret_cast<glm::quat*>(&_val) = value; }
|
||||
AnimVariant(const QString& value) : _type(Type::String) { _stringVal = value; }
|
||||
explicit AnimVariant(bool value) : _type(Type::Bool) { _val.boolVal = value; }
|
||||
explicit AnimVariant(int value) : _type(Type::Int) { _val.intVal = value; }
|
||||
explicit AnimVariant(float value) : _type(Type::Float) { _val.floats[0] = value; }
|
||||
explicit AnimVariant(const glm::vec3& value) : _type(Type::Vec3) { *reinterpret_cast<glm::vec3*>(&_val) = value; }
|
||||
explicit AnimVariant(const glm::quat& value) : _type(Type::Quat) { *reinterpret_cast<glm::quat*>(&_val) = value; }
|
||||
explicit AnimVariant(const QString& value) : _type(Type::String) { _stringVal = value; }
|
||||
|
||||
bool isBool() const { return _type == Type::Bool; }
|
||||
bool isInt() const { return _type == Type::Int; }
|
||||
|
@ -250,7 +250,7 @@ public:
|
|||
qCDebug(animation) << " " << pair.first << "=" << pair.second.getString();
|
||||
break;
|
||||
default:
|
||||
assert("AnimVariant::Type" == "valid");
|
||||
assert(("invalid AnimVariant::Type", false));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -38,7 +38,7 @@ protected:
|
|||
virtual QSharedPointer<Resource> createResource(const QUrl& url,
|
||||
const QSharedPointer<Resource>& fallback, bool delayLoad, const void* extra);
|
||||
private:
|
||||
AnimationCache(QObject* parent = NULL);
|
||||
explicit AnimationCache(QObject* parent = NULL);
|
||||
virtual ~AnimationCache() { }
|
||||
|
||||
};
|
||||
|
@ -51,7 +51,7 @@ class Animation : public Resource {
|
|||
|
||||
public:
|
||||
|
||||
Animation(const QUrl& url);
|
||||
explicit Animation(const QUrl& url);
|
||||
|
||||
const FBXGeometry& getGeometry() const { return *_geometry; }
|
||||
|
||||
|
|
|
@ -40,6 +40,7 @@ AnimationLoop::AnimationLoop(const AnimationDetails& animationDetails) :
|
|||
_lastFrame(animationDetails.lastFrame),
|
||||
_running(animationDetails.running),
|
||||
_currentFrame(animationDetails.currentFrame),
|
||||
_maxFrameIndexHint(MAXIMUM_POSSIBLE_FRAME),
|
||||
_resetOnRunning(true),
|
||||
_lastSimulated(usecTimestampNow())
|
||||
{
|
||||
|
@ -55,6 +56,7 @@ AnimationLoop::AnimationLoop(float fps, bool loop, bool hold, bool startAutomati
|
|||
_lastFrame(lastFrame),
|
||||
_running(running),
|
||||
_currentFrame(currentFrame),
|
||||
_maxFrameIndexHint(MAXIMUM_POSSIBLE_FRAME),
|
||||
_resetOnRunning(true),
|
||||
_lastSimulated(usecTimestampNow())
|
||||
{
|
||||
|
|
|
@ -19,7 +19,7 @@ public:
|
|||
static const float MAXIMUM_POSSIBLE_FRAME;
|
||||
|
||||
AnimationLoop();
|
||||
AnimationLoop(const AnimationDetails& animationDetails);
|
||||
explicit AnimationLoop(const AnimationDetails& animationDetails);
|
||||
AnimationLoop(float fps, bool loop, bool hold, bool startAutomatically, float firstFrame,
|
||||
float lastFrame, bool running, float currentFrame);
|
||||
|
||||
|
|
|
@ -37,17 +37,7 @@ static bool isEqual(const glm::quat& p, const glm::quat& q) {
|
|||
return 1.0f - fabsf(glm::dot(p, q)) <= EPSILON;
|
||||
}
|
||||
|
||||
#ifdef NDEBUG
|
||||
#define ASSERT(cond)
|
||||
#else
|
||||
#define ASSERT(cond) \
|
||||
do { \
|
||||
if (!(cond)) { \
|
||||
int* ptr = nullptr; \
|
||||
*ptr = 10; \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
#define ASSERT(cond) assert(cond)
|
||||
|
||||
// 2 meter tall dude
|
||||
const glm::vec3 DEFAULT_RIGHT_EYE_POS(-0.3f, 0.9f, 0.0f);
|
||||
|
|
|
@ -83,6 +83,7 @@ public:
|
|||
Hover
|
||||
};
|
||||
|
||||
Rig() {}
|
||||
virtual ~Rig() {}
|
||||
|
||||
void destroyAnimGraph();
|
||||
|
|
|
@ -31,6 +31,10 @@ public:
|
|||
/// \return true if this constraint is part of lower spine
|
||||
virtual bool isLowerSpine() const { return false; }
|
||||
|
||||
/// \param rotation rotation to allow
|
||||
/// \brief clear previous adjustment and adjust constraint limits to allow rotation
|
||||
virtual void dynamicallyAdjustLimits(const glm::quat& rotation) {}
|
||||
|
||||
protected:
|
||||
glm::quat _referenceRotation = glm::quat();
|
||||
};
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
#include <math.h>
|
||||
|
||||
#include <GeometryUtil.h>
|
||||
#include <GLMHelpers.h>
|
||||
#include <NumericalConstants.h>
|
||||
|
||||
|
||||
|
@ -24,32 +25,152 @@ const int LAST_CLAMP_NO_BOUNDARY = 0;
|
|||
const int LAST_CLAMP_HIGH_BOUNDARY = 1;
|
||||
|
||||
SwingTwistConstraint::SwingLimitFunction::SwingLimitFunction() {
|
||||
setCone(PI);
|
||||
_minDots.push_back(-1.0f);
|
||||
_minDots.push_back(-1.0f);
|
||||
|
||||
_minDotIndexA = -1;
|
||||
_minDotIndexB = -1;
|
||||
}
|
||||
|
||||
void SwingTwistConstraint::SwingLimitFunction::setCone(float maxAngle) {
|
||||
_minDots.clear();
|
||||
float minDot = glm::clamp(maxAngle, MIN_MINDOT, MAX_MINDOT);
|
||||
_minDots.push_back(minDot);
|
||||
// push the first value to the back to establish cyclic boundary conditions
|
||||
_minDots.push_back(minDot);
|
||||
}
|
||||
// In order to support the dynamic adjustment to swing limits we require
|
||||
// that minDots have a minimum number of elements:
|
||||
const int MIN_NUM_DOTS = 8;
|
||||
|
||||
void SwingTwistConstraint::SwingLimitFunction::setMinDots(const std::vector<float>& minDots) {
|
||||
uint32_t numDots = (uint32_t)minDots.size();
|
||||
int numDots = (int)minDots.size();
|
||||
_minDots.clear();
|
||||
if (numDots == 0) {
|
||||
// push two copies of MIN_MINDOT
|
||||
_minDots.push_back(MIN_MINDOT);
|
||||
// push multiple copies of MIN_MINDOT
|
||||
for (int i = 0; i < MIN_NUM_DOTS; ++i) {
|
||||
_minDots.push_back(MIN_MINDOT);
|
||||
}
|
||||
// push one more for cyclic boundary conditions
|
||||
_minDots.push_back(MIN_MINDOT);
|
||||
} else {
|
||||
_minDots.reserve(numDots);
|
||||
for (uint32_t i = 0; i < numDots; ++i) {
|
||||
_minDots.push_back(glm::clamp(minDots[i], MIN_MINDOT, MAX_MINDOT));
|
||||
// for minimal fidelity in the dynamic adjustment we expand the swing limit data until
|
||||
// we have enough data points
|
||||
int trueNumDots = numDots;
|
||||
int numFiller = 0;
|
||||
while(trueNumDots < MIN_NUM_DOTS) {
|
||||
numFiller++;
|
||||
trueNumDots += numDots;
|
||||
}
|
||||
// push the first value to the back to establish cyclic boundary conditions
|
||||
_minDots.reserve(trueNumDots);
|
||||
|
||||
for (int i = 0; i < numDots; ++i) {
|
||||
// push the next value
|
||||
_minDots.push_back(glm::clamp(minDots[i], MIN_MINDOT, MAX_MINDOT));
|
||||
|
||||
if (numFiller > 0) {
|
||||
// compute endpoints of line segment
|
||||
float nearDot = glm::clamp(minDots[i], MIN_MINDOT, MAX_MINDOT);
|
||||
int k = (i + 1) % numDots;
|
||||
float farDot = glm::clamp(minDots[k], MIN_MINDOT, MAX_MINDOT);
|
||||
|
||||
// fill the gap with interpolated values
|
||||
for (int j = 0; j < numFiller; ++j) {
|
||||
float delta = (float)(j + 1) / float(numFiller + 1);
|
||||
_minDots.push_back((1.0f - delta) * nearDot + delta * farDot);
|
||||
}
|
||||
}
|
||||
}
|
||||
// push the first value to the back to for cyclic boundary conditions
|
||||
_minDots.push_back(_minDots[0]);
|
||||
}
|
||||
_minDotIndexA = -1;
|
||||
_minDotIndexB = -1;
|
||||
}
|
||||
|
||||
/// \param angle radian angle to update
|
||||
/// \param minDotAdjustment minimum dot limit at that angle
|
||||
void SwingTwistConstraint::SwingLimitFunction::dynamicallyAdjustMinDots(float theta, float minDotAdjustment) {
|
||||
// What does "dynamic adjustment" mean?
|
||||
//
|
||||
// Consider a limitFunction that looks like this:
|
||||
//
|
||||
// 1+
|
||||
// | valid space
|
||||
// |
|
||||
// +-----+-----+-----+-----+-----+-----+-----+-----+
|
||||
// |
|
||||
// | invalid space
|
||||
// 0+------------------------------------------------
|
||||
// 0 pi/2 pi 3pi/2 2pi
|
||||
// theta --->
|
||||
//
|
||||
// If we wanted to modify the envelope to accept a single invalid point X
|
||||
// then we would need to modify neighboring values A and B accordingly:
|
||||
//
|
||||
// 1+ adjustment for X at some thetaX
|
||||
// | |
|
||||
// | |
|
||||
// +-----+. V .+-----+-----+-----+-----+
|
||||
// | - -
|
||||
// | ' A--X--B '
|
||||
// 0+------------------------------------------------
|
||||
// 0 pi/2 pi 3pi/2 2pi
|
||||
//
|
||||
// The code below computes the values of A and B such that the line between them
|
||||
// passes through the point X, and we get reasonable interpolation for nearby values
|
||||
// of theta. The old AB values are saved for later restore.
