Merge pull request #12092 from hyperlogic/feature/dual-quat

Fix tootsie roll wrists and shoulders with dual quaternion skinning
This commit is contained in:
Anthony Thibault 2018-01-12 16:30:03 -08:00 committed by GitHub
commit 0a54241fe3
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
21 changed files with 679 additions and 65 deletions

View file

@ -76,3 +76,5 @@ AnimPose::operator glm::mat4() const {
return glm::mat4(glm::vec4(xAxis, 0.0f), glm::vec4(yAxis, 0.0f),
glm::vec4(zAxis, 0.0f), glm::vec4(_trans, 1.0f));
}

View file

@ -1732,6 +1732,14 @@ glm::mat4 Rig::getJointTransform(int jointIndex) const {
}
}
AnimPose Rig::getJointPose(int jointIndex) const {
if (isIndexValid(jointIndex)) {
return _internalPoseSet._absolutePoses[jointIndex];
} else {
return AnimPose::identity;
}
}
void Rig::copyJointsIntoJointData(QVector<JointData>& jointDataVec) const {
const AnimPose geometryToRigPose(_geometryToRigTransform);

View file

@ -164,6 +164,7 @@ public:
// rig space
glm::mat4 getJointTransform(int jointIndex) const;
AnimPose getJointPose(int jointIndex) const;
// Start or stop animations as needed.
void computeMotionAnimationState(float deltaTime, const glm::vec3& worldPosition, const glm::vec3& worldVelocity, const glm::quat& worldRotation, CharacterControllerState ccState);

View file

@ -116,6 +116,7 @@ public:
int jointIndex;
glm::mat4 inverseBindMatrix;
Transform inverseBindTransform;
};
const int MAX_NUM_PIXELS_FOR_FBX_TEXTURE = 2048 * 2048;
@ -225,7 +226,7 @@ public:
QVector<glm::vec2> texCoords;
QVector<glm::vec2> texCoords1;
QVector<uint16_t> clusterIndices;
QVector<uint8_t> clusterWeights;
QVector<uint16_t> clusterWeights;
QVector<int32_t> originalIndices;
QVector<FBXCluster> clusters;

View file

@ -1675,6 +1675,7 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
fbxCluster.jointIndex = 0;
}
fbxCluster.inverseBindMatrix = glm::inverse(cluster.transformLink) * modelTransform;
fbxCluster.inverseBindTransform = Transform(fbxCluster.inverseBindMatrix);
extracted.mesh.clusters.append(fbxCluster);
// override the bind rotation with the transform link
@ -1789,9 +1790,9 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
}
if (totalWeight > 0.0f) {
const float ALMOST_HALF = 0.499f;
float weightScalingFactor = (float)(UINT8_MAX) / totalWeight;
float weightScalingFactor = (float)(UINT16_MAX) / totalWeight;
for (int k = j; k < j + WEIGHTS_PER_VERTEX; ++k) {
extracted.mesh.clusterWeights[k] = (uint8_t)(weightScalingFactor * weightAccumulators[k] + ALMOST_HALF);
extracted.mesh.clusterWeights[k] = (uint16_t)(weightScalingFactor * weightAccumulators[k] + ALMOST_HALF);
}
}
}

View file

@ -624,7 +624,8 @@ void FBXReader::buildModelMesh(FBXMesh& extractedMesh, const QString& url) {
// we need 16 bits instead of just 8 for clusterIndices
clusterIndicesSize *= 2;
}
const int clusterWeightsSize = fbxMesh.clusterWeights.size() * sizeof(uint8_t);
const int clusterWeightsSize = fbxMesh.clusterWeights.size() * sizeof(uint16_t);
// Normals and tangents are interleaved
const int normalsOffset = 0;
@ -759,7 +760,7 @@ void FBXReader::buildModelMesh(FBXMesh& extractedMesh, const QString& url) {
if (clusterWeightsSize) {
mesh->addAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT,
model::BufferView(attribBuffer, clusterWeightsOffset, clusterWeightsSize,
gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::XYZW)));
gpu::Element(gpu::VEC4, gpu::NUINT16, gpu::XYZW)));
}

View file

@ -63,12 +63,17 @@ namespace gl {
}
*/
qCWarning(glLogging) << "GLShader::compileShader - failed to compile the gl shader object:";
qCCritical(glLogging) << "GLShader::compileShader - failed to compile the gl shader object:";
int lineNumber = 0;
for (auto s : srcstr) {
qCWarning(glLogging) << s;
QString str(s);
QStringList lines = str.split("\n");
for (auto& line : lines) {
qCCritical(glLogging).noquote() << QString("%1: %2").arg(lineNumber++, 5, 10, QChar('0')).arg(line);
}
}
qCWarning(glLogging) << "GLShader::compileShader - errors:";
qCWarning(glLogging) << temp;
qCCritical(glLogging) << "GLShader::compileShader - errors:";
qCCritical(glLogging) << temp;
error = std::string(temp);
delete[] temp;

