overte-lubosz/scripts/system/libraries/utils.js
Anthony J. Thibault 43d4dba4c0 iterate over hotspots not entities.
This makes it possible to render multiple hotspots per entity.
Also, it will use the same logic to decide how to deal with overlapping entity
equip hotspots.
2016-06-29 13:53:07 -07:00

319 lines
8.5 KiB
JavaScript

//
// Created by Bradley Austin Davis on 2015/08/29
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
vec3toStr = function(v, digits) {
if (!digits) { digits = 3; }
return "{ " + v.x.toFixed(digits) + ", " + v.y.toFixed(digits) + ", " + v.z.toFixed(digits)+ " }";
}
quatToStr = function(q, digits) {
if (!digits) { digits = 3; }
return "{ " + q.w.toFixed(digits) + ", " + q.x.toFixed(digits) + ", " +
q.y.toFixed(digits) + ", " + q.z.toFixed(digits)+ " }";
}
vec3equal = function(v0, v1) {
return (v0.x == v1.x) && (v0.y == v1.y) && (v0.z == v1.z);
}
colorMix = function(colorA, colorB, mix) {
var result = {};
for (var key in colorA) {
result[key] = (colorA[key] * (1 - mix)) + (colorB[key] * mix);
}
return result;
}
scaleLine = function (start, end, scale) {
var v = Vec3.subtract(end, start);
var length = Vec3.length(v);
v = Vec3.multiply(scale, v);
return Vec3.sum(start, v);
}
findAction = function(name) {
return Controller.findAction(name);
}
addLine = function(origin, vector, color) {
if (!color) {
color = COLORS.WHITE
}
return Entities.addEntity(mergeObjects(LINE_PROTOTYPE, {
position: origin,
linePoints: [
ZERO_VECTOR,
vector,
],
color: color
}));
}
// FIXME fetch from a subkey of user data to support non-destructive modifications
setEntityUserData = function(id, data) {
var json = JSON.stringify(data)
Entities.editEntity(id, { userData: json });
}
// FIXME do non-destructive modification of the existing user data
getEntityUserData = function(id) {
var results = null;
var properties = Entities.getEntityProperties(id, "userData");
if (properties.userData) {
try {
results = JSON.parse(properties.userData);
} catch(err) {
logDebug(err);
logDebug(properties.userData);
}
}
return results ? results : {};
}
// Non-destructively modify the user data of an entity.
setEntityCustomData = function(customKey, id, data) {
var userData = getEntityUserData(id);
if (data == null) {
delete userData[customKey];
} else {
userData[customKey] = data;
}
setEntityUserData(id, userData);
}
getEntityCustomData = function(customKey, id, defaultValue) {
var userData = getEntityUserData(id);
if (undefined != userData[customKey]) {
return userData[customKey];
} else {
return defaultValue;
}
}
mergeObjects = function(proto, custom) {
var result = {};
for (var attrname in proto) {
result[attrname] = proto[attrname];
}
for (var attrname in custom) {
result[attrname] = custom[attrname];
}
return result;
}
LOG_WARN = 1;
logWarn = function(str) {
if (LOG_WARN) {
print(str);
}
}
LOG_ERROR = 1;
logError = function(str) {
if (LOG_ERROR) {
print(str);
}
}
LOG_INFO = 1;
logInfo = function(str) {
if (LOG_INFO) {
print(str);
}
}
LOG_DEBUG = 0;
logDebug = function(str) {
if (LOG_DEBUG) {
print(str);
}
}
LOG_TRACE = 0;
logTrace = function(str) {
if (LOG_TRACE) {
print(str);
}
}
// Computes the penetration between a point and a sphere (centered at the origin)
// if point is inside sphere: returns true and stores the result in 'penetration'
// (the vector that would move the point outside the sphere)
// otherwise returns false
findSphereHit = function(point, sphereRadius) {
var EPSILON = 0.000001; //smallish positive number - used as margin of error for some computations
var vectorLength = Vec3.length(point);
if (vectorLength < EPSILON) {
return true;
}
var distance = vectorLength - sphereRadius;
if (distance < 0.0) {
return true;
}
return false;
}
findSpherePointHit = function(sphereCenter, sphereRadius, point) {
return findSphereHit(Vec3.subtract(point,sphereCenter), sphereRadius);
}
findSphereSphereHit = function(firstCenter, firstRadius, secondCenter, secondRadius) {
return findSpherePointHit(firstCenter, firstRadius + secondRadius, secondCenter);
}
// Given a vec3 v, return a vec3 that is the same vector relative to the avatars
// DEFAULT eye position, rotated into the avatars reference frame.