|
||||
|
||||
if (_minDotIndexA > -1) {
|
||||
// retstore old values
|
||||
_minDots[_minDotIndexA] = _minDotA;
|
||||
_minDots[_minDotIndexB] = _minDotB;
|
||||
|
||||
// handle cyclic boundary conditions
|
||||
int lastIndex = (int)_minDots.size() - 1;
|
||||
if (_minDotIndexA == 0) {
|
||||
_minDots[lastIndex] = _minDotA;
|
||||
} else if (_minDotIndexB == lastIndex) {
|
||||
_minDots[0] = _minDotB;
|
||||
}
|
||||
}
|
||||
|
||||
// extract the positive normalized fractional part of the theta
|
||||
float integerPart;
|
||||
float normalizedAngle = modff(theta / TWO_PI, &integerPart);
|
||||
if (normalizedAngle < 0.0f) {
|
||||
normalizedAngle += 1.0f;
|
||||
}
|
||||
|
||||
// interpolate between the two nearest points in the curve
|
||||
float delta = modff(normalizedAngle * (float)(_minDots.size() - 1), &integerPart);
|
||||
int indexA = (int)(integerPart);
|
||||
int indexB = (indexA + 1) % _minDots.size();
|
||||
float interpolatedDot = _minDots[indexA] * (1.0f - delta) + _minDots[indexB] * delta;
|
||||
|
||||
if (minDotAdjustment < interpolatedDot) {
|
||||
// minDotAdjustment is outside the existing bounds so we must modify
|
||||
|
||||
// remember the indices
|
||||
_minDotIndexA = indexA;
|
||||
_minDotIndexB = indexB;
|
||||
|
||||
// save the old minDots
|
||||
_minDotA = _minDots[_minDotIndexA];
|
||||
_minDotB = _minDots[_minDotIndexB];
|
||||
|
||||
// compute replacement values to _minDots that will provide a line segment
|
||||
// that passes through minDotAdjustment while balancing the distortion between A and B.
|
||||
// Note: the derivation of these formulae is left as an exercise to the reader.
|
||||
float twiceUndershoot = 2.0f * (minDotAdjustment - interpolatedDot);
|
||||
_minDots[_minDotIndexA] -= twiceUndershoot * (delta + 0.5f) * (delta - 1.0f);
|
||||
_minDots[_minDotIndexB] -= twiceUndershoot * delta * (delta - 1.5f);
|
||||
|
||||
// handle cyclic boundary conditions
|
||||
int lastIndex = (int)_minDots.size() - 1;
|
||||
if (_minDotIndexA == 0) {
|
||||
_minDots[lastIndex] = _minDots[_minDotIndexA];
|
||||
} else if (_minDotIndexB == lastIndex) {
|
||||
_minDots[0] = _minDots[_minDotIndexB];
|
||||
}
|
||||
} else {
|
||||
// minDotAdjustment is inside bounds so there is nothing to do
|
||||
_minDotIndexA = -1;
|
||||
_minDotIndexB = -1;
|
||||
}
|
||||
}
|
||||
|
||||
float SwingTwistConstraint::SwingLimitFunction::getMinDot(float theta) const {
|
||||
|
@ -90,15 +211,14 @@ void SwingTwistConstraint::setSwingLimits(const std::vector<glm::vec3>& swungDir
|
|||
};
|
||||
std::vector<SwingLimitData> limits;
|
||||
|
||||
uint32_t numLimits = (uint32_t)swungDirections.size();
|
||||
int numLimits = (int)swungDirections.size();
|
||||
limits.reserve(numLimits);
|
||||
|
||||
// compute the limit pairs: <theta, minDot>
|
||||
const glm::vec3 yAxis = glm::vec3(0.0f, 1.0f, 0.0f);
|
||||
for (uint32_t i = 0; i < numLimits; ++i) {
|
||||
for (int i = 0; i < numLimits; ++i) {
|
||||
float directionLength = glm::length(swungDirections[i]);
|
||||
if (directionLength > EPSILON) {
|
||||
glm::vec3 swingAxis = glm::cross(yAxis, swungDirections[i]);
|
||||
glm::vec3 swingAxis = glm::cross(Vectors::UNIT_Y, swungDirections[i]);
|
||||
float theta = atan2f(-swingAxis.z, swingAxis.x);
|
||||
if (theta < 0.0f) {
|
||||
theta += TWO_PI;
|
||||
|
@ -108,7 +228,7 @@ void SwingTwistConstraint::setSwingLimits(const std::vector<glm::vec3>& swungDir
|
|||
}
|
||||
|
||||
std::vector<float> minDots;
|
||||
numLimits = (uint32_t)limits.size();
|
||||
numLimits = (int)limits.size();
|
||||
if (numLimits == 0) {
|
||||
// trivial case: nearly free constraint
|
||||
std::vector<float> minDots;
|
||||
|
@ -126,10 +246,10 @@ void SwingTwistConstraint::setSwingLimits(const std::vector<glm::vec3>& swungDir
|
|||
|
||||
// extrapolate evenly distributed limits for fast lookup table
|
||||
float deltaTheta = TWO_PI / (float)(numLimits);
|
||||
uint32_t rightIndex = 0;
|
||||
for (uint32_t i = 0; i < numLimits; ++i) {
|
||||
int rightIndex = 0;
|
||||
for (int i = 0; i < numLimits; ++i) {
|
||||
float theta = (float)i * deltaTheta;
|
||||
uint32_t leftIndex = (rightIndex - 1) % numLimits;
|
||||
int leftIndex = (rightIndex - 1 + numLimits) % numLimits;
|
||||
while (rightIndex < numLimits && theta > limits[rightIndex]._theta) {
|
||||
leftIndex = rightIndex++;
|
||||
}
|
||||
|
@ -165,51 +285,57 @@ void SwingTwistConstraint::setTwistLimits(float minTwist, float maxTwist) {
|
|||
_maxTwist = glm::max(minTwist, maxTwist);
|
||||
|
||||
_lastTwistBoundary = LAST_CLAMP_NO_BOUNDARY;
|
||||
_twistAdjusted = false;
|
||||
}
|
||||
|
||||
// private
|
||||
float SwingTwistConstraint::handleTwistBoundaryConditions(float twistAngle) const {
|
||||
// adjust measured twistAngle according to clamping history
|
||||
switch (_lastTwistBoundary) {
|
||||
case LAST_CLAMP_LOW_BOUNDARY:
|
||||
// clamp to min
|
||||
if (twistAngle > _maxTwist) {
|
||||
twistAngle -= TWO_PI;
|
||||
}
|
||||
break;
|
||||
case LAST_CLAMP_HIGH_BOUNDARY:
|
||||
// clamp to max
|
||||
if (twistAngle < _minTwist) {
|
||||
twistAngle += TWO_PI;
|
||||
}
|
||||
break;
|
||||
default: // LAST_CLAMP_NO_BOUNDARY
|
||||
// clamp to nearest boundary
|
||||
float midBoundary = 0.5f * (_maxTwist + _minTwist + TWO_PI);
|
||||
if (twistAngle > midBoundary) {
|
||||
// lower boundary is closer --> phase down one cycle
|
||||
twistAngle -= TWO_PI;
|
||||
} else if (twistAngle < midBoundary - TWO_PI) {
|
||||
// higher boundary is closer --> phase up one cycle
|
||||
twistAngle += TWO_PI;
|
||||
}
|
||||
break;
|
||||
}
|
||||
return twistAngle;
|
||||
}
|
||||
|
||||
bool SwingTwistConstraint::apply(glm::quat& rotation) const {
|
||||
// decompose the rotation into first twist about yAxis, then swing about something perp
|
||||
const glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
|
||||
// NOTE: rotation = postRotation * referenceRotation
|
||||
glm::quat postRotation = rotation * glm::inverse(_referenceRotation);
|
||||
glm::quat swingRotation, twistRotation;
|
||||
swingTwistDecomposition(postRotation, yAxis, swingRotation, twistRotation);
|
||||
swingTwistDecomposition(postRotation, Vectors::UNIT_Y, swingRotation, twistRotation);
|
||||
// NOTE: postRotation = swingRotation * twistRotation
|
||||
|
||||
// compute twistAngle
|
||||
// compute raw twistAngle
|
||||
float twistAngle = 2.0f * acosf(fabsf(twistRotation.w));
|
||||
const glm::vec3 xAxis = glm::vec3(1.0f, 0.0f, 0.0f);
|
||||
glm::vec3 twistedX = twistRotation * xAxis;
|
||||
twistAngle *= copysignf(1.0f, glm::dot(glm::cross(xAxis, twistedX), yAxis));
|
||||
glm::vec3 twistedX = twistRotation * Vectors::UNIT_X;
|
||||
twistAngle *= copysignf(1.0f, glm::dot(glm::cross(Vectors::UNIT_X, twistedX), Vectors::UNIT_Y));
|
||||
|
||||
bool somethingClamped = false;
|
||||
if (_minTwist != _maxTwist) {
|
||||
// adjust measured twistAngle according to clamping history
|
||||
switch (_lastTwistBoundary) {
|
||||
case LAST_CLAMP_LOW_BOUNDARY:
|
||||
// clamp to min
|
||||
if (twistAngle > _maxTwist) {
|
||||
twistAngle -= TWO_PI;
|
||||
}
|
||||
break;
|
||||
case LAST_CLAMP_HIGH_BOUNDARY:
|
||||
// clamp to max
|
||||
if (twistAngle < _minTwist) {
|
||||
twistAngle += TWO_PI;
|
||||
}
|
||||
break;
|
||||
default: // LAST_CLAMP_NO_BOUNDARY
|
||||
// clamp to nearest boundary
|
||||
float midBoundary = 0.5f * (_maxTwist + _minTwist + TWO_PI);
|
||||
if (twistAngle > midBoundary) {
|
||||
// lower boundary is closer --> phase down one cycle
|
||||
twistAngle -= TWO_PI;
|
||||
} else if (twistAngle < midBoundary - TWO_PI) {
|
||||
// higher boundary is closer --> phase up one cycle
|
||||
twistAngle += TWO_PI;
|
||||
}
|
||||
break;
|
||||
}
|
||||
// twist limits apply --> figure out which limit we're hitting, if any
|
||||
twistAngle = handleTwistBoundaryConditions(twistAngle);
|
||||
|
||||
// clamp twistAngle
|
||||
float clampedTwistAngle = glm::clamp(twistAngle, _minTwist, _maxTwist);
|
||||
|
@ -226,15 +352,15 @@ bool SwingTwistConstraint::apply(glm::quat& rotation) const {
|
|||
|
||||
// clamp the swing
|
||||
// The swingAxis is always perpendicular to the reference axis (yAxis in the constraint's frame).
|
||||
glm::vec3 swungY = swingRotation * yAxis;
|
||||
glm::vec3 swingAxis = glm::cross(yAxis, swungY);
|
||||
glm::vec3 swungY = swingRotation * Vectors::UNIT_Y;
|
||||
glm::vec3 swingAxis = glm::cross(Vectors::UNIT_Y, swungY);
|
||||
float axisLength = glm::length(swingAxis);
|
||||
if (axisLength > EPSILON) {
|
||||
// The limit of swing is a function of "theta" which can be computed from the swingAxis
|
||||
// (which is in the constraint's ZX plane).
|
||||
float theta = atan2f(-swingAxis.z, swingAxis.x);
|
||||
float minDot = _swingLimitFunction.getMinDot(theta);
|
||||
if (glm::dot(swungY, yAxis) < minDot) {
|
||||
if (glm::dot(swungY, Vectors::UNIT_Y) < minDot) {
|
||||
// The swing limits are violated so we extract the angle from midDot and
|
||||
// use it to supply a new rotation.