View file

@ -20,16 +20,16 @@ using namespace render;
CauterizedMeshPartPayload::CauterizedMeshPartPayload(ModelPointer model, int meshIndex, int partIndex, int shapeIndex, const Transform& transform, const Transform& offsetTransform)
: ModelMeshPartPayload(model, meshIndex, partIndex, shapeIndex, transform, offsetTransform) {}
void CauterizedMeshPartPayload::updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices, const std::vector<glm::mat4>& cauterizedClusterMatrices) {
ModelMeshPartPayload::updateClusterBuffer(clusterMatrices);
void CauterizedMeshPartPayload::updateClusterBuffer(const std::vector<TransformType>& clusterTransforms, const std::vector<TransformType>& cauterizedClusterTransforms) {
ModelMeshPartPayload::updateClusterBuffer(clusterTransforms);
if (cauterizedClusterMatrices.size() > 1) {
if (cauterizedClusterTransforms.size() > 1) {
if (!_cauterizedClusterBuffer) {
_cauterizedClusterBuffer = std::make_shared<gpu::Buffer>(cauterizedClusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) cauterizedClusterMatrices.data());
_cauterizedClusterBuffer = std::make_shared<gpu::Buffer>(cauterizedClusterTransforms.size() * sizeof(TransformType),
(const gpu::Byte*) cauterizedClusterTransforms.data());
} else {
_cauterizedClusterBuffer->setSubData(0, cauterizedClusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) cauterizedClusterMatrices.data());
_cauterizedClusterBuffer->setSubData(0, cauterizedClusterTransforms.size() * sizeof(TransformType),
(const gpu::Byte*) cauterizedClusterTransforms.data());
}
}
}

View file

@ -15,7 +15,13 @@ class CauterizedMeshPartPayload : public ModelMeshPartPayload {
public:
CauterizedMeshPartPayload(ModelPointer model, int meshIndex, int partIndex, int shapeIndex, const Transform& transform, const Transform& offsetTransform);
void updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices, const std::vector<glm::mat4>& cauterizedClusterMatrices);
#if defined(SKIN_DQ)
using TransformType = Model::TransformDualQuaternion;
#else
using TransformType = glm::mat4;
#endif
void updateClusterBuffer(const std::vector<TransformType>& clusterTransforms, const std::vector<TransformType>& cauterizedClusterTransforms);
void updateTransformForCauterizedMesh(const Transform& renderTransform);

View file

@ -9,13 +9,13 @@
#include "CauterizedModel.h"
#include <PerfStat.h>
#include <DualQuaternion.h>
#include "AbstractViewStateInterface.h"
#include "MeshPartPayload.h"
#include "CauterizedMeshPartPayload.h"
#include "RenderUtilsLogging.h"
CauterizedModel::CauterizedModel(QObject* parent) :
Model(parent) {
}
@ -35,7 +35,7 @@ bool CauterizedModel::updateGeometry() {
const FBXGeometry& fbxGeometry = getFBXGeometry();
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
Model::MeshState state;
state.clusterMatrices.resize(mesh.clusters.size());
state.clusterTransforms.resize(mesh.clusters.size());
_cauterizeMeshStates.append(state);
}
}
@ -109,30 +109,52 @@ void CauterizedModel::updateClusterMatrices() {
const FBXMesh& mesh = geometry.meshes.at(i);
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
#if defined(SKIN_DQ)
auto jointPose = _rig.getJointPose(cluster.jointIndex);
Transform jointTransform(jointPose.rot(), jointPose.scale(), jointPose.trans());
Transform clusterTransform;
Transform::mult(clusterTransform, jointTransform, cluster.inverseBindTransform);
state.clusterTransforms[j] = Model::TransformDualQuaternion(clusterTransform);
#else
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
}
// as an optimization, don't build cautrizedClusterMatrices if the boneSet is empty.
if (!_cauterizeBoneSet.empty()) {
#if defined(SKIN_DQ)
AnimPose cauterizePose = _rig.getJointPose(geometry.neckJointIndex);
cauterizePose.scale() = glm::vec3(0.0001f, 0.0001f, 0.0001f);
#else
static const glm::mat4 zeroScale(
glm::vec4(0.0f, 0.0f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.0f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.0f, 0.0f, 0.0f),
glm::vec4(0.0001f, 0.0f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.0001f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.0f, 0.0001f, 0.0f),
glm::vec4(0.0f, 0.0f, 0.0f, 1.0f));
auto cauterizeMatrix = _rig.getJointTransform(geometry.neckJointIndex) * zeroScale;
#endif
for (int i = 0; i < _cauterizeMeshStates.size(); i++) {
Model::MeshState& state = _cauterizeMeshStates[i];
const FBXMesh& mesh = geometry.meshes.at(i);
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
if (_cauterizeBoneSet.find(cluster.jointIndex) != _cauterizeBoneSet.end()) {
jointMatrix = cauterizeMatrix;
if (_cauterizeBoneSet.find(cluster.jointIndex) == _cauterizeBoneSet.end()) {
// not cauterized so just copy the value from the non-cauterized version.
state.clusterTransforms[j] = _meshStates[i].clusterTransforms[j];
} else {
#if defined(SKIN_DQ)
Transform jointTransform(cauterizePose.rot(), cauterizePose.scale(), cauterizePose.trans());
Transform clusterTransform;
Transform::mult(clusterTransform, jointTransform, cluster.inverseBindTransform);
state.clusterTransforms[j] = Model::TransformDualQuaternion(clusterTransform);
#else
glm_mat4u_mul(cauterizeMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
}
}
}
@ -189,24 +211,38 @@ void CauterizedModel::updateRenderItems() {
auto itemID = self->_modelMeshRenderItemIDs[i];
auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex;
auto clusterMatrices(self->getMeshState(meshIndex).clusterMatrices);
auto clusterMatricesCauterized(self->getCauterizeMeshState(meshIndex).clusterMatrices);
auto clusterTransforms(self->getMeshState(meshIndex).clusterTransforms);
auto clusterTransformsCauterized(self->getCauterizeMeshState(meshIndex).clusterTransforms);
bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex);
transaction.updateItem<CauterizedMeshPartPayload>(itemID, [modelTransform, clusterMatrices, clusterMatricesCauterized, invalidatePayloadShapeKey,
transaction.updateItem<CauterizedMeshPartPayload>(itemID, [modelTransform, clusterTransforms, clusterTransformsCauterized, invalidatePayloadShapeKey,
isWireframe, isVisible, isLayeredInFront, isLayeredInHUD, enableCauterization](CauterizedMeshPartPayload& data) {
data.updateClusterBuffer(clusterMatrices, clusterMatricesCauterized);
data.updateClusterBuffer(clusterTransforms, clusterTransformsCauterized);
Transform renderTransform = modelTransform;
if (clusterMatrices.size() == 1) {
renderTransform = modelTransform.worldTransform(Transform(clusterMatrices[0]));
if (clusterTransforms.size() == 1) {
#if defined(SKIN_DQ)
Transform transform(clusterTransforms[0].getRotation(),
clusterTransforms[0].getScale(),
clusterTransforms[0].getTranslation());
renderTransform = modelTransform.worldTransform(transform);
#else
renderTransform = modelTransform.worldTransform(Transform(clusterTransforms[0]));
#endif
}
data.updateTransformForSkinnedMesh(renderTransform, modelTransform);
renderTransform = modelTransform;
if (clusterMatricesCauterized.size() == 1) {
renderTransform = modelTransform.worldTransform(Transform(clusterMatricesCauterized[0]));
if (clusterTransformsCauterized.size() == 1) {
#if defined(SKIN_DQ)
Transform transform(clusterTransforms[0].getRotation(),
clusterTransforms[0].getScale(),
clusterTransforms[0].getTranslation());
renderTransform = modelTransform.worldTransform(Transform(transform));
#else
renderTransform = modelTransform.worldTransform(Transform(clusterTransformsCauterized[0]));
#endif
}
data.updateTransformForCauterizedMesh(renderTransform);

