replace missing PortAudio with Qt audio

This commit is contained in:
Stephen Birarda 2013-12-04 12:54:33 -08:00
parent 40a1517108
commit e339155328
4 changed files with 274 additions and 643 deletions

View file

@ -133,9 +133,7 @@ Application::Application(int& argc, char** argv, timeval &startup_time) :
_lookatIndicatorScale(1.0f),
_perfStatsOn(false),
_chatEntryOn(false),
#ifndef _WIN32
_audio(&_audioScope, STARTUP_JITTER_SAMPLES),
#endif
_audio(STARTUP_JITTER_SAMPLES),
_stopNetworkReceiveThread(false),
_voxelProcessor(),
_voxelEditSender(this),
@ -162,6 +160,14 @@ Application::Application(int& argc, char** argv, timeval &startup_time) :
NodeList::createInstance(NODE_TYPE_AGENT, listenPort);
// put the audio processing on a separate thread
QThread* audioThread = new QThread(this);
_audio.moveToThread(audioThread);
connect(audioThread, SIGNAL(started()), &_audio, SLOT(start()));
audioThread->start();
NodeList::getInstance()->addHook(&_voxels);
NodeList::getInstance()->addHook(this);
NodeList::getInstance()->addDomainListener(this);
@ -245,8 +251,6 @@ Application::~Application() {
_sharedVoxelSystem.changeTree(new VoxelTree);
_audio.shutdown();
VoxelNode::removeDeleteHook(&_voxels); // we don't need to do this processing on shutdown
delete Menu::getInstance();
@ -648,9 +652,6 @@ void Application::keyPressEvent(QKeyEvent* event) {
case Qt::Key_Period:
Menu::getInstance()->handleViewFrustumOffsetKeyModifier(event->key());
break;
case Qt::Key_Semicolon:
_audio.ping();
break;
case Qt::Key_Apostrophe:
_audioScope.inputPaused = !_audioScope.inputPaused;
break;
@ -2425,7 +2426,6 @@ void Application::updateAudio(float deltaTime) {
#ifndef _WIN32
_audio.setLastAcceleration(_myAvatar.getThrust());
_audio.setLastVelocity(_myAvatar.getVelocity());
_audio.eventuallyAnalyzePing();
#endif
}

View file

@ -5,14 +5,17 @@
// Created by Stephen Birarda on 1/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef _WIN32
#include <cstring>
#include <iostream>
#include <pthread.h>
#include <sys/stat.h>
#ifdef __APPLE__
#include <CoreAudio/AudioHardware.h>
#endif
#include <QtMultimedia/QAudioInput>
#include <QtMultimedia/QAudioOutput>
#include <AngleUtil.h>
#include <NodeList.h>
#include <NodeTypes.h>
@ -27,291 +30,37 @@
#include "Menu.h"
#include "Util.h"
//#define SHOW_AUDIO_DEBUG
static const int PHASE_DELAY_AT_90 = 20;
static const float AMPLITUDE_RATIO_AT_90 = 0.5;
static const int MIN_FLANGE_EFFECT_THRESHOLD = 600;
static const int MAX_FLANGE_EFFECT_THRESHOLD = 1500;
static const float FLANGE_BASE_RATE = 4;
static const float MAX_FLANGE_SAMPLE_WEIGHT = 0.50;
static const float MIN_FLANGE_INTENSITY = 0.25;
static const float JITTER_BUFFER_LENGTH_MSECS = 12;
static const short JITTER_BUFFER_SAMPLES = JITTER_BUFFER_LENGTH_MSECS *
NUM_AUDIO_CHANNELS * (SAMPLE_RATE / 1000.0);
static const float AUDIO_CALLBACK_MSECS = (float)BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float)SAMPLE_RATE * 1000.0;
static const int NODE_LOOPBACK_MODIFIER = 307;
// Speex preprocessor and echo canceller adaption
static const int AEC_N_CHANNELS_MIC = 1; // Number of microphone channels
static const int AEC_N_CHANNELS_PLAY = 2; // Number of speaker channels
static const int AEC_FILTER_LENGTH = BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 20; // Width of the filter
static const int AEC_BUFFERED_FRAMES = 6; // Maximum number of frames to buffer
static const int AEC_BUFFERED_SAMPLES_PER_CHANNEL = BUFFER_LENGTH_SAMPLES_PER_CHANNEL * AEC_BUFFERED_FRAMES;
static const int AEC_BUFFERED_SAMPLES = AEC_BUFFERED_SAMPLES_PER_CHANNEL * AEC_N_CHANNELS_PLAY;
static const int AEC_TMP_BUFFER_SIZE = (AEC_N_CHANNELS_MIC + // Temporary space for processing a
AEC_N_CHANNELS_PLAY) * BUFFER_LENGTH_SAMPLES_PER_CHANNEL; // single frame
// Ping test configuration
static const float PING_PITCH = 16.f; // Ping wavelength, # samples / radian
static const float PING_VOLUME = 32000.f; // Ping peak amplitude
static const int PING_MIN_AMPLI = 225; // Minimum amplitude
static const int PING_MAX_PERIOD_DIFFERENCE = 15; // Maximum # samples from expected period
static const int PING_PERIOD = int(Radians::twicePi() * PING_PITCH); // Sine period based on the given pitch
static const int PING_HALF_PERIOD = int(Radians::pi() * PING_PITCH); // Distance between extrema
static const int PING_FRAMES_TO_RECORD = AEC_BUFFERED_FRAMES; // Frames to record for analysis
static const int PING_SAMPLES_TO_ANALYZE = AEC_BUFFERED_SAMPLES_PER_CHANNEL; // Samples to analyze (reusing AEC buffer)
static const int PING_BUFFER_OFFSET = BUFFER_LENGTH_SAMPLES_PER_CHANNEL - PING_PERIOD * 2.0f; // Signal start
// Mute icon configration
static const int ICON_SIZE = 24;
static const int ICON_LEFT = 20;