|
||||
swingAxis /= axisLength;
|
||||
|
@ -245,13 +371,53 @@ bool SwingTwistConstraint::apply(glm::quat& rotation) const {
|
|||
|
||||
if (somethingClamped) {
|
||||
// update the rotation
|
||||
twistRotation = glm::angleAxis(twistAngle, yAxis);
|
||||
twistRotation = glm::angleAxis(twistAngle, Vectors::UNIT_Y);
|
||||
rotation = swingRotation * twistRotation * _referenceRotation;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void SwingTwistConstraint::dynamicallyAdjustLimits(const glm::quat& rotation) {
|
||||
glm::quat postRotation = rotation * glm::inverse(_referenceRotation);
|
||||
glm::quat swingRotation, twistRotation;
|
||||
|
||||
swingTwistDecomposition(postRotation, Vectors::UNIT_Y, swingRotation, twistRotation);
|
||||
|
||||
// adjust swing limits
|
||||
glm::vec3 swungY = swingRotation * Vectors::UNIT_Y;
|
||||
glm::vec3 swingAxis = glm::cross(Vectors::UNIT_Y, swungY);
|
||||
float theta = atan2f(-swingAxis.z, swingAxis.x);
|
||||
_swingLimitFunction.dynamicallyAdjustMinDots(theta, swungY.y);
|
||||
|
||||
// restore twist limits
|
||||
if (_twistAdjusted) {
|
||||
_minTwist = _oldMinTwist;
|
||||
_maxTwist = _oldMaxTwist;
|
||||
_twistAdjusted = false;
|
||||
}
|
||||
|
||||
if (_minTwist != _maxTwist) {
|
||||
// compute twistAngle
|
||||
float twistAngle = 2.0f * acosf(fabsf(twistRotation.w));
|
||||
glm::vec3 twistedX = twistRotation * Vectors::UNIT_X;
|
||||
twistAngle *= copysignf(1.0f, glm::dot(glm::cross(Vectors::UNIT_X, twistedX), Vectors::UNIT_Y));
|
||||
twistAngle = handleTwistBoundaryConditions(twistAngle);
|
||||
|
||||
if (twistAngle < _minTwist || twistAngle > _maxTwist) {
|
||||
// expand twist limits
|
||||
_twistAdjusted = true;
|
||||
_oldMinTwist = _minTwist;
|
||||
_oldMaxTwist = _maxTwist;
|
||||
if (twistAngle < _minTwist) {
|
||||
_minTwist = twistAngle;
|
||||
} else if (twistAngle > _maxTwist) {
|
||||
_maxTwist = twistAngle;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void SwingTwistConstraint::clearHistory() {
|
||||
_lastTwistBoundary = LAST_CLAMP_NO_BOUNDARY;
|
||||
}
|
||||
|
|
|
@ -53,24 +53,45 @@ public:
|
|||
void setLowerSpine(bool lowerSpine) { _lowerSpine = lowerSpine; }
|
||||
virtual bool isLowerSpine() const override { return _lowerSpine; }
|
||||
|
||||
/// \param rotation rotation to allow
|
||||
/// \brief clear previous adjustment and adjust constraint limits to allow rotation
|
||||
virtual void dynamicallyAdjustLimits(const glm::quat& rotation) override;
|
||||
|
||||
// for testing purposes
|
||||
const std::vector<float>& getMinDots() { return _swingLimitFunction.getMinDots(); }
|
||||
|
||||
// SwingLimitFunction is an implementation of the constraint check described in the paper:
|
||||
// "The Parameterization of Joint Rotation with the Unit Quaternion" by Quang Liu and Edmond C. Prakash
|
||||
//
|
||||
// The "dynamic adjustment" feature allows us to change the limits on the fly for one particular theta angle.
|
||||
//
|
||||
class SwingLimitFunction {
|
||||
public:
|
||||
SwingLimitFunction();
|
||||
|
||||
/// \brief use a uniform conical swing limit
|
||||
void setCone(float maxAngle);
|
||||
|
||||
/// \brief use a vector of lookup values for swing limits
|
||||
void setMinDots(const std::vector<float>& minDots);
|
||||
|
||||
/// \param theta radian angle to new minDot
|
||||
/// \param minDot minimum dot limit
|
||||
/// \brief updates swing constraint to permit minDot at theta
|
||||
void dynamicallyAdjustMinDots(float theta, float minDot);
|
||||
|
||||
/// \return minimum dotProduct between reference and swung axes
|
||||
float getMinDot(float theta) const;
|
||||
|
||||
protected:
|
||||
// for testing purposes
|
||||
const std::vector<float>& getMinDots() { return _minDots; }
|
||||
|
||||
private:
|
||||
// the limits are stored in a lookup table with cyclic boundary conditions
|
||||
std::vector<float> _minDots;
|
||||
|
||||
// these values used to restore dynamic adjustment
|
||||
float _minDotA;
|
||||
float _minDotB;
|
||||
int8_t _minDotIndexA;
|
||||
int8_t _minDotIndexB;
|
||||
};
|
||||
|
||||
/// \return reference to SwingLimitFunction instance for unit-testing
|
||||
|
@ -79,15 +100,22 @@ public:
|
|||
/// \brief exposed for unit testing
|
||||
void clearHistory();
|
||||
|
||||
private:
|
||||
float handleTwistBoundaryConditions(float twistAngle) const;
|
||||
|
||||
protected:
|
||||
SwingLimitFunction _swingLimitFunction;
|
||||
float _minTwist;
|
||||
float _maxTwist;
|
||||
|
||||
float _oldMinTwist;
|
||||
float _oldMaxTwist;
|
||||
|
||||
// We want to remember the LAST clamped boundary, so we an use it even when the far boundary is closer.
|
||||
// This reduces "pops" when the input twist angle goes far beyond and wraps around toward the far boundary.
|
||||
mutable int _lastTwistBoundary;
|
||||
bool _lowerSpine { false };
|
||||
bool _twistAdjusted { false };
|
||||
};
|
||||
|
||||
#endif // hifi_SwingTwistConstraint_h
|
||||
|
|
|
@ -1115,7 +1115,7 @@ void AvatarData::detachOne(const QString& modelURL, const QString& jointName) {
|
|||
return;
|
||||
}
|
||||
QVector<AttachmentData> attachmentData = getAttachmentData();
|
||||
for (QVector<AttachmentData>::iterator it = attachmentData.begin(); it != attachmentData.end(); it++) {
|
||||
for (QVector<AttachmentData>::iterator it = attachmentData.begin(); it != attachmentData.end(); ++it) {
|
||||
if (it->modelURL == modelURL && (jointName.isEmpty() || it->jointName == jointName)) {
|
||||
attachmentData.erase(it);
|
||||
setAttachmentData(attachmentData);
|
||||
|
@ -1134,7 +1134,7 @@ void AvatarData::detachAll(const QString& modelURL, const QString& jointName) {
|
|||
if (it->modelURL == modelURL && (jointName.isEmpty() || it->jointName == jointName)) {
|
||||
it = attachmentData.erase(it);
|
||||
} else {
|
||||
it++;
|
||||
++it;
|
||||
}
|
||||
}
|
||||
setAttachmentData(attachmentData);
|
||||
|
|
|
@ -42,6 +42,8 @@ HeadData::HeadData(AvatarData* owningAvatar) :
|
|||
_rightEyeBlink(0.0f),
|
||||
_averageLoudness(0.0f),
|
||||
_browAudioLift(0.0f),
|
||||
_audioAverageLoudness(0.0f),
|
||||
_pupilDilation(0.0f),
|
||||
_owningAvatar(owningAvatar)
|
||||
{
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ class QJsonObject;
|
|||
|
||||
class HeadData {
|
||||
public:
|
||||
HeadData(AvatarData* owningAvatar);
|
||||
explicit HeadData(AvatarData* owningAvatar);
|
||||
virtual ~HeadData() { };
|
||||
|
||||
// degrees
|
||||
|
|
|
@ -515,7 +515,10 @@ int EntityItem::readEntityDataFromBuffer(const unsigned char* data, int bytesLef
|
|||
// we can confidently ignore this packet
|
||||
EntityTreePointer tree = getTree();
|
||||
if (tree && tree->isDeletedEntity(_id)) {
|
||||
qDebug() << "Recieved packet for previously deleted entity [" << _id << "] ignoring. (inside " << __FUNCTION__ << ")";
|
||||
#ifdef WANT_DEBUG
|
||||
qDebug() << "Recieved packet for previously deleted entity [" << _id << "] ignoring. "
|
||||
"(inside " << __FUNCTION__ << ")";
|
||||
#endif
|
||||
ignoreServerPacket = true;
|
||||
}
|
||||
|
||||
|
|
|
@ -56,6 +56,15 @@ void ResourceCache::refresh(const QUrl& url) {
|
|||
}
|
||||
}
|
||||
|
||||
void ResourceCache::setRequestLimit(int limit) {
|
||||
_requestLimit = limit;
|
||||
|
||||
// Now go fill any new request spots
|
||||
while (attemptHighestPriorityRequest()) {
|
||||
// just keep looping until we reach the new limit or no more pending requests
|
||||
}
|
||||
}
|
||||
|
||||
void ResourceCache::getResourceAsynchronously(const QUrl& url) {
|
||||
qCDebug(networking) << "ResourceCache::getResourceAsynchronously" << url.toString();
|
||||
_resourcesToBeGottenLock.lockForWrite();
|
||||
|
@ -150,31 +159,37 @@ void ResourceCache::clearUnusedResource() {
|
|||
}
|
||||
}
|
||||
|
||||
void ResourceCache::attemptRequest(Resource* resource) {
|
||||
bool ResourceCache::attemptRequest(Resource* resource) {
|
||||
auto sharedItems = DependencyManager::get<ResourceCacheSharedItems>();
|
||||
|
||||
// Disable request limiting for ATP
|
||||
if (resource->getURL().scheme() != URL_SCHEME_ATP) {
|
||||
if (_requestLimit <= 0) {
|
||||
if (_requestsActive >= _requestLimit) {
|
||||
// wait until a slot becomes available
|
||||
sharedItems->_pendingRequests.append(resource);
|
||||
return;
|
||||
return false;
|
||||
}
|
||||
|
||||
--_requestLimit;
|
||||
}
|
||||
++_requestsActive;
|
||||
}
|
||||
|
||||
sharedItems->_loadingRequests.append(resource);
|
||||
resource->makeRequest();
|
||||
return true;
|
||||
}
|
||||
|
||||
void ResourceCache::requestCompleted(Resource* resource) {
|
||||
auto sharedItems = DependencyManager::get<ResourceCacheSharedItems>();
|
||||
sharedItems->_loadingRequests.removeOne(resource);
|
||||
if (resource->getURL().scheme() != URL_SCHEME_ATP) {
|
||||