View file

@ -12,6 +12,7 @@
#include "MeshPartPayload.h"
#include <PerfStat.h>
#include <DualQuaternion.h>
#include "DeferredLightingEffect.h"
@ -325,12 +326,20 @@ ModelMeshPartPayload::ModelMeshPartPayload(ModelPointer model, int meshIndex, in
const Model::MeshState& state = model->getMeshState(_meshIndex);
updateMeshPart(modelMesh, partIndex);
computeAdjustedLocalBound(state.clusterMatrices);
computeAdjustedLocalBound(state.clusterTransforms);
updateTransform(transform, offsetTransform);
Transform renderTransform = transform;
if (state.clusterMatrices.size() == 1) {
renderTransform = transform.worldTransform(Transform(state.clusterMatrices[0]));
if (state.clusterTransforms.size() == 1) {
#if defined(SKIN_DQ)
Transform transform(state.clusterTransforms[0].getRotation(),
state.clusterTransforms[0].getScale(),
state.clusterTransforms[0].getTranslation());
renderTransform = transform.worldTransform(Transform(transform));
#else
renderTransform = transform.worldTransform(Transform(state.clusterTransforms[0]));
#endif
}
updateTransformForSkinnedMesh(renderTransform, transform);
@ -360,17 +369,16 @@ void ModelMeshPartPayload::notifyLocationChanged() {
}
void ModelMeshPartPayload::updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices) {
void ModelMeshPartPayload::updateClusterBuffer(const std::vector<TransformType>& clusterTransforms) {
// Once computed the cluster matrices, update the buffer(s)
if (clusterMatrices.size() > 1) {
if (clusterTransforms.size() > 1) {
if (!_clusterBuffer) {
_clusterBuffer = std::make_shared<gpu::Buffer>(clusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) clusterMatrices.data());
_clusterBuffer = std::make_shared<gpu::Buffer>(clusterTransforms.size() * sizeof(TransformType),
(const gpu::Byte*) clusterTransforms.data());
}
else {
_clusterBuffer->setSubData(0, clusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) clusterMatrices.data());
_clusterBuffer->setSubData(0, clusterTransforms.size() * sizeof(TransformType),
(const gpu::Byte*) clusterTransforms.data());
}
}
}
@ -530,13 +538,29 @@ void ModelMeshPartPayload::render(RenderArgs* args) {
args->_details._trianglesRendered += _drawPart._numIndices / INDICES_PER_TRIANGLE;
}
void ModelMeshPartPayload::computeAdjustedLocalBound(const std::vector<glm::mat4>& clusterMatrices) {
void ModelMeshPartPayload::computeAdjustedLocalBound(const std::vector<TransformType>& clusterTransforms) {
_adjustedLocalBound = _localBound;
if (clusterMatrices.size() > 0) {
_adjustedLocalBound.transform(clusterMatrices[0]);
for (int i = 1; i < (int)clusterMatrices.size(); ++i) {
if (clusterTransforms.size() > 0) {
#if defined(SKIN_DQ)
Transform rootTransform(clusterTransforms[0].getRotation(),
clusterTransforms[0].getScale(),
clusterTransforms[0].getTranslation());
_adjustedLocalBound.transform(rootTransform);
#else
_adjustedLocalBound.transform(clusterTransforms[0]);
#endif
for (int i = 1; i < (int)clusterTransforms.size(); ++i) {
AABox clusterBound = _localBound;
clusterBound.transform(clusterMatrices[i]);
#if defined(SKIN_DQ)
Transform transform(clusterTransforms[i].getRotation(),
clusterTransforms[i].getScale(),
clusterTransforms[i].getTranslation());
clusterBound.transform(transform);
#else
clusterBound.transform(clusterTransforms[i]);
#endif
_adjustedLocalBound += clusterBound;
}
}