static const int BOTTOM_PADDING = 110;
inline void Audio::performIO(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight) {
Audio::Audio(int16_t initialJitterBufferSamples, QObject* parent) :
QObject(parent),
_inputDevice(NULL),
_ringBuffer(true),
_averagedLatency(0.0),
_measuredJitter(0),
_jitterBufferSamples(initialJitterBufferSamples),
_lastInputLoudness(0),
_lastVelocity(0),
_lastAcceleration(0),
_totalPacketsReceived(0),
_collisionSoundMagnitude(0.0f),
_collisionSoundFrequency(0.0f),
_collisionSoundNoise(0.0f),
_collisionSoundDuration(0.0f),
_proceduralEffectSample(0),
_heartbeatMagnitude(0.0f),
_muted(false)
{
NodeList* nodeList = NodeList::getInstance();
Application* interface = Application::getInstance();
Avatar* interfaceAvatar = interface->getAvatar();
memset(outputLeft, 0, PACKET_LENGTH_BYTES_PER_CHANNEL);
memset(outputRight, 0, PACKET_LENGTH_BYTES_PER_CHANNEL);
// If Mute button is pressed, clear the input buffer
if (_muted) {
memset(inputLeft, 0, PACKET_LENGTH_BYTES_PER_CHANNEL);
}
// If local loopback enabled, copy input to output
if (Menu::getInstance()->isOptionChecked(MenuOption::EchoLocalAudio)) {
memcpy(outputLeft, inputLeft, PACKET_LENGTH_BYTES_PER_CHANNEL);
memcpy(outputRight, inputLeft, PACKET_LENGTH_BYTES_PER_CHANNEL);
}
// Add Procedural effects to input samples
addProceduralSounds(inputLeft, outputLeft, outputRight, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
if (nodeList && inputLeft) {
// Measure the loudness of the signal from the microphone and store in audio object
float loudness = 0;
for (int i = 0; i < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; i++) {
loudness += abs(inputLeft[i]);
}
loudness /= BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
_lastInputLoudness = loudness;
// add input (@microphone) data to the scope
_scope->addSamples(0, inputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
Node* audioMixer = nodeList->soloNodeOfType(NODE_TYPE_AUDIO_MIXER);
if (audioMixer) {
if (audioMixer->getActiveSocket()) {
glm::vec3 headPosition = interfaceAvatar->getHeadJointPosition();
glm::quat headOrientation = interfaceAvatar->getHead().getOrientation();
int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO);
int leadingBytes = numBytesPacketHeader + sizeof(headPosition) + sizeof(headOrientation);
// we need the amount of bytes in the buffer + 1 for type
// + 12 for 3 floats for position + float for bearing + 1 attenuation byte
unsigned char dataPacket[MAX_PACKET_SIZE];
PACKET_TYPE packetType = Menu::getInstance()->isOptionChecked(MenuOption::EchoServerAudio)
? PACKET_TYPE_MICROPHONE_AUDIO_WITH_ECHO
: PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO;
unsigned char* currentPacketPtr = dataPacket + populateTypeAndVersion(dataPacket, packetType);
// pack Source Data
QByteArray rfcUUID = NodeList::getInstance()->getOwnerUUID().toRfc4122();
memcpy(currentPacketPtr, rfcUUID.constData(), rfcUUID.size());
currentPacketPtr += rfcUUID.size();
leadingBytes += rfcUUID.size();
// memcpy the three float positions
memcpy(currentPacketPtr, &headPosition, sizeof(headPosition));
currentPacketPtr += (sizeof(headPosition));
// memcpy our orientation
memcpy(currentPacketPtr, &headOrientation, sizeof(headOrientation));
currentPacketPtr += sizeof(headOrientation);
// copy the audio data to the last BUFFER_LENGTH_BYTES bytes of the data packet
memcpy(currentPacketPtr, inputLeft, BUFFER_LENGTH_BYTES_PER_CHANNEL);
nodeList->getNodeSocket()->send(audioMixer->getActiveSocket(),
dataPacket,
BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes);
interface->getBandwidthMeter()->outputStream(BandwidthMeter::AUDIO).updateValue(BUFFER_LENGTH_BYTES_PER_CHANNEL
+ leadingBytes);
} else {
nodeList->pingPublicAndLocalSocketsForInactiveNode(audioMixer);
}
}
}
AudioRingBuffer* ringBuffer = &_ringBuffer;
// if there is anything in the ring buffer, decide what to do:
if (ringBuffer->getEndOfLastWrite()) {
if (ringBuffer->isStarved() && ringBuffer->diffLastWriteNextOutput() <
(PACKET_LENGTH_SAMPLES + _jitterBufferSamples * (ringBuffer->isStereo() ? 2 : 1))) {
//
// If not enough audio has arrived to start playback, keep waiting
//
#ifdef SHOW_AUDIO_DEBUG
qDebug("%i,%i,%i,%i\n",
_packetsReceivedThisPlayback,
ringBuffer->diffLastWriteNextOutput(),
PACKET_LENGTH_SAMPLES,
_jitterBufferSamples);
#endif
} else if (!ringBuffer->isStarved() && ringBuffer->diffLastWriteNextOutput() == 0) {
//
// If we have started and now have run out of audio to send to the audio device,
// this means we've starved and should restart.
//
ringBuffer->setIsStarved(true);
_numStarves++;
_packetsReceivedThisPlayback = 0;
_wasStarved = 10; // Frames for which to render the indication that the system was starved.