getEyeRelativePosition = function(v) {
return Vec3.sum(MyAvatar.getDefaultEyePosition(), Vec3.multiplyQbyV(MyAvatar.orientation, v));
}
getAvatarRelativeRotation = function(q) {
return Quat.multiply(MyAvatar.orientation, q);
}
pointInExtents = function(point, minPoint, maxPoint) {
return (point.x >= minPoint.x && point.x <= maxPoint.x) &&
(point.y >= minPoint.y && point.y <= maxPoint.y) &&
(point.z >= minPoint.z && point.z <= maxPoint.z);
}
/**
* Converts an HSL color value to RGB. Conversion formula
* adapted from http://en.wikipedia.org/wiki/HSL_color_space.
* Assumes h, s, and l are contained in the set [0, 1] and
* returns r, g, and b in the set [0, 255].
*
* @param Number h The hue
* @param Number s The saturation
* @param Number l The lightness
* @return Array The RGB representation
*/
hslToRgb = function(hsl) {
var r, g, b;
if (hsl.s == 0) {
r = g = b = hsl.l; // achromatic
} else {
var hue2rgb = function hue2rgb(p, q, t) {
if (t < 0) t += 1;
if (t > 1) t -= 1;
if (t < 1 / 6) return p + (q - p) * 6 * t;
if (t < 1 / 2) return q;
if (t < 2 / 3) return p + (q - p) * (2 / 3 - t) * 6;
return p;
}
var q = hsl.l < 0.5 ? hsl.l * (1 + hsl.s) : hsl.l + hsl.s - hsl.l * hsl.s;
var p = 2 * hsl.l - q;
r = hue2rgb(p, q, hsl.h + 1 / 3);
g = hue2rgb(p, q, hsl.h);
b = hue2rgb(p, q, hsl.h - 1 / 3);
}
return {
red: Math.round(r * 255),
green: Math.round(g * 255),
blue: Math.round(b * 255)
};
}
map = function(value, min1, max1, min2, max2) {
return min2 + (max2 - min2) * ((value - min1) / (max1 - min1));
}
orientationOf = function(vector) {
var Y_AXIS = {
x: 0,
y: 1,
z: 0
};
var X_AXIS = {
x: 1,
y: 0,
z: 0
};
var theta = 0.0;
var RAD_TO_DEG = 180.0 / Math.PI;
var direction, yaw, pitch;
direction = Vec3.normalize(vector);
yaw = Quat.angleAxis(Math.atan2(direction.x, direction.z) * RAD_TO_DEG, Y_AXIS);
pitch = Quat.angleAxis(Math.asin(-direction.y) * RAD_TO_DEG, X_AXIS);
return Quat.multiply(yaw, pitch);
}
randFloat = function(low, high) {
return low + Math.random() * (high - low);
}
randInt = function(low, high) {
return Math.floor(randFloat(low, high));
}
randomColor = function() {
return {
red: randInt(0, 255),
green: randInt(0, 255),
blue: randInt(0, 255)
}
}
hexToRgb = function(hex) {
var result = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(hex);
return result ? {
red: parseInt(result[1], 16),
green: parseInt(result[2], 16),
blue: parseInt(result[3], 16)
} : null;
}
calculateHandSizeRatio = function() {
// Get the ratio of the current avatar's hand to Owen's hand
var standardCenterHandPoint = 0.11288;
var jointNames = MyAvatar.getJointNames();
//get distance from handJoint up to leftHandIndex3 as a proxy for center of hand
var wristToFingertipDistance = 0;;
for (var i = 0; i < jointNames.length; i++) {
var jointName = jointNames[i];
print(jointName)
if (jointName.indexOf("LeftHandIndex") !== -1) {
// translations are relative to parent joint, so simply add them together
// joints face down the y-axis
var translation = MyAvatar.getDefaultJointTranslation(i).y;
wristToFingertipDistance += translation;
}
}
// Right now units are in cm, so convert to meters
wristToFingertipDistance /= 100;
var centerHandPoint = wristToFingertipDistance/2;
// Compare against standard hand (Owen)
var handSizeRatio = centerHandPoint/standardCenterHandPoint;
return handSizeRatio;
}
clamp = function(val, min, max){
return Math.max(min, Math.min(max, val))
}
// flattens an array of arrays into a single array
// example: flatten([[1], [3, 4], []) => [1, 3, 4]
// NOTE: only does one level of flattening, it is not recursive.
flatten = function(array) {
return [].concat.apply([], array);
}