View file

@ -87,7 +87,14 @@ public:
typedef Payload::DataPointer Pointer;
void notifyLocationChanged() override;
void updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices);
#if defined(SKIN_DQ)
using TransformType = Model::TransformDualQuaternion;
#else
using TransformType = glm::mat4;
#endif
void updateClusterBuffer(const std::vector<TransformType>& clusterTransforms);
void updateTransformForSkinnedMesh(const Transform& renderTransform, const Transform& boundTransform);
// Render Item interface
@ -104,7 +111,7 @@ public:
void bindMesh(gpu::Batch& batch) override;
void bindTransform(gpu::Batch& batch, const render::ShapePipeline::LocationsPointer locations, RenderArgs::RenderMode renderMode) const override;
void computeAdjustedLocalBound(const std::vector<glm::mat4>& clusterMatrices);
void computeAdjustedLocalBound(const std::vector<TransformType>& clusterTransforms);
gpu::BufferPointer _clusterBuffer;

View file

@ -27,6 +27,7 @@
#include <TBBHelpers.h>
#include <model-networking/SimpleMeshProxy.h>
#include <DualQuaternion.h>
#include <glm/gtc/packing.hpp>
@ -269,16 +270,24 @@ void Model::updateRenderItems() {
auto itemID = self->_modelMeshRenderItemIDs[i];
auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex;
auto clusterMatrices(self->getMeshState(meshIndex).clusterMatrices);
auto clusterTransforms(self->getMeshState(meshIndex).clusterTransforms);
bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex);
transaction.updateItem<ModelMeshPartPayload>(itemID, [modelTransform, clusterMatrices, invalidatePayloadShapeKey,
transaction.updateItem<ModelMeshPartPayload>(itemID, [modelTransform, clusterTransforms, invalidatePayloadShapeKey,
isWireframe, isVisible, isLayeredInFront, isLayeredInHUD](ModelMeshPartPayload& data) {
data.updateClusterBuffer(clusterMatrices);
data.updateClusterBuffer(clusterTransforms);
Transform renderTransform = modelTransform;
if (clusterMatrices.size() == 1) {
renderTransform = modelTransform.worldTransform(Transform(clusterMatrices[0]));
if (clusterTransforms.size() == 1) {
#if defined(SKIN_DQ)
Transform transform(clusterTransforms[0].getRotation(),
clusterTransforms[0].getScale(),
clusterTransforms[0].getTranslation());
renderTransform = modelTransform.worldTransform(Transform(transform));
#else
renderTransform = modelTransform.worldTransform(Transform(clusterTransforms[0]));
#endif
}
data.updateTransformForSkinnedMesh(renderTransform, modelTransform);
@ -359,7 +368,7 @@ bool Model::updateGeometry() {
const FBXGeometry& fbxGeometry = getFBXGeometry();
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
MeshState state;
state.clusterMatrices.resize(mesh.clusters.size());
state.clusterTransforms.resize(mesh.clusters.size());
_meshStates.push_back(state);
// Note: we add empty buffers for meshes that lack blendshapes so we can access the buffers by index
@ -1211,7 +1220,7 @@ void Model::updateRig(float deltaTime, glm::mat4 parentTransform) {
void Model::computeMeshPartLocalBounds() {
for (auto& part : _modelMeshRenderItems) {
const Model::MeshState& state = _meshStates.at(part->_meshIndex);
part->computeAdjustedLocalBound(state.clusterMatrices);
part->computeAdjustedLocalBound(state.clusterTransforms);
}
}
@ -1222,6 +1231,7 @@ void Model::updateClusterMatrices() {
if (!_needsUpdateClusterMatrices || !isLoaded()) {
return;
}
_needsUpdateClusterMatrices = false;
const FBXGeometry& geometry = getFBXGeometry();
for (int i = 0; i < (int) _meshStates.size(); i++) {
@ -1229,8 +1239,16 @@ void Model::updateClusterMatrices() {
const FBXMesh& mesh = geometry.meshes.at(i);
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
#if defined(SKIN_DQ)
auto jointPose = _rig.getJointPose(cluster.jointIndex);
Transform jointTransform(jointPose.rot(), jointPose.scale(), jointPose.trans());
Transform clusterTransform;
Transform::mult(clusterTransform, jointTransform, cluster.inverseBindTransform);
state.clusterTransforms[j] = Model::TransformDualQuaternion(clusterTransform);
#else
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
}