#ifdef SHOW_AUDIO_DEBUG
qDebug("Starved, remaining samples = %d\n",
ringBuffer->diffLastWriteNextOutput());
#endif
} else {
//
// We are either already playing back, or we have enough audio to start playing back.
//
if (ringBuffer->isStarved()) {
ringBuffer->setIsStarved(false);
ringBuffer->setHasStarted(true);
#ifdef SHOW_AUDIO_DEBUG
qDebug("starting playback %0.1f msecs delayed, jitter = %d, pkts recvd: %d \n",
(usecTimestampNow() - usecTimestamp(&_firstPacketReceivedTime))/1000.0,
_jitterBufferSamples,
_packetsReceivedThisPlayback);
#endif
}
//
// play whatever we have in the audio buffer
//
// if we haven't fired off the flange effect, check if we should
// TODO: lastMeasuredHeadYaw is now relative to body - check if this still works.
int lastYawMeasured = fabsf(interfaceAvatar->getHeadYawRate());
if (!_samplesLeftForFlange && lastYawMeasured > MIN_FLANGE_EFFECT_THRESHOLD) {
// we should flange for one second
if ((_lastYawMeasuredMaximum = std::max(_lastYawMeasuredMaximum, lastYawMeasured)) != lastYawMeasured) {
_lastYawMeasuredMaximum = std::min(_lastYawMeasuredMaximum, MIN_FLANGE_EFFECT_THRESHOLD);
_samplesLeftForFlange = SAMPLE_RATE;
_flangeIntensity = MIN_FLANGE_INTENSITY +
((_lastYawMeasuredMaximum - MIN_FLANGE_EFFECT_THRESHOLD) /
(float)(MAX_FLANGE_EFFECT_THRESHOLD - MIN_FLANGE_EFFECT_THRESHOLD)) *
(1 - MIN_FLANGE_INTENSITY);
_flangeRate = FLANGE_BASE_RATE * _flangeIntensity;
_flangeWeight = MAX_FLANGE_SAMPLE_WEIGHT * _flangeIntensity;
}
}
for (int s = 0; s < PACKET_LENGTH_SAMPLES_PER_CHANNEL; s++) {
int leftSample = ringBuffer->getNextOutput()[s];
int rightSample = ringBuffer->getNextOutput()[s + PACKET_LENGTH_SAMPLES_PER_CHANNEL];
if (_samplesLeftForFlange > 0) {
float exponent = (SAMPLE_RATE - _samplesLeftForFlange - (SAMPLE_RATE / _flangeRate)) /
(SAMPLE_RATE / _flangeRate);
int sampleFlangeDelay = (SAMPLE_RATE / (1000 * _flangeIntensity)) * powf(2, exponent);
if (_samplesLeftForFlange != SAMPLE_RATE || s >= (SAMPLE_RATE / 2000)) {
// we have a delayed sample to add to this sample
int16_t *flangeFrame = ringBuffer->getNextOutput();
int flangeIndex = s - sampleFlangeDelay;
if (flangeIndex < 0) {
// we need to grab the flange sample from earlier in the buffer
flangeFrame = ringBuffer->getNextOutput() != ringBuffer->getBuffer()
? ringBuffer->getNextOutput() - PACKET_LENGTH_SAMPLES
: ringBuffer->getNextOutput() + RING_BUFFER_LENGTH_SAMPLES - PACKET_LENGTH_SAMPLES;
flangeIndex = PACKET_LENGTH_SAMPLES_PER_CHANNEL + (s - sampleFlangeDelay);
}
int16_t leftFlangeSample = flangeFrame[flangeIndex];
int16_t rightFlangeSample = flangeFrame[flangeIndex + PACKET_LENGTH_SAMPLES_PER_CHANNEL];
leftSample = (1 - _flangeWeight) * leftSample + (_flangeWeight * leftFlangeSample);
rightSample = (1 - _flangeWeight) * rightSample + (_flangeWeight * rightFlangeSample);
_samplesLeftForFlange--;
if (_samplesLeftForFlange == 0) {
_lastYawMeasuredMaximum = 0;
}
}
}
#ifndef TEST_AUDIO_LOOPBACK
outputLeft[s] += leftSample;
outputRight[s] += rightSample;
#else
outputLeft[s] += inputLeft[s];
outputRight[s] += inputLeft[s];
#endif
}
ringBuffer->setNextOutput(ringBuffer->getNextOutput() + PACKET_LENGTH_SAMPLES);
if (ringBuffer->getNextOutput() == ringBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
ringBuffer->setNextOutput(ringBuffer->getBuffer());
}
}
}
eventuallySendRecvPing(inputLeft, outputLeft, outputRight);
// add output (@speakers) data just written to the scope
_scope->addSamples(1, outputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
_scope->addSamples(2, outputRight, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
gettimeofday(&_lastCallbackTime, NULL);
}
// inputBuffer A pointer to an internal portaudio data buffer containing data read by portaudio.
// outputBuffer A pointer to an internal portaudio data buffer to be read by the configured output device.
// frames Number of frames that portaudio requests to be read/written.
// timeInfo Portaudio time info. Currently unused.
// statusFlags Portaudio status flags. Currently unused.