++_requestLimit;
|
||||
--_requestsActive;
|
||||
}
|
||||
|
||||
|
||||
attemptHighestPriorityRequest();
|
||||
}
|
||||
|
||||
bool ResourceCache::attemptHighestPriorityRequest() {
|
||||
auto sharedItems = DependencyManager::get<ResourceCacheSharedItems>();
|
||||
// look for the highest priority pending request
|
||||
int highestIndex = -1;
|
||||
float highestPriority = -FLT_MAX;
|
||||
|
@ -191,13 +206,12 @@ void ResourceCache::requestCompleted(Resource* resource) {
|
|||
}
|
||||
i++;
|
||||
}
|
||||
if (highestIndex >= 0) {
|
||||
attemptRequest(sharedItems->_pendingRequests.takeAt(highestIndex));
|
||||
}
|
||||
return (highestIndex >= 0) && attemptRequest(sharedItems->_pendingRequests.takeAt(highestIndex));
|
||||
}
|
||||
|
||||
const int DEFAULT_REQUEST_LIMIT = 10;
|
||||
int ResourceCache::_requestLimit = DEFAULT_REQUEST_LIMIT;
|
||||
int ResourceCache::_requestsActive = 0;
|
||||
|
||||
Resource::Resource(const QUrl& url, bool delayLoad) :
|
||||
_url(url),
|
||||
|
|
|
@ -67,8 +67,10 @@ class ResourceCache : public QObject {
|
|||
Q_OBJECT
|
||||
|
||||
public:
|
||||
static void setRequestLimit(int limit) { _requestLimit = limit; }
|
||||
static void setRequestLimit(int limit);
|
||||
static int getRequestLimit() { return _requestLimit; }
|
||||
|
||||
static int getRequestsActive() { return _requestsActive; }
|
||||
|
||||
void setUnusedResourceCacheSize(qint64 unusedResourcesMaxSize);
|
||||
qint64 getUnusedResourceCacheSize() const { return _unusedResourcesMaxSize; }
|
||||
|
@ -105,8 +107,11 @@ protected:
|
|||
void reserveUnusedResource(qint64 resourceSize);
|
||||
void clearUnusedResource();
|
||||
|
||||
Q_INVOKABLE static void attemptRequest(Resource* resource);
|
||||
/// Attempt to load a resource if requests are below the limit, otherwise queue the resource for loading
|
||||
/// \return true if the resource began loading, otherwise false if the resource is in the pending queue
|
||||
Q_INVOKABLE static bool attemptRequest(Resource* resource);
|
||||
static void requestCompleted(Resource* resource);
|
||||
static bool attemptHighestPriorityRequest();
|
||||
|
||||
private:
|
||||
friend class Resource;
|
||||
|
@ -115,6 +120,7 @@ private:
|
|||
int _lastLRUKey = 0;
|
||||
|
||||
static int _requestLimit;
|
||||
static int _requestsActive;
|
||||
|
||||
void getResourceAsynchronously(const QUrl& url);
|
||||
QReadWriteLock _resourcesToBeGottenLock;
|
||||
|
|
|
@ -34,7 +34,6 @@ void CongestionControl::setPacketSendPeriod(double newSendPeriod) {
|
|||
}
|
||||
|
||||
DefaultCC::DefaultCC() :
|
||||
_slowStartLastAck(_sendCurrSeqNum),
|
||||
_lastDecreaseMaxSeq(SequenceNumber {SequenceNumber::MAX })
|
||||
{
|
||||
_mss = udt::MAX_PACKET_SIZE_WITH_UDP_HEADER;
|
||||
|
@ -63,11 +62,11 @@ void DefaultCC::onACK(SequenceNumber ackNum) {
|
|||
|
||||
if (_slowStart) {
|
||||
// we are in slow start phase - increase the congestion window size by the number of packets just ACKed
|
||||
_congestionWindowSize += seqlen(_slowStartLastAck, ackNum);
|
||||
_congestionWindowSize += seqlen(_slowStartLastACK, ackNum);
|
||||
|
||||
// update the last ACK
|
||||
_slowStartLastAck = ackNum;
|
||||
|
||||
_slowStartLastACK = ackNum;
|
||||
|
||||
// check if we can get out of slow start (is our new congestion window size bigger than the max)
|
||||
if (_congestionWindowSize > _maxCongestionWindowSize) {
|
||||
_slowStart = false;
|
||||
|
|
|
@ -50,6 +50,7 @@ protected:
|
|||
void setMaxCongestionWindowSize(int window) { _maxCongestionWindowSize = window; }
|
||||
void setBandwidth(int bandwidth) { _bandwidth = bandwidth; }
|
||||
void setMaxBandwidth(int maxBandwidth) { _maxBandwidth = maxBandwidth; }
|
||||
virtual void setInitialSendSequenceNumber(SequenceNumber seqNum) = 0;
|
||||
void setSendCurrentSequenceNumber(SequenceNumber seqNum) { _sendCurrSeqNum = seqNum; }
|
||||
void setReceiveRate(int rate) { _receiveRate = rate; }
|
||||
void setRTT(int rtt) { _rtt = rtt; }
|
||||
|
@ -104,14 +105,17 @@ public:
|
|||
virtual void onACK(SequenceNumber ackNum);
|
||||
virtual void onLoss(SequenceNumber rangeStart, SequenceNumber rangeEnd);
|
||||
virtual void onTimeout();
|
||||
|
||||
|
||||
protected:
|
||||
virtual void setInitialSendSequenceNumber(SequenceNumber seqNum) { _slowStartLastACK = seqNum; }
|
||||
|
||||
private:
|
||||
void stopSlowStart(); // stops the slow start on loss or timeout
|
||||
|
||||
p_high_resolution_clock::time_point _lastRCTime = p_high_resolution_clock::now(); // last rate increase time
|
||||
|
||||
bool _slowStart { true }; // if in slow start phase
|
||||
SequenceNumber _slowStartLastAck; // last ACKed seq num
|
||||
SequenceNumber _slowStartLastACK; // last ACKed seq num from previous slow start check
|
||||
bool _loss { false }; // if loss happened since last rate increase
|
||||
SequenceNumber _lastDecreaseMaxSeq; // max pkt seq num sent out when last decrease happened
|
||||
double _lastDecreasePeriod { 1 }; // value of _packetSendPeriod when last decrease happened
|
||||
|
|
|
@ -104,6 +104,9 @@ SendQueue& Connection::getSendQueue() {
|
|||
_sendQueue->setSyncInterval(_synInterval);
|
||||
_sendQueue->setEstimatedTimeout(estimatedTimeout());
|
||||
_sendQueue->setFlowWindowSize(std::min(_flowWindowSize, (int) _congestionControl->_congestionWindowSize));
|
||||
|
||||
// give the randomized sequence number to the congestion control object
|
||||
_congestionControl->setInitialSendSequenceNumber(_sendQueue->getCurrentSequenceNumber());
|
||||
}
|
||||
|
||||
return *_sendQueue;
|
||||
|
@ -282,7 +285,7 @@ void Connection::sendACK(bool wasCausedBySyncTimeout) {
|
|||
// grab the up to date packet receive speed and estimated bandwidth
|
||||
int32_t packetReceiveSpeed = _receiveWindow.getPacketReceiveSpeed();
|
||||
int32_t estimatedBandwidth = _receiveWindow.getEstimatedBandwidth();
|
||||
|
||||
|
||||
// update those values in our connection stats
|
||||
_stats.recordReceiveRate(packetReceiveSpeed);
|
||||
_stats.recordEstimatedBandwidth(estimatedBandwidth);
|
||||
|
@ -541,7 +544,7 @@ void Connection::processACK(std::unique_ptr<ControlPacket> controlPacket) {
|
|||
// read the ACK sub-sequence number
|
||||
SequenceNumber currentACKSubSequenceNumber;
|
||||
controlPacket->readPrimitive(¤tACKSubSequenceNumber);
|
||||
|
||||
|
||||
// Check if we need send an ACK2 for this ACK
|
||||
// This will be the case if it has been longer than the sync interval OR
|
||||
// it looks like they haven't received our ACK2 for this ACK
|
||||
|
|
|
@ -21,12 +21,10 @@ in vec3 _normal;
|
|||
in vec2 _texCoord0;
|
||||
|
||||
const float gamma = 2.2;
|
||||
const float smoothing = 256.0;
|
||||
const float smoothing = 32.0;
|
||||
const float interiorCutoff = 0.8;
|
||||
const float outlineExpansion = 0.2;
|
||||
|
||||
|
||||
|
||||
void main() {
|
||||
// retrieve signed distance
|
||||
float sdf = texture(Font, _texCoord0).g;
|
||||
|
|
|
@ -240,7 +240,9 @@ public:
|
|||
const Varying getInput() const { return _input; }
|
||||
const Varying getOutput() const { return _output; }
|
||||
|
||||
Model(const Varying& input, Data data = Data()) : Concept(std::make_shared<C>()), _data(data), _input(input), _output(Output()) {
|
||||
template <class... A>
|
||||
Model(const Varying& input, A&&... args) :
|
||||
Concept(std::make_shared<C>()), _data(Data(std::forward<A>(args)...)), _input(input), _output(Output()) {
|
||||
applyConfiguration();
|
||||
}
|
||||
|
||||
|
@ -308,7 +310,10 @@ public:
|
|||
const Varying getInput() const { return _input; }
|
||||
const Varying getOutput() const { return _output; }
|
||||
|
||||
Model(const Varying& input, Data data = Data()) : Concept(data._config), _data(data), _input(input), _output(Output()) {
|
||||
template <class... A>
|
||||
Model(const Varying& input, A&&... args) :
|
||||
Concept(nullptr), _data(Data(std::forward<A>(args)...)), _input(input), _output(Output()) {
|
||||
_config = _data._config;
|
||||
std::static_pointer_cast<Config>(_config)->init(&_data);
|
||||
applyConfiguration();
|
||||
}
|
||||
|
@ -337,9 +342,7 @@ public:
|
|||
|
||||
// Create a new job in the container's queue; returns the job's output
|
||||
template <class T, class... A> const Varying addJob(std::string name, const Varying& input, A&&... args) {
|
||||
_jobs.emplace_back(name, std::make_shared<typename T::JobModel>(
|
||||
input,
|
||||
typename T::JobModel::Data(std::forward<A>(args)...)));
|
||||
_jobs.emplace_back(name, std::make_shared<typename T::JobModel>(input, std::forward<A>(args)...));
|
||||
QConfigPointer config = _jobs.back().getConfiguration();
|
||||
config->setParent(_config.get());
|
||||
config->setObjectName(name.c_str());
|
||||
|
|
|
@ -29,7 +29,7 @@ const glm::quat identity = glm::quat();
|
|||