View file

@ -30,11 +30,15 @@
#include <Transform.h>
#include <SpatiallyNestable.h>
#include <TriangleSet.h>
#include <DualQuaternion.h>
#include "GeometryCache.h"
#include "TextureCache.h"
#include "Rig.h"
// Use dual quaternion skinning!
// Must match define in Skinning.slh
#define SKIN_DQ
class AbstractViewStateInterface;
class QScriptEngine;
@ -246,9 +250,46 @@ public:
int getRenderInfoDrawCalls() const { return _renderInfoDrawCalls; }
bool getRenderInfoHasTransparent() const { return _renderInfoHasTransparent; }
#if defined(SKIN_DQ)
class TransformDualQuaternion {
public:
TransformDualQuaternion() {}
TransformDualQuaternion(const glm::mat4& m) {
AnimPose p(m);
_scale.x = p.scale().x;
_scale.y = p.scale().y;
_scale.z = p.scale().z;
_dq = DualQuaternion(p.rot(), p.trans());
}
TransformDualQuaternion(const glm::vec3& scale, const glm::quat& rot, const glm::vec3& trans) {
_scale.x = scale.x;
_scale.y = scale.y;
_scale.z = scale.z;
_dq = DualQuaternion(rot, trans);
}
TransformDualQuaternion(const Transform& transform) {
_scale = glm::vec4(transform.getScale(), 0.0f);
_dq = DualQuaternion(transform.getRotation(), transform.getTranslation());
}
glm::vec3 getScale() const { return glm::vec3(_scale); }
glm::quat getRotation() const { return _dq.getRotation(); }
glm::vec3 getTranslation() const { return _dq.getTranslation(); }
glm::mat4 getMatrix() const { return createMatFromScaleQuatAndPos(getScale(), getRotation(), getTranslation()); };
protected:
glm::vec4 _scale { 1.0f, 1.0f, 1.0f, 0.0f };
DualQuaternion _dq;
glm::vec4 _padding;
};
#endif
class MeshState {
public:
std::vector<glm::mat4> clusterMatrices;
#if defined(SKIN_DQ)
std::vector<TransformDualQuaternion> clusterTransforms;
#else
std::vector<glm::mat4> clusterTransforms;
#endif
};
const MeshState& getMeshState(int index) { return _meshStates.at(index); }