// userData Pointer to supplied user data (in this case, a pointer to the parent Audio object
int Audio::audioCallback (const void* inputBuffer,
void* outputBuffer,
unsigned long frames,
const PaStreamCallbackTimeInfo *timeInfo,
PaStreamCallbackFlags statusFlags,
void* userData) {
int16_t* inputLeft = static_cast<int16_t*const*>(inputBuffer)[0];
int16_t* outputLeft = static_cast<int16_t**>(outputBuffer)[0];
int16_t* outputRight = static_cast<int16_t**>(outputBuffer)[1];
static_cast<Audio*>(userData)->performIO(inputLeft, outputLeft, outputRight);
return paContinue;
}
void Audio::init(QGLWidget *parent) {
@ -320,118 +69,230 @@ void Audio::init(QGLWidget *parent) {
_muteTextureId = parent->bindTexture(QImage("./resources/images/mute.svg"));
}
static void outputPortAudioError(PaError error) {
if (error != paNoError) {
qDebug("-- portaudio termination error --\n");
qDebug("PortAudio error (%d): %s\n", error, Pa_GetErrorText(error));
}
}
void Audio::reset() {
_packetsReceivedThisPlayback = 0;
_ringBuffer.reset();
}
Audio::Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples) :
_stream(NULL),
_ringBuffer(true),
_scope(scope),
_averagedLatency(0.0),
_measuredJitter(0),
_jitterBufferSamples(initialJitterBufferSamples),
_wasStarved(0),
_numStarves(0),
_lastInputLoudness(0),
_lastVelocity(0),
_lastAcceleration(0),
_totalPacketsReceived(0),
_firstPacketReceivedTime(),
_packetsReceivedThisPlayback(0),
_echoSamplesLeft(NULL),
_isSendingEchoPing(false),
_pingAnalysisPending(false),
_pingFramesToRecord(0),
_samplesLeftForFlange(0),
_lastYawMeasuredMaximum(0),
_flangeIntensity(0.0f),
_flangeRate(0.0f),
_flangeWeight(0.0f),
_collisionSoundMagnitude(0.0f),
_collisionSoundFrequency(0.0f),
_collisionSoundNoise(0.0f),
_collisionSoundDuration(0.0f),
_proceduralEffectSample(0),
_heartbeatMagnitude(0.0f),
_muted(false),
_localEcho(false)
{
outputPortAudioError(Pa_Initialize());
// NOTE: Portaudio documentation is unclear as to whether it is safe to specify the
// number of frames per buffer explicitly versus setting this value to zero.
// Possible source of latency that we need to investigate further.
//
unsigned long FRAMES_PER_BUFFER = BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
// Manually initialize the portaudio stream to ask for minimum latency
PaStreamParameters inputParameters, outputParameters;
inputParameters.device = Pa_GetDefaultInputDevice();
outputParameters.device = Pa_GetDefaultOutputDevice();
if (inputParameters.device == -1 || outputParameters.device == -1) {
qDebug("Audio: Missing device.\n");
outputPortAudioError(Pa_Terminate());
return;
}
inputParameters.channelCount = 1; // Stereo input
inputParameters.sampleFormat = (paInt16 | paNonInterleaved);
inputParameters.suggestedLatency = Pa_GetDeviceInfo(inputParameters.device)->defaultLowInputLatency;
inputParameters.hostApiSpecificStreamInfo = NULL;
outputParameters.channelCount = 2; // Stereo output
outputParameters.sampleFormat = (paInt16 | paNonInterleaved);
outputParameters.suggestedLatency = Pa_GetDeviceInfo(outputParameters.device)->defaultLowOutputLatency;
outputParameters.hostApiSpecificStreamInfo = NULL;
outputPortAudioError(Pa_OpenStream(&_stream,
&inputParameters,
&outputParameters,
SAMPLE_RATE,
FRAMES_PER_BUFFER,
paNoFlag,
audioCallback,
(void*) this));
QAudioDeviceInfo defaultAudioDeviceForMode(QAudio::Mode mode) {
#ifdef __APPLE__
if (QAudioDeviceInfo::availableDevices(mode).size() > 1) {
AudioDeviceID defaultDeviceID = 0;
uint32_t propertySize = sizeof(AudioDeviceID);
AudioObjectPropertyAddress propertyAddress = {
kAudioHardwarePropertyDefaultInputDevice,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
if (! _stream) {
if (mode == QAudio::AudioOutput) {
propertyAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
}
OSStatus getPropertyError = AudioObjectGetPropertyData(kAudioObjectSystemObject,
&propertyAddress,
0,
NULL,
&propertySize,
&defaultDeviceID);
if (!getPropertyError && propertySize) {
CFStringRef deviceName = NULL;
propertySize = sizeof(deviceName);
propertyAddress.mSelector = kAudioDevicePropertyDeviceNameCFString;
getPropertyError = AudioObjectGetPropertyData(defaultDeviceID, &propertyAddress, 0,
NULL, &propertySize, &deviceName);
if (!getPropertyError && propertySize) {
// find a device in the list that matches the name we have and return it
foreach(QAudioDeviceInfo audioDevice, QAudioDeviceInfo::availableDevices(mode)) {
if (audioDevice.deviceName() == CFStringGetCStringPtr(deviceName, kCFStringEncodingMacRoman)) {
return audioDevice;
}
}
}
}
}
#endif
// fallback for failed lookup is the default device
return (mode == QAudio::AudioInput) ? QAudioDeviceInfo::defaultInputDevice() : QAudioDeviceInfo::defaultOutputDevice();
}
const int QT_SAMPLE_RATE = 44100;
const int SAMPLE_RATE_RATIO = QT_SAMPLE_RATE / SAMPLE_RATE;
void Audio::start() {
QAudioFormat audioFormat;
// set up the desired audio format
audioFormat.setSampleRate(QT_SAMPLE_RATE);
audioFormat.setSampleSize(16);
audioFormat.setCodec("audio/pcm");
audioFormat.setSampleType(QAudioFormat::SignedInt);
audioFormat.setByteOrder(QAudioFormat::LittleEndian);
audioFormat.setChannelCount(2);
qDebug() << "The format for audio I/O is" << audioFormat << "\n";
QAudioDeviceInfo inputAudioDevice = defaultAudioDeviceForMode(QAudio::AudioInput);
qDebug() << "Audio input device is" << inputAudioDevice.deviceName() << "\n";
if (!inputAudioDevice.isFormatSupported(audioFormat)) {
qDebug() << "The desired audio input format is not supported by this device. Not starting audio input.\n";
return;