const glm::quat quaterTurnAroundZ = glm::angleAxis(0.5f * PI, zAxis);
|
||||
|
||||
|
||||
void makeTestFBXJoints(std::vector<FBXJoint>& fbxJoints) {
|
||||
void makeTestFBXJoints(FBXGeometry& geometry) {
|
||||
FBXJoint joint;
|
||||
joint.isFree = false;
|
||||
joint.freeLineage.clear();
|
||||
|
@ -61,29 +61,29 @@ void makeTestFBXJoints(std::vector<FBXJoint>& fbxJoints) {
|
|||
joint.name = "A";
|
||||
joint.parentIndex = -1;
|
||||
joint.translation = origin;
|
||||
fbxJoints.push_back(joint);
|
||||
geometry.joints.push_back(joint);
|
||||
|
||||
joint.name = "B";
|
||||
joint.parentIndex = 0;
|
||||
joint.translation = xAxis;
|
||||
fbxJoints.push_back(joint);
|
||||
geometry.joints.push_back(joint);
|
||||
|
||||
joint.name = "C";
|
||||
joint.parentIndex = 1;
|
||||
joint.translation = xAxis;
|
||||
fbxJoints.push_back(joint);
|
||||
geometry.joints.push_back(joint);
|
||||
|
||||
joint.name = "D";
|
||||
joint.parentIndex = 2;
|
||||
joint.translation = xAxis;
|
||||
fbxJoints.push_back(joint);
|
||||
geometry.joints.push_back(joint);
|
||||
|
||||
// compute each joint's transform
|
||||
for (int i = 1; i < (int)fbxJoints.size(); ++i) {
|
||||
FBXJoint& j = fbxJoints[i];
|
||||
for (int i = 1; i < (int)geometry.joints.size(); ++i) {
|
||||
FBXJoint& j = geometry.joints[i];
|
||||
int parentIndex = j.parentIndex;
|
||||
// World = ParentWorld * T * (Roff * Rp) * Rpre * R * Rpost * (Rp-1 * Soff * Sp * S * Sp-1)
|
||||
j.transform = fbxJoints[parentIndex].transform *
|
||||
j.transform = geometry.joints[parentIndex].transform *
|
||||
glm::translate(j.translation) *
|
||||
j.preTransform *
|
||||
glm::mat4_cast(j.preRotation * j.rotation * j.postRotation) *
|
||||
|
@ -94,14 +94,14 @@ void makeTestFBXJoints(std::vector<FBXJoint>& fbxJoints) {
|
|||
}
|
||||
|
||||
void AnimInverseKinematicsTests::testSingleChain() {
|
||||
std::vector<FBXJoint> fbxJoints;
|
||||
makeTestFBXJoints(fbxJoints);
|
||||
FBXGeometry geometry;
|
||||
makeTestFBXJoints(geometry);
|
||||
|
||||
// create a skeleton and doll
|
||||
AnimPose offset;
|
||||
AnimSkeleton* skeleton = new AnimSkeleton(fbxJoints, offset);
|
||||
AnimSkeleton::Pointer skeletonPtr(skeleton);
|
||||
AnimSkeleton::Pointer skeletonPtr = std::make_shared<AnimSkeleton>(geometry);
|
||||
AnimInverseKinematics ikDoll("doll");
|
||||
|
||||
ikDoll.setSkeleton(skeletonPtr);
|
||||
|
||||
{ // easy test IK of joint C
|
||||
|
@ -113,11 +113,11 @@ void AnimInverseKinematicsTests::testSingleChain() {
|
|||
pose.rot = identity;
|
||||
pose.trans = origin;
|
||||
|
||||
std::vector<AnimPose> poses;
|
||||
AnimPoseVec poses;
|
||||
poses.push_back(pose);
|
||||
|
||||
pose.trans = xAxis;
|
||||
for (int i = 1; i < (int)fbxJoints.size(); ++i) {
|
||||
for (int i = 1; i < (int)geometry.joints.size(); ++i) {
|
||||
poses.push_back(pose);
|
||||
}
|
||||
ikDoll.loadPoses(poses);
|
||||
|
@ -134,7 +134,8 @@ void AnimInverseKinematicsTests::testSingleChain() {
|
|||
AnimVariantMap varMap;
|
||||
varMap.set("positionD", targetPosition);
|
||||
varMap.set("rotationD", targetRotation);
|
||||
ikDoll.setTargetVars("D", "positionD", "rotationD");
|
||||
varMap.set("targetType", (int)IKTarget::Type::RotationAndPosition);
|
||||
ikDoll.setTargetVars(QString("D"), QString("positionD"), QString("rotationD"), QString("targetType"));
|
||||
AnimNode::Triggers triggers;
|
||||
|
||||
// the IK solution should be:
|
||||
|
@ -144,38 +145,49 @@ void AnimInverseKinematicsTests::testSingleChain() {
|
|||
// |
|
||||
// A------>B------>C
|
||||
//
|
||||
|
||||
// iterate several times
|
||||
float dt = 1.0f;
|
||||
ikDoll.evaluate(varMap, dt, triggers);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
const AnimPoseVec& relativePoses = ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
|
||||
// verify absolute results
|
||||
// NOTE: since we expect this solution to converge very quickly (one loop)
|
||||
// we can impose very tight error thresholds.
|
||||
std::vector<AnimPose> absolutePoses;
|
||||
AnimPoseVec absolutePoses;
|
||||
for (auto pose : poses) {
|
||||
absolutePoses.push_back(pose);
|
||||
}
|
||||
ikDoll.computeAbsolutePoses(absolutePoses);
|
||||
float acceptableAngle = 0.0001f;
|
||||
QCOMPARE_QUATS(absolutePoses[0].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(absolutePoses[1].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(absolutePoses[2].rot, quaterTurnAroundZ, acceptableAngle);
|
||||
QCOMPARE_QUATS(absolutePoses[3].rot, quaterTurnAroundZ, acceptableAngle);
|
||||
const float acceptableAngleError = 0.001f;
|
||||
QCOMPARE_QUATS(absolutePoses[0].rot, identity, acceptableAngleError);
|
||||
QCOMPARE_QUATS(absolutePoses[1].rot, identity, acceptableAngleError);
|
||||
QCOMPARE_QUATS(absolutePoses[2].rot, quaterTurnAroundZ, acceptableAngleError);
|
||||
QCOMPARE_QUATS(absolutePoses[3].rot, quaterTurnAroundZ, acceptableAngleError);
|
||||
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[0].trans, origin, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[1].trans, xAxis, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[2].trans, 2.0f * xAxis, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[3].trans, targetPosition, EPSILON);
|
||||
const float acceptableTranslationError = 0.025f;
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[0].trans, origin, acceptableTranslationError);
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[1].trans, xAxis, acceptableTranslationError);
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[2].trans, 2.0f * xAxis, acceptableTranslationError);
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[3].trans, targetPosition, acceptableTranslationError);
|
||||
|
||||
// verify relative results
|
||||
const std::vector<AnimPose>& relativePoses = ikDoll.getRelativePoses();
|
||||
QCOMPARE_QUATS(relativePoses[0].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(relativePoses[1].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(relativePoses[2].rot, quaterTurnAroundZ, acceptableAngle);
|
||||
QCOMPARE_QUATS(relativePoses[3].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(relativePoses[0].rot, identity, acceptableAngleError);
|
||||
QCOMPARE_QUATS(relativePoses[1].rot, identity, acceptableAngleError);
|
||||
QCOMPARE_QUATS(relativePoses[2].rot, quaterTurnAroundZ, acceptableAngleError);
|
||||
QCOMPARE_QUATS(relativePoses[3].rot, identity, acceptableAngleError);
|
||||
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[0].trans, origin, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[1].trans, xAxis, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[2].trans, xAxis, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[3].trans, xAxis, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[0].trans, origin, acceptableTranslationError);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[1].trans, xAxis, acceptableTranslationError);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[2].trans, xAxis, acceptableTranslationError);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[3].trans, xAxis, acceptableTranslationError);
|
||||
}
|
||||
|
||||
{ // hard test IK of joint C
|
||||
// load intial poses that look like this:
|
||||
//
|
||||
|
@ -188,8 +200,8 @@ void AnimInverseKinematicsTests::testSingleChain() {
|
|||
pose.scale = glm::vec3(1.0f);
|
||||
pose.rot = identity;
|
||||
pose.trans = origin;
|
||||
|
||||
std::vector<AnimPose> poses;
|
||||
|
||||
AnimPoseVec poses;
|
||||
poses.push_back(pose);
|
||||
pose.trans = xAxis;
|
||||
|
||||
|
@ -211,15 +223,26 @@ void AnimInverseKinematicsTests::testSingleChain() {
|
|||
AnimVariantMap varMap;
|
||||
varMap.set("positionD", targetPosition);
|
||||
varMap.set("rotationD", targetRotation);
|
||||
ikDoll.setTargetVars("D", "positionD", "rotationD");
|
||||
varMap.set("targetType", (int)IKTarget::Type::RotationAndPosition);
|
||||
ikDoll.setTargetVars(QString("D"), QString("positionD"), QString("rotationD"), QString("targetType"));
|
||||
AnimNode::Triggers triggers;
|
||||
|
||||
// the IK solution should be:
|
||||
//
|
||||
// A------>B------>C------>D
|
||||
//
|
||||
|
||||
// iterate several times
|
||||
float dt = 1.0f;
|
||||
ikDoll.evaluate(varMap, dt, triggers);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
const AnimPoseVec& relativePoses = ikDoll.overlay(varMap, dt, triggers, poses);
|
||||
|
||||
// verify absolute results
|
||||
// NOTE: the IK algorithm doesn't converge very fast for full-reach targets,
|
||||
|
@ -228,31 +251,33 @@ void AnimInverseKinematicsTests::testSingleChain() {
|
|||
// NOTE: constraints may help speed up convergence since some joints may get clamped
|
||||
// to maximum extension. TODO: experiment with tightening the error thresholds when
|
||||
// constraints are working.