View file

@ -11,6 +11,10 @@
<@if not SKINNING_SLH@>
<@def SKINNING_SLH@>
// Use dual quaternion skinning
// Must match #define SKIN_DQ in Model.h
<@def SKIN_DQ@>
const int MAX_CLUSTERS = 128;
const int INDICES_PER_VERTEX = 4;
@ -18,6 +22,156 @@ layout(std140) uniform skinClusterBuffer {
mat4 clusterMatrices[MAX_CLUSTERS];
};
<@if SKIN_DQ@>
mat4 dualQuatToMat4(vec4 real, vec4 dual) {
float twoRealXSq = 2.0 * real.x * real.x;
float twoRealYSq = 2.0 * real.y * real.y;
float twoRealZSq = 2.0 * real.z * real.z;
float twoRealXY = 2.0 * real.x * real.y;
float twoRealXZ = 2.0 * real.x * real.z;
float twoRealXW = 2.0 * real.x * real.w;
float twoRealZW = 2.0 * real.z * real.w;
float twoRealYZ = 2.0 * real.y * real.z;
float twoRealYW = 2.0 * real.y * real.w;
vec4 col0 = vec4(1.0 - twoRealYSq - twoRealZSq,
twoRealXY + twoRealZW,
twoRealXZ - twoRealYW,
0.0);
vec4 col1 = vec4(twoRealXY - twoRealZW,
1 - twoRealXSq - twoRealZSq,
twoRealYZ + twoRealXW,
0.0);
vec4 col2 = vec4(twoRealXZ + twoRealYW,
twoRealYZ - twoRealXW,
1 - twoRealXSq - twoRealYSq,
0.0);
vec4 col3 = vec4(2.0 * (-dual.w * real.x + dual.x * real.w - dual.y * real.z + dual.z * real.y),
2.0 * (-dual.w * real.y + dual.x * real.z + dual.y * real.w - dual.z * real.x),
2.0 * (-dual.w * real.z - dual.x * real.y + dual.y * real.x + dual.z * real.w),
1.0);
return mat4(col0, col1, col2, col3);
}
// dual quaternion linear blending
void skinPosition(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, out vec4 skinnedPosition) {
// linearly blend scale and dual quaternion components
vec3 sAccum = vec3(0.0, 0.0, 0.0);
vec4 rAccum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 dAccum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 polarityReference = clusterMatrices[skinClusterIndex[0]][1];
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
float clusterWeight = skinClusterWeight[i];
vec3 scale = vec3(clusterMatrix[0]);
vec4 real = clusterMatrix[1];
vec4 dual = clusterMatrix[2];
// to ensure that we rotate along the shortest arc, reverse dual quaternions with negative polarity.
float dqClusterWeight = clusterWeight;
if (dot(real, polarityReference) < 0) {
dqClusterWeight = -clusterWeight;
}
sAccum += scale * clusterWeight;
rAccum += real * dqClusterWeight;
dAccum += dual * dqClusterWeight;
}
// normalize dual quaternion
float norm = length(rAccum);
rAccum /= norm;
dAccum /= norm;
// conversion from dual quaternion to 4x4 matrix.
mat4 m = dualQuatToMat4(rAccum, dAccum);
skinnedPosition = m * (vec4(sAccum, 1) * inPosition);
}
void skinPositionNormal(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, vec3 inNormal,
out vec4 skinnedPosition, out vec3 skinnedNormal) {
// linearly blend scale and dual quaternion components
vec3 sAccum = vec3(0.0, 0.0, 0.0);
vec4 rAccum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 dAccum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 polarityReference = clusterMatrices[skinClusterIndex[0]][1];
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
float clusterWeight = skinClusterWeight[i];
vec3 scale = vec3(clusterMatrix[0]);
vec4 real = clusterMatrix[1];
vec4 dual = clusterMatrix[2];
// to ensure that we rotate along the shortest arc, reverse dual quaternions with negative polarity.
float dqClusterWeight = clusterWeight;
if (dot(real, polarityReference) < 0) {
dqClusterWeight = -clusterWeight;
}
sAccum += scale * clusterWeight;
rAccum += real * dqClusterWeight;
dAccum += dual * dqClusterWeight;
}
// normalize dual quaternion
float norm = length(rAccum);
rAccum /= norm;
dAccum /= norm;
// conversion from dual quaternion to 4x4 matrix.
mat4 m = dualQuatToMat4(rAccum, dAccum);
skinnedPosition = m * (vec4(sAccum, 1) * inPosition);
skinnedNormal = vec3(m * vec4(inNormal, 0));
}
void skinPositionNormalTangent(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, vec3 inNormal, vec3 inTangent,
out vec4 skinnedPosition, out vec3 skinnedNormal, out vec3 skinnedTangent) {
// linearly blend scale and dual quaternion components
vec3 sAccum = vec3(0.0, 0.0, 0.0);
vec4 rAccum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 dAccum = vec4(0.0, 0.0, 0.0, 0.0);
vec4 polarityReference = clusterMatrices[skinClusterIndex[0]][1];
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
float clusterWeight = skinClusterWeight[i];
vec3 scale = vec3(clusterMatrix[0]);
vec4 real = clusterMatrix[1];
vec4 dual = clusterMatrix[2];
// to ensure that we rotate along the shortest arc, reverse dual quaternions with negative polarity.
float dqClusterWeight = clusterWeight;
if (dot(real, polarityReference) < 0) {
dqClusterWeight = -clusterWeight;
}
sAccum += scale * clusterWeight;
rAccum += real * dqClusterWeight;
dAccum += dual * dqClusterWeight;
}
// normalize dual quaternion
float norm = length(rAccum);
rAccum /= norm;
dAccum /= norm;
// conversion from dual quaternion to 4x4 matrix.
mat4 m = dualQuatToMat4(rAccum, dAccum);
skinnedPosition = m * (vec4(sAccum, 1) * inPosition);
skinnedNormal = vec3(m * vec4(inNormal, 0));
skinnedTangent = vec3(m * vec4(inTangent, 0));
}
<@else@> // SKIN_DQ
void skinPosition(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, out vec4 skinnedPosition) {
vec4 newPosition = vec4(0.0, 0.0, 0.0, 0.0);
@ -65,5 +219,6 @@ void skinPositionNormalTangent(ivec4 skinClusterIndex, vec4 skinClusterWeight, v
skinnedTangent = newTangent.xyz;
}
<@endif@> // if SKIN_DQ
<@endif@>
<@endif@> // if not SKINNING_SLH

View file

@ -52,13 +52,27 @@ void SoftAttachmentModel::updateClusterMatrices() {
// TODO: cache these look-ups as an optimization
int jointIndexOverride = getJointIndexOverride(cluster.jointIndex);
#if defined(SKIN_DQ)
glm::mat4 jointMatrix;
if (jointIndexOverride >= 0 && jointIndexOverride < _rigOverride.getJointStateCount()) {
jointMatrix = _rigOverride.getJointTransform(jointIndexOverride);
} else {
jointMatrix = _rig.getJointTransform(cluster.jointIndex);
}
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
glm::mat4 m;
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, m);
state.clusterTransforms[j] = Model::TransformDualQuaternion(m);
#else
glm::mat4 jointMatrix;
if (jointIndexOverride >= 0 && jointIndexOverride < _rigOverride.getJointStateCount()) {
jointMatrix = _rigOverride.getJointTransform(jointIndexOverride);
} else {
jointMatrix = _rig.getJointTransform(cluster.jointIndex);
}
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
}