}
_echoSamplesLeft = new int16_t[AEC_BUFFERED_SAMPLES + AEC_TMP_BUFFER_SIZE];
memset(_echoSamplesLeft, 0, AEC_BUFFERED_SAMPLES * sizeof(int16_t));
// start the stream now that sources are good to go
outputPortAudioError(Pa_StartStream(_stream));
_audioInput = new QAudioInput(inputAudioDevice, audioFormat, this);
_audioInput->setBufferSize(BUFFER_LENGTH_BYTES_STEREO * SAMPLE_RATE_RATIO);
_inputDevice = _audioInput->start();
// Uncomment these lines to see the system-reported latency
//qDebug("Default low input, output latency (secs): %0.4f, %0.4f\n",
// Pa_GetDeviceInfo(Pa_GetDefaultInputDevice())->defaultLowInputLatency,
// Pa_GetDeviceInfo(Pa_GetDefaultOutputDevice())->defaultLowOutputLatency);
connect(_inputDevice, SIGNAL(readyRead()), SLOT(handleAudioInput()));
QAudioDeviceInfo outputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioOutput);
qDebug() << outputDeviceInfo.supportedSampleRates() << "\n";
qDebug() << "Audio output device is" << outputDeviceInfo.deviceName() << "\n";
if (!outputDeviceInfo.isFormatSupported(audioFormat)) {
qDebug() << "The desired audio output format is not supported by this device.\n";
return;
}
_audioOutput = new QAudioOutput(outputDeviceInfo, audioFormat, this);
_audioOutput->setBufferSize(BUFFER_LENGTH_BYTES_STEREO * SAMPLE_RATE_RATIO);
_outputDevice = _audioOutput->start();
const PaStreamInfo* streamInfo = Pa_GetStreamInfo(_stream);
qDebug("Started audio with reported latency msecs In/Out: %.0f, %.0f\n", streamInfo->inputLatency * 1000.f,
streamInfo->outputLatency * 1000.f);
gettimeofday(&_lastReceiveTime, NULL);
}
void Audio::shutdown() {
if (_stream) {
outputPortAudioError(Pa_CloseStream(_stream));
outputPortAudioError(Pa_Terminate());
void Audio::handleAudioInput() {
static int16_t stereoInputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2 * SAMPLE_RATE_RATIO];
static int16_t stereoOutputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2 * SAMPLE_RATE_RATIO];
static char monoAudioDataPacket[MAX_PACKET_SIZE];
// read out the current samples from the _inputDevice
_inputDevice->read((char*) stereoInputBuffer, BUFFER_LENGTH_BYTES_STEREO * SAMPLE_RATE_RATIO);
NodeList* nodeList = NodeList::getInstance();
Node* audioMixer = nodeList->soloNodeOfType(NODE_TYPE_AUDIO_MIXER);
if (Menu::getInstance()->isOptionChecked(MenuOption::EchoLocalAudio) && !_muted) {
// if local loopback enabled, copy input to output
memcpy(stereoOutputBuffer, stereoInputBuffer, sizeof(stereoOutputBuffer));
} else {
// zero out the stereoOutputBuffer
memset(stereoOutputBuffer, 0, sizeof(stereoOutputBuffer));
}
delete[] _echoSamplesLeft;
if (audioMixer) {
if (audioMixer->getActiveSocket()) {
Avatar* interfaceAvatar = Application::getInstance()->getAvatar();
glm::vec3 headPosition = interfaceAvatar->getHeadJointPosition();
glm::quat headOrientation = interfaceAvatar->getHead().getOrientation();
int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO);
int leadingBytes = numBytesPacketHeader + sizeof(headPosition) + sizeof(headOrientation);
// we need the amount of bytes in the buffer + 1 for type
// + 12 for 3 floats for position + float for bearing + 1 attenuation byte
PACKET_TYPE packetType = Menu::getInstance()->isOptionChecked(MenuOption::EchoServerAudio)
? PACKET_TYPE_MICROPHONE_AUDIO_WITH_ECHO
: PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO;
char* currentPacketPtr = monoAudioDataPacket + populateTypeAndVersion((unsigned char*) monoAudioDataPacket, packetType);
// pack Source Data
QByteArray rfcUUID = NodeList::getInstance()->getOwnerUUID().toRfc4122();
memcpy(currentPacketPtr, rfcUUID.constData(), rfcUUID.size());
currentPacketPtr += rfcUUID.size();
leadingBytes += rfcUUID.size();
// memcpy the three float positions
memcpy(currentPacketPtr, &headPosition, sizeof(headPosition));
currentPacketPtr += (sizeof(headPosition));
// memcpy our orientation
memcpy(currentPacketPtr, &headOrientation, sizeof(headOrientation));
currentPacketPtr += sizeof(headOrientation);
if (!_muted) {
// we aren't muted, average each set of four samples together to set up the mono input buffers
for (int i = 2; i < BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2 * SAMPLE_RATE_RATIO; i += 4) {
int16_t averagedSample = (stereoInputBuffer[i - 2] / 4) + (stereoInputBuffer[i] / 2)
+ (stereoInputBuffer[i + 2] / 4);
// copy the averaged sample to our array
memcpy(currentPacketPtr + (((i - 2) / 4) * sizeof(int16_t)), &averagedSample, sizeof(int16_t));
}
} else {
// zero out the audio part of the array
memset(currentPacketPtr, 0, BUFFER_LENGTH_BYTES_PER_CHANNEL);
}
// Add procedural effects to input samples
addProceduralSounds((int16_t*) currentPacketPtr, stereoOutputBuffer, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
nodeList->getNodeSocket()->send(audioMixer->getActiveSocket(),
monoAudioDataPacket,
BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes);
} else {
nodeList->pingPublicAndLocalSocketsForInactiveNode(audioMixer);
}
}
AudioRingBuffer* ringBuffer = &_ringBuffer;
// if there is anything in the ring buffer, decide what to do
if (ringBuffer->getEndOfLastWrite()) {
if (ringBuffer->isStarved() && ringBuffer->diffLastWriteNextOutput() <
(PACKET_LENGTH_SAMPLES + _jitterBufferSamples * (ringBuffer->isStereo() ? 2 : 1))) {
// If not enough audio has arrived to start playback, keep waiting
} else if (!ringBuffer->isStarved() && ringBuffer->diffLastWriteNextOutput() == 0) {
// If we have started and now have run out of audio to send to the audio device,
// this means we've starved and should restart.