|
||||
std::vector<AnimPose> absolutePoses;
|
||||
AnimPoseVec absolutePoses;
|
||||
for (auto pose : poses) {
|
||||
absolutePoses.push_back(pose);
|
||||
}
|
||||
ikDoll.computeAbsolutePoses(absolutePoses);
|
||||
float acceptableAngle = 0.1f; // radians
|
||||
float acceptableAngle = 0.01f; // radians
|
||||
QCOMPARE_QUATS(absolutePoses[0].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(absolutePoses[1].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(absolutePoses[2].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(absolutePoses[3].rot, identity, acceptableAngle);
|
||||
|
||||
float acceptableDistance = 0.4f;
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[0].trans, origin, EPSILON);
|
||||
float acceptableDistance = 0.03f;
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[0].trans, origin, acceptableDistance);
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[1].trans, xAxis, acceptableDistance);
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[2].trans, 2.0f * xAxis, acceptableDistance);
|
||||
QCOMPARE_WITH_ABS_ERROR(absolutePoses[3].trans, 3.0f * xAxis, acceptableDistance);
|
||||
|
||||
// verify relative results
|
||||
const std::vector<AnimPose>& relativePoses = ikDoll.getRelativePoses();
|
||||
QCOMPARE_QUATS(relativePoses[0].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(relativePoses[1].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(relativePoses[2].rot, identity, acceptableAngle);
|
||||
QCOMPARE_QUATS(relativePoses[3].rot, identity, acceptableAngle);
|
||||
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[0].trans, origin, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[1].trans, xAxis, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[2].trans, xAxis, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[3].trans, xAxis, EPSILON);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[0].trans, origin, acceptableDistance);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[1].trans, xAxis, acceptableDistance);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[2].trans, xAxis, acceptableDistance);
|
||||
QCOMPARE_WITH_ABS_ERROR(relativePoses[3].trans, xAxis, acceptableDistance);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -38,8 +38,9 @@ void AnimTests::testClipInternalState() {
|
|||
float endFrame = 20.0f;
|
||||
float timeScale = 1.1f;
|
||||
bool loopFlag = true;
|
||||
bool mirrorFlag = false;
|
||||
|
||||
AnimClip clip(id, url, startFrame, endFrame, timeScale, loopFlag);
|
||||
AnimClip clip(id, url, startFrame, endFrame, timeScale, loopFlag, mirrorFlag);
|
||||
|
||||
QVERIFY(clip.getID() == id);
|
||||
QVERIFY(clip.getType() == AnimNode::Type::Clip);
|
||||
|
@ -49,6 +50,7 @@ void AnimTests::testClipInternalState() {
|
|||
QVERIFY(clip._endFrame == endFrame);
|
||||
QVERIFY(clip._timeScale == timeScale);
|
||||
QVERIFY(clip._loopFlag == loopFlag);
|
||||
QVERIFY(clip._mirrorFlag == mirrorFlag);
|
||||
}
|
||||
|
||||
static float framesToSec(float secs) {
|
||||
|
@ -62,12 +64,13 @@ void AnimTests::testClipEvaulate() {
|
|||
float startFrame = 2.0f;
|
||||
float endFrame = 22.0f;
|
||||
float timeScale = 1.0f;
|
||||
float loopFlag = true;
|
||||
bool loopFlag = true;
|
||||
bool mirrorFlag = false;
|
||||
|
||||
auto vars = AnimVariantMap();
|
||||
vars.set("FalseVar", false);
|
||||
|
||||
AnimClip clip(id, url, startFrame, endFrame, timeScale, loopFlag);
|
||||
AnimClip clip(id, url, startFrame, endFrame, timeScale, loopFlag, mirrorFlag);
|
||||
|
||||
AnimNode::Triggers triggers;
|
||||
clip.evaluate(vars, framesToSec(10.0f), triggers);
|
||||
|
@ -97,7 +100,8 @@ void AnimTests::testClipEvaulateWithVars() {
|
|||
float startFrame = 2.0f;
|
||||
float endFrame = 22.0f;
|
||||
float timeScale = 1.0f;
|
||||
float loopFlag = true;
|
||||
bool loopFlag = true;
|
||||
bool mirrorFlag = false;
|
||||
|
||||
float startFrame2 = 22.0f;
|
||||
float endFrame2 = 100.0f;
|
||||
|
@ -110,7 +114,7 @@ void AnimTests::testClipEvaulateWithVars() {
|
|||
vars.set("timeScale2", timeScale2);
|
||||
vars.set("loopFlag2", loopFlag2);
|
||||
|
||||
AnimClip clip(id, url, startFrame, endFrame, timeScale, loopFlag);
|
||||
AnimClip clip(id, url, startFrame, endFrame, timeScale, loopFlag, mirrorFlag);
|
||||
clip.setStartFrameVar("startFrame2");
|
||||
clip.setEndFrameVar("endFrame2");
|
||||
clip.setTimeScaleVar("timeScale2");
|
||||
|
@ -583,23 +587,23 @@ void AnimTests::testExpressionEvaluator() {
|
|||
TEST_BOOL_EXPR(false && false);
|
||||
TEST_BOOL_EXPR(false && true);
|
||||
|
||||
TEST_BOOL_EXPR(true || false && true);
|
||||
TEST_BOOL_EXPR(true || false && false);
|
||||
TEST_BOOL_EXPR(true || true && true);
|
||||
TEST_BOOL_EXPR(true || true && false);
|
||||
TEST_BOOL_EXPR(false || false && true);
|
||||
TEST_BOOL_EXPR(false || false && false);
|
||||
TEST_BOOL_EXPR(false || true && true);
|
||||
TEST_BOOL_EXPR(false || true && false);
|
||||
TEST_BOOL_EXPR(true || (false && true));
|
||||
TEST_BOOL_EXPR(true || (false && false));
|
||||
TEST_BOOL_EXPR(true || (true && true));
|
||||
TEST_BOOL_EXPR(true || (true && false));
|
||||
TEST_BOOL_EXPR(false || (false && true));
|
||||
TEST_BOOL_EXPR(false || (false && false));
|
||||
TEST_BOOL_EXPR(false || (true && true));
|
||||
TEST_BOOL_EXPR(false || (true && false));
|
||||
|
||||
TEST_BOOL_EXPR(true && false || true);
|
||||
TEST_BOOL_EXPR(true && false || false);
|
||||
TEST_BOOL_EXPR(true && true || true);
|
||||
TEST_BOOL_EXPR(true && true || false);
|
||||
TEST_BOOL_EXPR(false && false || true);
|
||||
TEST_BOOL_EXPR(false && false || false);
|
||||
TEST_BOOL_EXPR(false && true || true);
|
||||
TEST_BOOL_EXPR(false && true || false);
|
||||
TEST_BOOL_EXPR((true && false) || true);
|
||||
TEST_BOOL_EXPR((true && false) || false);
|
||||
TEST_BOOL_EXPR((true && true) || true);
|
||||
TEST_BOOL_EXPR((true && true) || false);
|
||||
TEST_BOOL_EXPR((false && false) || true);
|
||||
TEST_BOOL_EXPR((false && false) || false);
|
||||
TEST_BOOL_EXPR((false && true) || true);
|
||||
TEST_BOOL_EXPR((false && true) || false);
|
||||
|
||||
TEST_BOOL_EXPR(t || false);
|
||||
TEST_BOOL_EXPR(t || true);
|
||||
|
@ -610,14 +614,14 @@ void AnimTests::testExpressionEvaluator() {
|
|||
TEST_BOOL_EXPR(!false);
|
||||
TEST_BOOL_EXPR(!true || true);
|
||||
|
||||
TEST_BOOL_EXPR(!true && !false || !true);
|
||||
TEST_BOOL_EXPR(!true && !false || true);
|
||||
TEST_BOOL_EXPR(!true && false || !true);
|
||||
TEST_BOOL_EXPR(!true && false || true);
|
||||
TEST_BOOL_EXPR(true && !false || !true);
|
||||
TEST_BOOL_EXPR(true && !false || true);
|
||||
TEST_BOOL_EXPR(true && false || !true);
|
||||
TEST_BOOL_EXPR(true && false || true);
|
||||
TEST_BOOL_EXPR((!true && !false) || !true);
|
||||
TEST_BOOL_EXPR((!true && !false) || true);
|
||||
TEST_BOOL_EXPR((!true && false) || !true);
|
||||
TEST_BOOL_EXPR((!true && false) || true);
|
||||
TEST_BOOL_EXPR((true && !false) || !true);
|
||||
TEST_BOOL_EXPR((true && !false) || true);
|
||||
TEST_BOOL_EXPR((true && false) || !true);
|
||||
TEST_BOOL_EXPR((true && false) || true);
|
||||
|
||||
TEST_BOOL_EXPR(!(true && f) || !t);
|
||||
TEST_BOOL_EXPR(!!!(t) && (!!f || true));
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
#include <glm/glm.hpp>
|
||||
|
||||
#include <ElbowConstraint.h>
|
||||
#include <GLMHelpers.h>
|
||||
#include <NumericalConstants.h>
|
||||
#include <SwingTwistConstraint.h>
|
||||
|
||||
|
@ -56,7 +57,7 @@ void RotationConstraintTests::testElbowConstraint() {
|
|||
float startAngle = minAngle + smallAngle;
|
||||
float endAngle = maxAngle - smallAngle;
|
||||
float deltaAngle = (endAngle - startAngle) / (float)(numChecks - 1);
|
||||
|
||||
|
||||
for (float angle = startAngle; angle < endAngle + 0.5f * deltaAngle; angle += deltaAngle) {
|
||||
glm::quat inputRotation = glm::angleAxis(angle, hingeAxis) * referenceRotation;
|
||||
glm::quat outputRotation = inputRotation;
|
||||
|
@ -115,9 +116,9 @@ void RotationConstraintTests::testSwingTwistConstraint() {
|
|||
shoulder.setTwistLimits(minTwistAngle, maxTwistAngle);
|
||||
float lowDot = 0.25f;
|
||||
float highDot = 0.75f;
|
||||
// The swing constriants are more interesting: a vector of minimum dot products
|
||||
// The swing constriants are more interesting: a vector of minimum dot products
|
||||
// as a function of theta around the twist axis. Our test function will be shaped
|
||||
// like the square wave with amplitudes 0.25 and 0.75:
|
||||
// like a square wave with amplitudes 0.25 and 0.75:
|
||||
//
|
||||
// |
|
||||
// 0.75 - o---o---o---o
|
||||
|
@ -308,3 +309,344 @@ void RotationConstraintTests::testSwingTwistConstraint() {
|
|||
}
|
||||
}
|
||||
|
||||
void RotationConstraintTests::testDynamicSwingLimitFunction() {
|
||||
SwingTwistConstraint::SwingLimitFunction limitFunction;
|
||||
const float ACCEPTABLE_ERROR = 1.0e-6f;
|
||||
|
||||
const float adjustmentDot = -0.5f;
|
||||
|
||||
const float MIN_DOT = 0.5f;
|
||||
{ // initialize limitFunction
|
||||
std::vector<float> minDots;
|
||||
minDots.push_back(MIN_DOT);
|
||||
limitFunction.setMinDots(minDots);
|
||||
}
|
||||
|
||||
std::vector<float> referenceDots;
|
||||
{ // verify limits and initialize referenceDots
|
||||
const int MIN_NUM_DOTS = 8;
|
||||
const std::vector<float>& minDots = limitFunction.getMinDots();
|
||||
QVERIFY(minDots.size() >= MIN_NUM_DOTS);
|
||||
|
||||
int numDots = (int)minDots.size();
|
||||
for (int i = 0; i < numDots; ++i) {
|
||||
QCOMPARE_WITH_RELATIVE_ERROR(minDots[i], MIN_DOT, ACCEPTABLE_ERROR);
|
||||
referenceDots.push_back(minDots[i]);
|
||||
}
|
||||
}
|
||||
{ // dynamically adjust limits
|
||||
const std::vector<float>& minDots = limitFunction.getMinDots();
|
||||
int numDots = (int)minDots.size();
|
||||
|
||||
float deltaTheta = TWO_PI / (float)(numDots - 1);
|
||||
int indexA = 2;
|
||||
int indexB = (indexA + 1) % numDots;
|
||||
|
||||
{ // dynamically adjust a data point
|
||||
float theta = deltaTheta * (float)indexA;
|
||||
float interpolatedDot = limitFunction.getMinDot(theta);
|
||||
|
||||
// change indexA
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, adjustmentDot);
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), adjustmentDot, ACCEPTABLE_ERROR); // adjustmentDot at theta
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], adjustmentDot, ACCEPTABLE_ERROR); // indexA has changed
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], referenceDots[indexB], ACCEPTABLE_ERROR); // indexB has not changed