View file

@ -0,0 +1,92 @@
//
// DualQuaternion.cpp
//
// Created by Anthony J. Thibault on Dec 13th 2017.
// Copyright (c) 2017 High Fidelity, Inc. All rights reserved.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "DualQuaternion.h"
#include "GLMHelpers.h"
// delegating constructor
DualQuaternion::DualQuaternion() : _real(1.0f, 0.0f, 0.0f, 0.0), _dual(0.0f, 0.0f, 0.0f, 0.0f) {
}
DualQuaternion::DualQuaternion(const glm::mat4& m) : DualQuaternion(glmExtractRotation(m), extractTranslation(m)) {
}
DualQuaternion::DualQuaternion(const glm::quat& real, const glm::quat& dual) : _real(real), _dual(dual) {
}
DualQuaternion::DualQuaternion(const glm::vec4& real, const glm::vec4& dual) :
_real(real.w, real.x, real.y, real.z),
_dual(dual.w, dual.x, dual.y, dual.z) {
}
DualQuaternion::DualQuaternion(const glm::quat& rotation, const glm::vec3& translation) {
_real = rotation;
_dual = glm::quat(0.0f, 0.5f * translation.x, 0.5f * translation.y, 0.5f * translation.z) * rotation;
}
DualQuaternion DualQuaternion::operator*(const DualQuaternion& rhs) const {
return DualQuaternion(_real * rhs._real, _real * rhs._dual + _dual * rhs._real);
}
DualQuaternion DualQuaternion::operator*(float scalar) const {
return DualQuaternion(_real * scalar, _dual * scalar);
}
DualQuaternion DualQuaternion::operator+(const DualQuaternion& rhs) const {
return DualQuaternion(_real + rhs._real, _dual + rhs._dual);
}
glm::vec3 DualQuaternion::xformPoint(const glm::vec3& rhs) const {
DualQuaternion v(glm::quat(), glm::quat(0.0f, rhs.x, rhs.y, rhs.z));
DualQuaternion dualConj(glm::conjugate(_real), -glm::conjugate(_dual));
DualQuaternion result = *this * v * dualConj;
return vec3(result._dual.x, result._dual.y, result._dual.z);
}
glm::quat DualQuaternion::getRotation() const {
return _real;
}
glm::vec3 DualQuaternion::getTranslation() const {
glm::quat result = 2.0f * (_dual * glm::inverse(_real));
return glm::vec3(result.x, result.y, result.z);
}
glm::vec3 DualQuaternion::xformVector(const glm::vec3& rhs) const {
return _real * rhs;
}
DualQuaternion DualQuaternion::inverse() const {
glm::quat invReal = glm::inverse(_real);
return DualQuaternion(invReal, - invReal * _dual * invReal);
}
DualQuaternion DualQuaternion::conjugate() const {
return DualQuaternion(glm::conjugate(_real), glm::conjugate(_dual));
}
float DualQuaternion::length() const {
float dot = this->dot(*this);
return sqrtf(dot);
}
DualQuaternion DualQuaternion::normalize() const {
float invLen = 1.0f / length();
return *this * invLen;
}
float DualQuaternion::dot(const DualQuaternion& rhs) const {
DualQuaternion result = *this * conjugate();
return result._real.w;
}
DualQuaternion DualQuaternion::operator-() const {
return DualQuaternion(-_real, -_dual);
}

View file

@ -0,0 +1,62 @@
//
// DualQuaternion.h
//
// Created by Anthony J. Thibault on Dec 13th 2017.
// Copyright (c) 2017 High Fidelity, Inc. All rights reserved.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_DualQuaternion
#define hifi_DualQuaternion
#include <QtGlobal>
#include <QDebug>
#include <glm/glm.hpp>
#include <glm/gtc/quaternion.hpp>
class DualQuaternion {
public:
DualQuaternion();
explicit DualQuaternion(const glm::mat4& m);
DualQuaternion(const glm::quat& real, const glm::quat& imag);
DualQuaternion(const glm::quat& rotation, const glm::vec3& translation);
DualQuaternion(const glm::vec4& real, const glm::vec4& imag);
DualQuaternion operator*(const DualQuaternion& rhs) const;
DualQuaternion operator*(float scalar) const;
DualQuaternion operator+(const DualQuaternion& rhs) const;
const glm::quat& real() const { return _real; }
glm::quat& real() { return _real; }
const glm::quat& dual() const { return _dual; }
glm::quat& dual() { return _dual; }
glm::quat getRotation() const;
glm::vec3 getTranslation() const;
glm::vec3 xformPoint(const glm::vec3& rhs) const;
glm::vec3 xformVector(const glm::vec3& rhs) const;
DualQuaternion inverse() const;
DualQuaternion conjugate() const;
float length() const;
DualQuaternion normalize() const;
float dot(const DualQuaternion& rhs) const;
DualQuaternion operator-() const;
protected:
friend QDebug operator<<(QDebug debug, const DualQuaternion& pose);
glm::quat _real;
glm::quat _dual;
};
inline QDebug operator<<(QDebug debug, const DualQuaternion& dq) {
debug << "AnimPose, real = (" << dq._real.x << dq._real.y << dq._real.z << dq._real.w << "), dual = (" << dq._dual.x << dq._dual.y << dq._dual.z << dq._dual.w << ")";
return debug;
}
#endif

View file

@ -58,7 +58,7 @@ public:
_rotation(rotation),
_scale(scale),
_translation(translation),
_flags(FLAG_CACHE_INVALID_BITSET) // invalid cache
_flags(0xf) // FLAG_TRANSLATION | FLAG_ROTATION | FLAG_SCALING | FLAG_NON_UNIFORM
{
if (!isValidScale(_scale)) {
_scale = Vec3(1.0f);