ringBuffer->setIsStarved(true);
} else {
// We are either already playing back, or we have enough audio to start playing back.
if (ringBuffer->isStarved()) {
ringBuffer->setIsStarved(false);
ringBuffer->setHasStarted(true);
}
// play whatever we have in the audio buffer
for (int s = 0; s < PACKET_LENGTH_SAMPLES_PER_CHANNEL; s++) {
int16_t leftSample = ringBuffer->getNextOutput()[s];
int16_t rightSample = ringBuffer->getNextOutput()[s + PACKET_LENGTH_SAMPLES_PER_CHANNEL];
stereoOutputBuffer[(s * 4)] += leftSample;
stereoOutputBuffer[(s * 4) + 2] += leftSample;
stereoOutputBuffer[(s * 4) + 1] += rightSample;
stereoOutputBuffer[(s * 4) + 3] += rightSample;
}
ringBuffer->setNextOutput(ringBuffer->getNextOutput() + PACKET_LENGTH_SAMPLES);
if (ringBuffer->getNextOutput() == ringBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
ringBuffer->setNextOutput(ringBuffer->getBuffer());
}
}
}
// copy the audio data to the output device
_outputDevice->write((char*) stereoOutputBuffer, sizeof(stereoOutputBuffer));
_outputDevice->write((char*) stereoOutputBuffer, sizeof(stereoOutputBuffer));
// add output (@speakers) data just written to the scope
// _scope->addSamples(1, outputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
// _scope->addSamples(2, outputRight, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
gettimeofday(&_lastCallbackTime, NULL);
}
void Audio::addReceivedAudioToBuffer(unsigned char* receivedData, int receivedBytes) {
@ -463,14 +324,6 @@ void Audio::addReceivedAudioToBuffer(unsigned char* receivedData, int receivedBy
}
}
if (_ringBuffer.isStarved()) {
_packetsReceivedThisPlayback++;
}
if (_packetsReceivedThisPlayback == 1) {
gettimeofday(&_firstPacketReceivedTime, NULL);
}
if (_ringBuffer.diffLastWriteNextOutput() + PACKET_LENGTH_SAMPLES >
PACKET_LENGTH_SAMPLES + (ceilf((float) (_jitterBufferSamples * 2) / PACKET_LENGTH_SAMPLES) * PACKET_LENGTH_SAMPLES)) {
// this packet would give us more than the required amount for play out
@ -483,8 +336,6 @@ void Audio::addReceivedAudioToBuffer(unsigned char* receivedData, int receivedBy
}
}
//printf("Got audio packet %d\n", _packetsReceivedThisPlayback);
_ringBuffer.parseData((unsigned char*) receivedData, receivedBytes);
Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::AUDIO)
@ -502,7 +353,7 @@ bool Audio::mousePressEvent(int x, int y) {
}
void Audio::render(int screenWidth, int screenHeight) {
if (_stream) {
if (false) {
glLineWidth(2.0);
glBegin(GL_LINES);
glColor3f(1,1,1);
@ -598,40 +449,8 @@ void Audio::render(int screenWidth, int screenHeight) {
renderToolIcon(screenHeight);
}
//
// Very Simple LowPass filter which works by averaging a bunch of samples with a moving window
//
//#define lowpass 1
void Audio::lowPassFilter(int16_t* inputBuffer) {
static int16_t outputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL];
for (int i = 2; i < BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 2; i++) {
#ifdef lowpass
outputBuffer[i] = (int16_t)(0.125f * (float)inputBuffer[i - 2] +
0.25f * (float)inputBuffer[i - 1] +
0.25f * (float)inputBuffer[i] +
0.25f * (float)inputBuffer[i + 1] +
0.125f * (float)inputBuffer[i + 2] );
#else
outputBuffer[i] = (int16_t)(0.125f * -(float)inputBuffer[i - 2] +
0.25f * -(float)inputBuffer[i - 1] +
1.75f * (float)inputBuffer[i] +
0.25f * -(float)inputBuffer[i + 1] +
0.125f * -(float)inputBuffer[i + 2] );
#endif
}
outputBuffer[0] = inputBuffer[0];
outputBuffer[1] = inputBuffer[1];
outputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 2] = inputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 2];
outputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 1] = inputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 1];
memcpy(inputBuffer, outputBuffer, BUFFER_LENGTH_SAMPLES_PER_CHANNEL * sizeof(int16_t));
}
// Take a pointer to the acquired microphone input samples and add procedural sounds
void Audio::addProceduralSounds(int16_t* inputBuffer,
int16_t* outputLeft,
int16_t* outputRight,
int numSamples) {
void Audio::addProceduralSounds(int16_t* inputBuffer, int16_t* stereoOutput, int numSamples) {
const float MAX_AUDIBLE_VELOCITY = 6.0;
const float MIN_AUDIBLE_VELOCITY = 0.1;
const int VOLUME_BASELINE = 400;
@ -642,13 +461,12 @@ void Audio::addProceduralSounds(int16_t* inputBuffer,
float sample;
//
// Travelling noise
//
// Add a noise-modulated sinewave with volume that tapers off with speed increasing
if ((speed > MIN_AUDIBLE_VELOCITY) && (speed < MAX_AUDIBLE_VELOCITY)) {
for (int i = 0; i < numSamples; i++) {
inputBuffer[i] += (int16_t)(sinf((float) (_proceduralEffectSample + i) / SOUND_PITCH ) * volume * (1.f + randFloat() * 0.25f) * speed);
inputBuffer[i] += (int16_t)(sinf((float) (_proceduralEffectSample + i) / SOUND_PITCH )
* volume * (1.f + randFloat() * 0.25f) * speed);
}
}
const float COLLISION_SOUND_CUTOFF_LEVEL = 0.01f;
@ -665,20 +483,22 @@ void Audio::addProceduralSounds(int16_t* inputBuffer,
sinf(t * _collisionSoundFrequency / DOWN_TWO_OCTAVES) +