|
||||
|
||||
// change indexB
|
||||
theta = deltaTheta * (float)indexB;
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, adjustmentDot);
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), adjustmentDot, ACCEPTABLE_ERROR); // adjustmentDot at theta
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], referenceDots[indexA], ACCEPTABLE_ERROR); // indexA has been restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], adjustmentDot, ACCEPTABLE_ERROR); // indexB has changed
|
||||
|
||||
// restore
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, referenceDots[indexB] + 0.01f); // restore with a larger dot
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), interpolatedDot, ACCEPTABLE_ERROR); // restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], referenceDots[indexA], ACCEPTABLE_ERROR); // indexA is restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], referenceDots[indexB], ACCEPTABLE_ERROR); // indexB is restored
|
||||
}
|
||||
{ // dynamically adjust halfway between data points
|
||||
float theta = deltaTheta * 0.5f * (float)(indexA + indexB); // halfway between two points
|
||||
float interpolatedDot = limitFunction.getMinDot(theta);
|
||||
float deltaDot = adjustmentDot - interpolatedDot;
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, adjustmentDot);
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), adjustmentDot, ACCEPTABLE_ERROR); // adjustmentDot at theta
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], referenceDots[indexA] + deltaDot, ACCEPTABLE_ERROR); // indexA has changed
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], referenceDots[indexB] + deltaDot, ACCEPTABLE_ERROR); // indexB has changed
|
||||
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, interpolatedDot + 0.01f); // reset with something larger
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), interpolatedDot, ACCEPTABLE_ERROR); // restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], referenceDots[indexA], ACCEPTABLE_ERROR); // indexA is restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], referenceDots[indexB], ACCEPTABLE_ERROR); // indexB is restored
|
||||
}
|
||||
{ // dynamically adjust one-quarter between data points
|
||||
float theta = deltaTheta * ((float)indexA + 0.25f); // one quarter past A towards B
|
||||
float interpolatedDot = limitFunction.getMinDot(theta);
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, adjustmentDot);
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), adjustmentDot, ACCEPTABLE_ERROR); // adjustmentDot at theta
|
||||
QVERIFY(minDots[indexA] < adjustmentDot); // indexA should be less than minDot
|
||||
QVERIFY(minDots[indexB] > adjustmentDot); // indexB should be larger than minDot
|
||||
QVERIFY(minDots[indexB] < referenceDots[indexB]); // indexB should be less than what it was
|
||||
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, interpolatedDot + 0.01f); // reset with something larger
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), interpolatedDot, ACCEPTABLE_ERROR); // restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], referenceDots[indexA], ACCEPTABLE_ERROR); // indexA is restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], referenceDots[indexB], ACCEPTABLE_ERROR); // indexB is restored
|
||||
}
|
||||
{ // halfway between first two data points (boundary condition)
|
||||
indexA = 0;
|
||||
indexB = 1;
|
||||
int indexZ = minDots.size() - 1; // far boundary condition
|
||||
float theta = deltaTheta * 0.5f * (float)(indexA + indexB); // halfway between two points
|
||||
float interpolatedDot = limitFunction.getMinDot(theta);
|
||||
float deltaDot = adjustmentDot - interpolatedDot;
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, adjustmentDot);
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), adjustmentDot, ACCEPTABLE_ERROR); // adjustmentDot at theta
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], referenceDots[indexA] + deltaDot, ACCEPTABLE_ERROR); // indexA has changed
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], referenceDots[indexB] + deltaDot, ACCEPTABLE_ERROR); // indexB has changed
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexZ], referenceDots[indexZ] + deltaDot, ACCEPTABLE_ERROR); // indexZ has changed
|
||||
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, interpolatedDot + 0.01f); // reset with something larger
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), interpolatedDot, ACCEPTABLE_ERROR); // restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], referenceDots[indexA], ACCEPTABLE_ERROR); // indexA is restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], referenceDots[indexB], ACCEPTABLE_ERROR); // indexB is restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexZ], referenceDots[indexZ], ACCEPTABLE_ERROR); // indexZ is restored
|
||||
}
|
||||
{ // halfway between first two data points (boundary condition)
|
||||
indexB = minDots.size() - 1;
|
||||
indexA = indexB - 1;
|
||||
int indexZ = 0; // far boundary condition
|
||||
float theta = deltaTheta * 0.5f * (float)(indexA + indexB); // halfway between two points
|
||||
float interpolatedDot = limitFunction.getMinDot(theta);
|
||||
float deltaDot = adjustmentDot - interpolatedDot;
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, adjustmentDot);
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), adjustmentDot, ACCEPTABLE_ERROR); // adjustmentDot at theta
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], referenceDots[indexA] + deltaDot, ACCEPTABLE_ERROR); // indexA has changed
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], referenceDots[indexB] + deltaDot, ACCEPTABLE_ERROR); // indexB has changed
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexZ], referenceDots[indexZ] + deltaDot, ACCEPTABLE_ERROR); // indexZ has changed
|
||||
|
||||
limitFunction.dynamicallyAdjustMinDots(theta, interpolatedDot + 0.01f); // reset with something larger
|
||||
QCOMPARE_WITH_ABS_ERROR(limitFunction.getMinDot(theta), interpolatedDot, ACCEPTABLE_ERROR); // restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexA], referenceDots[indexA], ACCEPTABLE_ERROR); // indexA is restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexB], referenceDots[indexB], ACCEPTABLE_ERROR); // indexB is restored
|
||||
QCOMPARE_WITH_ABS_ERROR(minDots[indexZ], referenceDots[indexZ], ACCEPTABLE_ERROR); // indexZ is restored
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RotationConstraintTests::testDynamicSwing() {
|
||||
const float ACCEPTABLE_ERROR = 1.0e-6f;
|
||||
|
||||
// referenceRotation is the default rotation
|
||||
float referenceAngle = 1.23f;
|
||||
glm::vec3 referenceAxis = glm::normalize(glm::vec3(1.0f, 2.0f, -3.0f));
|
||||
glm::quat referenceRotation = glm::angleAxis(referenceAngle, referenceAxis);
|
||||
|
||||
// the angle limits of the constriant about the hinge axis
|
||||
float minTwistAngle = -PI / 2.0f;
|
||||
float maxTwistAngle = PI / 2.0f;
|
||||
|
||||
// build the constraint
|
||||
SwingTwistConstraint shoulder;
|
||||
shoulder.setReferenceRotation(referenceRotation);
|
||||
shoulder.setTwistLimits(minTwistAngle, maxTwistAngle);
|
||||
std::vector<float> minDots;
|
||||
const float MIN_DOT = 0.5f;
|
||||
minDots.push_back(MIN_DOT);
|
||||
shoulder.setSwingLimits(minDots);
|
||||
|
||||
// verify resolution of the swing limits
|
||||
const std::vector<float>& shoulderMinDots = shoulder.getMinDots();
|
||||
const int MIN_NUM_DOTS = 8;
|
||||
int numDots = shoulderMinDots.size();
|
||||
QVERIFY(numDots >= MIN_NUM_DOTS);
|
||||
|
||||
// verify values of the swing limits
|
||||
QCOMPARE_WITH_ABS_ERROR(shoulderMinDots[0], shoulderMinDots[numDots - 1], ACCEPTABLE_ERROR); // endpoints should be the same
|
||||
for (int i = 0; i < numDots; ++i) {
|
||||
QCOMPARE_WITH_ABS_ERROR(shoulderMinDots[i], MIN_DOT, ACCEPTABLE_ERROR); // all values should be the same
|
||||
}
|
||||
|
||||
float deltaTheta = TWO_PI / (float)(numDots - 1);
|
||||
float theta = 1.5f * deltaTheta;
|
||||
glm::vec3 swingAxis(cosf(theta), 0.0f, sinf(theta));
|
||||
float deltaSwing = 0.1f;
|
||||
|
||||
{ // compute rotation that should NOT be constrained
|
||||
float swingAngle = acosf(MIN_DOT) - deltaSwing;
|
||||
glm::quat swingRotation = glm::angleAxis(swingAngle, swingAxis);
|
||||
glm::quat totalRotation = swingRotation * referenceRotation;
|
||||
|
||||
// verify rotation is NOT constrained
|
||||
glm::quat constrainedRotation = totalRotation;
|
||||
QVERIFY(!shoulder.apply(constrainedRotation));
|
||||
}
|
||||
|
||||
{ // compute a rotation that should be barely constrained
|
||||
float swingAngle = acosf(MIN_DOT) + deltaSwing;
|
||||
glm::quat swingRotation = glm::angleAxis(swingAngle, swingAxis);
|
||||
glm::quat totalRotation = swingRotation * referenceRotation;
|
||||
|
||||
// verify rotation is constrained
|
||||
glm::quat constrainedRotation = totalRotation;
|
||||
QVERIFY(shoulder.apply(constrainedRotation));
|
||||
}
|
||||
|
||||
{ // make a dynamic adjustment to the swing limits
|
||||
const float SMALLER_MIN_DOT = -0.5f;
|
||||
float swingAngle = acosf(SMALLER_MIN_DOT);
|
||||
glm::quat swingRotation = glm::angleAxis(swingAngle, swingAxis);
|
||||
glm::quat badRotation = swingRotation * referenceRotation;
|
||||
|
||||
{ // verify rotation is constrained
|
||||
glm::quat constrainedRotation = badRotation;
|
||||
QVERIFY(shoulder.apply(constrainedRotation));
|
||||
|
||||
// now poke the SMALLER_MIN_DOT into the swing limits
|
||||
shoulder.dynamicallyAdjustLimits(badRotation);
|
||||
|
||||
// verify that if rotation is constrained then it is only by a little bit
|
||||
constrainedRotation = badRotation;
|
||||
bool constrained = shoulder.apply(constrainedRotation);
|
||||
if (constrained) {
|
||||
// Note: Q1 = dQ * Q0 --> dQ = Q1 * Q0^
|
||||
glm::quat dQ = constrainedRotation * glm::inverse(badRotation);
|
||||
const float acceptableClampAngle = 0.01f;
|
||||
float deltaAngle = glm::angle(dQ);
|
||||
QVERIFY(deltaAngle < acceptableClampAngle);
|
||||
}
|
||||
}
|
||||
|
||||
{ // verify that other swing axes still use the old non-adjusted limits
|
||||
float deltaTheta = TWO_PI / (float)(numDots - 1);
|
||||
float otherTheta = 3.5f * deltaTheta;
|
||||
glm::vec3 otherSwingAxis(cosf(otherTheta), 0.0f, sinf(otherTheta));
|
||||
|
||||
{ // inside rotations should be unconstrained
|
||||
float goodAngle = acosf(MIN_DOT) - deltaSwing;
|
||||