View file

@ -0,0 +1,115 @@
//
// DualQuaternionTests.cpp
// tests/shared/src
//
// Copyright 2017 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <iostream>
#include "DualQuaternionTests.h"
#include <DualQuaternion.h>
#include <GLMHelpers.h>
#include <NumericalConstants.h>
#include <StreamUtils.h>
#include <../GLMTestUtils.h>
#include <../QTestExtensions.h>
QTEST_MAIN(DualQuaternionTests)
static void quatComp(const glm::quat& q1, const glm::quat& q2) {
QCOMPARE_WITH_ABS_ERROR(q1.x, q2.x, EPSILON);
QCOMPARE_WITH_ABS_ERROR(q1.y, q2.y, EPSILON);
QCOMPARE_WITH_ABS_ERROR(q1.z, q2.z, EPSILON);
QCOMPARE_WITH_ABS_ERROR(q1.w, q2.w, EPSILON);
}
void DualQuaternionTests::ctor() {
glm::quat real = angleAxis(PI / 2.0f, Vectors::UNIT_Y);
glm::quat dual(0.0f, 1.0f, 2.0f, 3.0f);
DualQuaternion dq(real, dual);
quatComp(real, dq.real());
quatComp(dual, dq.dual());
glm::quat rotation = angleAxis(PI / 3.0f, Vectors::UNIT_X);
glm::vec3 translation(1.0, 2.0f, 3.0f);
dq = DualQuaternion(rotation, translation);
quatComp(rotation, dq.getRotation());
QCOMPARE_WITH_ABS_ERROR(translation, dq.getTranslation(), EPSILON);
rotation = angleAxis(-2.0f * PI / 7.0f, Vectors::UNIT_Z);
translation = glm::vec3(-1.0, 12.0f, 2.0f);
glm::mat4 m = createMatFromQuatAndPos(rotation, translation);
dq = DualQuaternion(m);
quatComp(rotation, dq.getRotation());
QCOMPARE_WITH_ABS_ERROR(translation, dq.getTranslation(), EPSILON);
}
void DualQuaternionTests::mult() {
glm::quat rotation = angleAxis(PI / 3.0f, Vectors::UNIT_X);
glm::vec3 translation(1.0, 2.0f, 3.0f);
glm::mat4 m1 = createMatFromQuatAndPos(rotation, translation);
DualQuaternion dq1(m1);
rotation = angleAxis(-2.0f * PI / 7.0f, Vectors::UNIT_Z);
translation = glm::vec3(-1.0, 12.0f, 2.0f);
glm::mat4 m2 = createMatFromQuatAndPos(rotation, translation);
DualQuaternion dq2(m2);
DualQuaternion dq3 = dq1 * dq2;
glm::mat4 m3 = m1 * m2;
rotation = glmExtractRotation(m3);
translation = extractTranslation(m3);
quatComp(rotation, dq3.getRotation());
QCOMPARE_WITH_ABS_ERROR(translation, dq3.getTranslation(), EPSILON);
}
void DualQuaternionTests::xform() {
glm::quat rotation = angleAxis(PI / 3.0f, Vectors::UNIT_X);
glm::vec3 translation(1.0, 2.0f, 3.0f);
glm::mat4 m1 = createMatFromQuatAndPos(rotation, translation);
DualQuaternion dq1(m1);
rotation = angleAxis(-2.0f * PI / 7.0f, Vectors::UNIT_Z);
translation = glm::vec3(-1.0, 12.0f, 2.0f);
glm::mat4 m2 = createMatFromQuatAndPos(rotation, translation);
DualQuaternion dq2(m2);
DualQuaternion dq3 = dq1 * dq2;
glm::mat4 m3 = m1 * m2;
glm::vec3 p(1.0f, 2.0f, 3.0f);
glm::vec3 p1 = transformPoint(m3, p);
glm::vec3 p2 = dq3.xformPoint(p);
QCOMPARE_WITH_ABS_ERROR(p1, p2, 0.001f);
p1 = transformVectorFast(m3, p);
p2 = dq3.xformVector(p);
QCOMPARE_WITH_ABS_ERROR(p1, p2, 0.001f);
}
void DualQuaternionTests::trans() {
glm::vec3 t1 = glm::vec3();
DualQuaternion dq1(Quaternions::IDENTITY, t1);
glm::vec3 t2 = glm::vec3(1.0f, 2.0f, 3.0f);
DualQuaternion dq2(angleAxis(PI / 3.0f, Vectors::UNIT_X), t2);
glm::vec3 t3 = glm::vec3(3.0f, 2.0f, 1.0f);
DualQuaternion dq3(angleAxis(PI / 5.0f, Vectors::UNIT_Y), t3);
QCOMPARE_WITH_ABS_ERROR(t1, dq1.getTranslation(), 0.001f);
QCOMPARE_WITH_ABS_ERROR(t2, dq2.getTranslation(), 0.001f);
QCOMPARE_WITH_ABS_ERROR(t3, dq3.getTranslation(), 0.001f);
}

View file

@ -0,0 +1,25 @@
//
// DualQuaternionTests.h
// tests/shared/src
//
// Copyright 2017 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_DualQuaternionTests_h
#define hifi_DualQuaternionTests_h
#include <QtTest/QtTest>
class DualQuaternionTests : public QObject {
Q_OBJECT
private slots:
void ctor();
void mult();
void xform();
void trans();
};
#endif // hifi_DualQuaternionTests_h