sinf(t * _collisionSoundFrequency / DOWN_FOUR_OCTAVES * UP_MAJOR_FIFTH);
sample *= _collisionSoundMagnitude * COLLISION_SOUND_MAX_VOLUME;
inputBuffer[i] += (int) sample;
outputLeft[i] += (int) sample;
outputRight[i] += (int) sample;
int16_t collisionSample = (int16_t) sample;
inputBuffer[i] += collisionSample;
for (int j = (i * 4); j < (i * 4) + 4; j++) {
stereoOutput[j] = collisionSample;
}
_collisionSoundMagnitude *= _collisionSoundDuration;
}
}
_proceduralEffectSample += numSamples;
}
//
// Starts a collision sound. magnitude is 0-1, with 1 the loudest possible sound.
//
// Starts a collision sound. magnitude is 0-1, with 1 the loudest possible sound.
void Audio::startCollisionSound(float magnitude, float frequency, float noise, float duration, bool flashScreen) {
_collisionSoundMagnitude = magnitude;
_collisionSoundFrequency = frequency;
@ -686,163 +506,6 @@ void Audio::startCollisionSound(float magnitude, float frequency, float noise, f
_collisionSoundDuration = duration;
_collisionFlashesScreen = flashScreen;
}
// -----------------------------------------------------------
// Accoustic ping (audio system round trip time determination)
// -----------------------------------------------------------
void Audio::ping() {
_pingFramesToRecord = PING_FRAMES_TO_RECORD;
_isSendingEchoPing = true;
_scope->setDownsampleRatio(8);
_scope->inputPaused = false;
}
inline void Audio::eventuallySendRecvPing(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight) {
if (_isSendingEchoPing) {
// Overwrite output with ping signal.
//
// Using a signed variant of sinc because it's speaker-reproducible
// with a unique, characteristic point in time (its center), aligned
// to the right of the output buffer.
//
// |
// | |
// ...--- t --------+-+-+-+-+------->
// | | :
// | :
// buffer :<- start of next buffer
// : : :
// :---: sine period
// :-: half sine period
//
memset(outputLeft, 0, PING_BUFFER_OFFSET * sizeof(int16_t));
outputLeft += PING_BUFFER_OFFSET;
memset(outputRight, 0, PING_BUFFER_OFFSET * sizeof(int16_t));
outputRight += PING_BUFFER_OFFSET;
for (int s = -PING_PERIOD; s < PING_PERIOD; ++s) {
float t = float(s) / PING_PITCH;
*outputLeft++ = *outputRight++ = int16_t(PING_VOLUME *
sinf(t) / fmaxf(1.0f, pow((abs(t)-1.5f) / 1.5f, 1.2f)));
}
// As of the next frame, we'll be recoding PING_FRAMES_TO_RECORD from
// the mic (pointless to start now as we can't record unsent audio).
_isSendingEchoPing = false;
qDebug("Send audio ping\n");
} else if (_pingFramesToRecord > 0) {
// Store input samples
int offset = BUFFER_LENGTH_SAMPLES_PER_CHANNEL * (
PING_FRAMES_TO_RECORD - _pingFramesToRecord);
memcpy(_echoSamplesLeft + offset,
inputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL * sizeof(int16_t));
--_pingFramesToRecord;
if (_pingFramesToRecord == 0) {
_pingAnalysisPending = true;
qDebug("Received ping echo\n");
}
}
}
static int findExtremum(int16_t const* samples, int length, int sign) {
int x0 = -1;
int y0 = -PING_VOLUME;
for (int x = 0; x < length; ++samples, ++x) {
int y = *samples * sign;
if (y > y0) {
x0 = x;
y0 = y;
}
}
return x0;
}
inline void Audio::analyzePing() {
// Determine extrema
int botAt = findExtremum(_echoSamplesLeft, PING_SAMPLES_TO_ANALYZE, -1);
if (botAt == -1) {
qDebug("Audio Ping: Minimum not found.\n");
return;
}
int topAt = findExtremum(_echoSamplesLeft, PING_SAMPLES_TO_ANALYZE, 1);
if (topAt == -1) {
qDebug("Audio Ping: Maximum not found.\n");
return;
}
// Determine peak amplitude - warn if low
int ampli = (_echoSamplesLeft[topAt] - _echoSamplesLeft[botAt]) / 2;
if (ampli < PING_MIN_AMPLI) {
qDebug("Audio Ping unreliable - low amplitude %d.\n", ampli);
}
// Determine period - warn if doesn't look like our signal
int halfPeriod = abs(topAt - botAt);
if (abs(halfPeriod-PING_HALF_PERIOD) > PING_MAX_PERIOD_DIFFERENCE) {
qDebug("Audio Ping unreliable - peak distance %d vs. %d\n", halfPeriod, PING_HALF_PERIOD);
}
// Ping is sent:
//
// ---[ record ]--[ play ]--- audio in space/time --->
// : : :
// : : ping: ->X<-
// : : :
// : : |+| (buffer end - signal center = t1-t0)
// : |<----------+
// : : : :
// : ->X<- (corresponding input buffer position t0)
// : : : :
// : : : :
// : : : :
// Next frame (we're recording from now on):
// : : :
// : - - --[ record ]--[ play ]------------------>
// : : : :
// : : |<-- (start of recording t1)
// : : :
// : : :
// At some frame, the signal is picked up:
// : : : :
// : : : :
// : : : V
// : : : - - --[ record ]--[ play ]---------->
// : V : :
// : |<--------->|
// |+|<------->| period + measured samples
//
// If we could pick up the signal at t0 we'd have zero round trip
// time - in this case we had recorded the output buffer instantly
// in its entirety (we can't - but there's the proper reference
// point). We know the number of samples from t1 and, knowing that
// data is streaming continuously, we know that t1-t0 is the distance
// of the characterisic point from the end of the buffer.
int delay = (botAt + topAt) / 2 + PING_PERIOD;
qDebug("\n| Audio Ping results:\n+----- ---- --- - - - - -\n\n"
"Delay = %d samples (%d ms)\nPeak amplitude = %d\n\n",
delay, (delay * 1000) / int(SAMPLE_RATE), ampli);
}
bool Audio::eventuallyAnalyzePing() {
if (! _pingAnalysisPending) {
return false;
}
_scope->inputPaused = true;
analyzePing();
_pingAnalysisPending = false;
return true;
}
void Audio::renderToolIcon(int screenHeight) {
@ -888,5 +551,3 @@ void Audio::renderToolIcon(int screenHeight) {
glDisable(GL_TEXTURE_2D);
}
#endif

View file

@ -14,9 +14,7 @@
#include "InterfaceConfig.h"
#include <QObject>
#include <portaudio.h>
#include <QtCore/QObject>
#include <AudioRingBuffer.h>
#include <StdDev.h>
@ -32,13 +30,15 @@ static const int PACKET_LENGTH_BYTES_PER_CHANNEL = PACKET_LENGTH_BYTES / 2;
static const int PACKET_LENGTH_SAMPLES = PACKET_LENGTH_BYTES / sizeof(int16_t);
static const int PACKET_LENGTH_SAMPLES_PER_CHANNEL = PACKET_LENGTH_SAMPLES / 2;
class QAudioInput;
class QAudioOutput;
class QIODevice;
class Audio : public QObject {
Q_OBJECT
public:
// initializes audio I/O
Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples);
void shutdown();
// setup for audio I/O
Audio(int16_t initialJitterBufferSamples, QObject* parent = 0);
void reset();
void render(int screenWidth, int screenHeight);
@ -61,19 +61,18 @@ public:
bool getCollisionFlashesScreen() { return _collisionFlashesScreen; }
void ping();
void init(QGLWidget *parent = 0);
bool mousePressEvent(int x, int y);
// Call periodically to eventually perform round trip time analysis,
// in which case 'true' is returned - otherwise the return value is 'false'.
// The results of the analysis are written to the log.
bool eventuallyAnalyzePing();
public slots:
void start();
void handleAudioInput();
private:
PaStream* _stream;
QAudioInput* _audioInput;
QIODevice* _inputDevice;
QAudioOutput* _audioOutput;
QIODevice* _outputDevice;
AudioRingBuffer _ringBuffer;
Oscilloscope* _scope;
StDev _stdev;
@ -88,19 +87,6 @@ private:
glm::vec3 _lastVelocity;
glm::vec3 _lastAcceleration;
int _totalPacketsReceived;
timeval _firstPacketReceivedTime;
int _packetsReceivedThisPlayback;
// Ping analysis
int16_t* _echoSamplesLeft;
volatile bool _isSendingEchoPing;
volatile bool _pingAnalysisPending;
int _pingFramesToRecord;
// Flange effect
int _samplesLeftForFlange;
int _lastYawMeasuredMaximum;
float _flangeIntensity;
float _flangeRate;
float _flangeWeight;
float _collisionSoundMagnitude;
float _collisionSoundFrequency;
float _collisionSoundNoise;
@ -118,24 +104,8 @@ private:
// Audio callback in class context.
inline void performIO(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight);
// When requested, sends/receives a signal for round trip time determination.
// Called from 'performIO'.
inline void eventuallySendRecvPing(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight);
// Determines round trip time of the audio system. Called from 'eventuallyAnalyzePing'.
inline void analyzePing();
// Add sounds that we want the user to not hear themselves, by adding on top of mic input signal
void addProceduralSounds(int16_t* inputBuffer, int16_t* outputLeft, int16_t* outputRight, int numSamples);
// Audio callback called by portaudio. Calls 'performIO'.
static int audioCallback(const void *inputBuffer,
void *outputBuffer,
unsigned long framesPerBuffer,
const PaStreamCallbackTimeInfo *timeInfo,
PaStreamCallbackFlags statusFlags,
void *userData);
void addProceduralSounds(int16_t* inputBuffer, int16_t* stereoOutput, int numSamples);
void renderToolIcon(int screenHeight);
};

View file

@ -16,7 +16,7 @@
#include "NodeData.h"
const float SAMPLE_RATE = 22050.0;
const int SAMPLE_RATE = 22050;
const int BUFFER_LENGTH_BYTES_STEREO = 1024;
const int BUFFER_LENGTH_BYTES_PER_CHANNEL = 512;