glm::quat goodRotation = glm::angleAxis(goodAngle, otherSwingAxis) * referenceRotation;
|
||||
QVERIFY(!shoulder.apply(goodRotation));
|
||||
}
|
||||
{ // outside rotations should be constrained
|
||||
float badAngle = acosf(MIN_DOT) + deltaSwing;
|
||||
glm::quat otherBadRotation = glm::angleAxis(badAngle, otherSwingAxis) * referenceRotation;
|
||||
QVERIFY(shoulder.apply(otherBadRotation));
|
||||
|
||||
float constrainedAngle = glm::angle(otherBadRotation);
|
||||
QCOMPARE_WITH_ABS_ERROR(constrainedAngle, acosf(MIN_DOT), 0.1f * deltaSwing);
|
||||
}
|
||||
}
|
||||
|
||||
{ // clear dynamic adjustment
|
||||
float goodAngle = acosf(MIN_DOT) - deltaSwing;
|
||||
glm::quat goodRotation = glm::angleAxis(goodAngle, swingAxis) * referenceRotation;
|
||||
|
||||
// when we update with a goodRotation the dynamic adjustment is cleared
|
||||
shoulder.dynamicallyAdjustLimits(goodRotation);
|
||||
|
||||
// verify that the old badRotation, which was not constrained dynamically, is now constrained
|
||||
glm::quat constrainedRotation = badRotation;
|
||||
QVERIFY(shoulder.apply(constrainedRotation));
|
||||
|
||||
// and the good rotation should not be constrained
|
||||
constrainedRotation = goodRotation;
|
||||
QVERIFY(!shoulder.apply(constrainedRotation));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void RotationConstraintTests::testDynamicTwist() {
|
||||
// referenceRotation is the default rotation
|
||||
float referenceAngle = 1.23f;
|
||||
glm::vec3 referenceAxis = glm::normalize(glm::vec3(1.0f, 2.0f, -3.0f));
|
||||
glm::quat referenceRotation = glm::angleAxis(referenceAngle, referenceAxis);
|
||||
|
||||
// the angle limits of the constriant about the hinge axis
|
||||
const float minTwistAngle = -PI / 2.0f;
|
||||
const float maxTwistAngle = PI / 2.0f;
|
||||
|
||||
// build the constraint
|
||||
SwingTwistConstraint shoulder;
|
||||
shoulder.setReferenceRotation(referenceRotation);
|
||||
shoulder.setTwistLimits(minTwistAngle, maxTwistAngle);
|
||||
|
||||
glm::vec3 twistAxis = Vectors::UNIT_Y;
|
||||
float deltaTwist = 0.1f;
|
||||
|
||||
{ // compute min rotation that should NOT be constrained
|
||||
float twistAngle = minTwistAngle + deltaTwist;
|
||||
glm::quat twistRotation = glm::angleAxis(twistAngle, twistAxis);
|
||||
glm::quat totalRotation = twistRotation * referenceRotation;
|
||||
|
||||
// verify rotation is NOT constrained
|
||||
glm::quat constrainedRotation = totalRotation;
|
||||
QVERIFY(!shoulder.apply(constrainedRotation));
|
||||
}
|
||||
{ // compute max rotation that should NOT be constrained
|
||||
float twistAngle = maxTwistAngle - deltaTwist;
|
||||
glm::quat twistRotation = glm::angleAxis(twistAngle, twistAxis);
|
||||
glm::quat totalRotation = twistRotation * referenceRotation;
|
||||
|
||||
// verify rotation is NOT constrained
|
||||
glm::quat constrainedRotation = totalRotation;
|
||||
QVERIFY(!shoulder.apply(constrainedRotation));
|
||||
}
|
||||
{ // compute a min rotation that should be barely constrained
|
||||
float twistAngle = minTwistAngle - deltaTwist;
|
||||
glm::quat twistRotation = glm::angleAxis(twistAngle, twistAxis);
|
||||
glm::quat totalRotation = twistRotation * referenceRotation;
|
||||
|
||||
// verify rotation is constrained
|
||||
glm::quat constrainedRotation = totalRotation;
|
||||
QVERIFY(shoulder.apply(constrainedRotation));
|
||||
|
||||
// adjust the constraint and verify rotation is NOT constrained
|
||||
shoulder.dynamicallyAdjustLimits(totalRotation);
|
||||
constrainedRotation = totalRotation;
|
||||
bool constrained = shoulder.apply(constrainedRotation);
|
||||
if (constrained) {
|
||||
// or, if it is constrained then the adjustment is very small
|
||||
// Note: Q1 = dQ * Q0 --> dQ = Q1 * Q0^
|
||||
glm::quat dQ = constrainedRotation * glm::inverse(totalRotation);
|
||||
const float acceptableClampAngle = 0.01f;
|
||||
float deltaAngle = glm::angle(dQ);
|
||||
QVERIFY(deltaAngle < acceptableClampAngle);
|
||||
}
|
||||
|
||||
// clear the adjustment using a null rotation
|
||||
shoulder.dynamicallyAdjustLimits(glm::quat());
|
||||
|
||||
// verify that rotation is constrained again
|
||||
constrainedRotation = totalRotation;
|
||||
QVERIFY(shoulder.apply(constrainedRotation));
|
||||
}
|
||||
{ // compute a min rotation that should be barely constrained
|
||||
float twistAngle = maxTwistAngle + deltaTwist;
|
||||
glm::quat twistRotation = glm::angleAxis(twistAngle, twistAxis);
|
||||
glm::quat totalRotation = twistRotation * referenceRotation;
|
||||
|
||||
// verify rotation is constrained
|
||||
glm::quat constrainedRotation = totalRotation;
|
||||
QVERIFY(shoulder.apply(constrainedRotation));
|
||||
|
||||
// adjust the constraint and verify rotation is NOT constrained
|
||||
shoulder.dynamicallyAdjustLimits(totalRotation);
|
||||
constrainedRotation = totalRotation;
|
||||
bool constrained = shoulder.apply(constrainedRotation);
|
||||
if (constrained) {
|
||||
// or, if it is constrained then the adjustment is very small
|
||||
// Note: Q1 = dQ * Q0 --> dQ = Q1 * Q0^
|
||||
glm::quat dQ = constrainedRotation * glm::inverse(totalRotation);
|
||||
const float acceptableClampAngle = 0.01f;
|
||||
float deltaAngle = glm::angle(dQ);
|
||||
QVERIFY(deltaAngle < acceptableClampAngle);
|
||||
}
|
||||
|
||||
// clear the adjustment using a null rotation
|
||||
shoulder.dynamicallyAdjustLimits(glm::quat());
|
||||
|
||||
// verify that rotation is constrained again
|
||||
constrainedRotation = totalRotation;
|
||||
QVERIFY(shoulder.apply(constrainedRotation));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -15,10 +15,13 @@
|
|||
|
||||
class RotationConstraintTests : public QObject {
|
||||
Q_OBJECT
|
||||
|
||||
|
||||
private slots:
|
||||
void testElbowConstraint();
|
||||
void testSwingTwistConstraint();
|
||||
void testDynamicSwingLimitFunction();
|
||||
void testDynamicSwing();
|
||||
void testDynamicTwist();
|
||||
};
|
||||
|
||||
#endif // hifi_RotationConstraintTests_h
|
||||
|
|
|
@ -1,18 +1,18 @@
|
|||
//
|
||||
// createTank.js
|
||||
//
|
||||
//
|
||||
//
|
||||
// created by James b. Pollack @imgntn on 3/9/2016
|
||||
// Copyright 2016 High Fidelity, Inc.
|
||||
//
|
||||
// Adds a fish tank and base, decorations, particle bubble systems, and a bubble sound. Attaches a script that does fish swimming.
|
||||
//
|
||||
// Copyright 2016 High Fidelity, Inc.
|
||||
//
|
||||
// Adds a fish tank and base, decorations, particle bubble systems, and a bubble sound. Attaches a script that does fish swimming.
|
||||
//
|
||||
// Distributed under the Apache License, Version 2.0.
|
||||
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||
//
|
||||
|
||||
|
||||
var fishTank, tankBase, bubbleSystem, secondBubbleSystem, thirdBubbleSystem, innerContainer, bubbleInjector, lowerCorner, upperCorner, urchin, treasure, rocks;
|
||||
var fishTank, tankBase, bubbleSystem, secondBubbleSystem, thirdBubbleSystem, innerContainer, bubbleInjector, lowerCorner, upperCorner, anemone, treasure, rocks;
|
||||
var CLEANUP = true;
|
||||
|
||||
var TANK_DIMENSIONS = {
|
||||
|
@ -34,7 +34,15 @@ var DEBUG_COLOR = {
|
|||
blue: 255
|
||||
}
|
||||
|
||||
var center = Vec3.sum(MyAvatar.position, Vec3.multiply(Quat.getFront(MyAvatar.orientation), 1 * TANK_WIDTH));
|
||||
|
||||
var centerVertical = {
|
||||
x: 0,
|
||||
y: 1,
|
||||
z: 0
|
||||
}
|
||||
|
||||
var upCenter = Vec3.sum(centerVertical, MyAvatar.position);
|
||||
var center = Vec3.sum(upCenter, Vec3.multiply(Quat.getFront(MyAvatar.orientation), 2));
|
||||
|
||||
var TANK_POSITION = center;
|
||||
|
||||
|
@ -52,7 +60,7 @@ var TANK_BASE_DIMENSIONS = {
|
|||
z: 2.1936
|
||||
};
|
||||
|
||||
var BASE_VERTICAL_OFFSET = 0.42;
|
||||
var BASE_VERTICAL_OFFSET = 0.47;
|
||||
|
||||
var BUBBLE_SYSTEM_FORWARD_OFFSET = TANK_DIMENSIONS.x + 0.06;
|
||||
var BUBBLE_SYSTEM_LATERAL_OFFSET = 0.025;
|
||||
|
@ -68,14 +76,14 @@ var BUBBLE_SOUND_URL = "http://hifi-content.s3.amazonaws.com/DomainContent/Home/
|
|||
var bubbleSound = SoundCache.getSound(BUBBLE_SOUND_URL);
|
||||
|
||||
|
||||
var URCHIN_FORWARD_OFFSET = TANK_DIMENSIONS.x - 0.35;
|
||||
var URCHIN_LATERAL_OFFSET = -0.05;
|
||||
var URCHIN_VERTICAL_OFFSET = -0.12;
|
||||
var ANEMONE_FORWARD_OFFSET = TANK_DIMENSIONS.x - 0.35;
|
||||
var ANEMONE_LATERAL_OFFSET = -0.05;
|
||||
var ANEMONE_VERTICAL_OFFSET = -0.12;
|
||||
|
||||
|
||||
var URCHIN_MODEL_URL = 'http://hifi-content.s3.amazonaws.com/DomainContent/Home/fishTank/Urchin.fbx';
|
||||
|
||||
var URCHIN_DIMENSIONS = {
|
||||
var ANEMONE_MODEL_URL = 'http://hifi-content.s3.amazonaws.com/DomainContent/Home/fishTank/anemone.fbx';
|
||||
var ANEMONE_ANIMATION_URL = 'http://hifi-content.s3.amazonaws.com/DomainContent/Home/fishTank/anemone.fbx';
|
||||
var ANEMONE_DIMENSIONS = {
|
||||
x: 0.4,
|
||||
y: 0.4,
|
||||
z: 0.4
|
||||
|
@ -303,19 +311,29 @@ function createRocks() {
|
|||
}
|
||||
|
||||
function createUrchin() {
|
||||
var finalPosition = getOffsetFromTankCenter(URCHIN_VERTICAL_OFFSET, URCHIN_FORWARD_OFFSET, URCHIN_LATERAL_OFFSET);
|
||||
var finalPosition = getOffsetFromTankCenter(ANEMONE_VERTICAL_OFFSET, ANEMONE_FORWARD_OFFSET, ANEMONE_LATERAL_OFFSET);
|
||||
|
||||
var properties = {
|
||||
name: 'hifi-home-fishtank-urchin',
|
||||
name: 'hifi-home-fishtank-anemone',
|
||||
type: 'Model',
|
||||
animationURL: ANEMONE_ANIMATION_URL,
|
||||
animationIsPlaying: true,
|
||||
animationFPS: 15,
|
||||
animationSettings: JSON.stringify({
|
||||
hold: false,
|
||||
loop: true,
|
||||
running: true,
|
||||
startAutomatically: true
|
||||
}),
|
||||
parentID: fishTank,
|
||||
modelURL: URCHIN_MODEL_URL,
|
||||
modelURL: ANEMONE_MODEL_URL,
|
||||
position: finalPosition,
|
||||
shapeType: 'Sphere',
|
||||
dimensions: URCHIN_DIMENSIONS
|
||||
rotation: Quat.fromPitchYawRollDegrees(0, 90, 0),
|
||||
dimensions: ANEMONE_DIMENSIONS
|
||||
}
|
||||
|
||||
urchin = Entities.addEntity(properties);
|
||||
anemone = Entities.addEntity(properties);
|
||||
|
||||
}
|
||||
|
||||
|
@ -398,7 +416,7 @@ function cleanup() {
|
|||
Entities.deleteEntity(innerContainer);
|
||||
Entities.deleteEntity(lowerCorner);
|
||||
Entities.deleteEntity(upperCorner);
|
||||
Entities.deleteEntity(urchin);
|
||||
Entities.deleteEntity(anemone);
|
||||
Entities.deleteEntity(rocks);
|
||||
bubbleInjector.stop();
|
||||
bubbleInjector = null;
|
||||
|
@ -449,4 +467,4 @@ function getEntityCustomData(customKey, id, defaultValue) {
|
|||
} else {
|
||||
return defaultValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue