resolve conflicts on merge with upstream master

This commit is contained in:
Stephen Birarda 2014-08-08 13:48:32 -07:00
commit d5b1bee13c
16 changed files with 418 additions and 211 deletions

View file

@ -85,13 +85,13 @@ MyAvatar::MyAvatar() :
}
_skeletonModel.setEnableShapes(true);
// The skeleton is both a PhysicsEntity and Ragdoll, so we add it to the simulation once for each type.
_physicsSimulation.addEntity(&_skeletonModel);
_physicsSimulation.addRagdoll(&_skeletonModel);
_physicsSimulation.setEntity(&_skeletonModel);
_physicsSimulation.setRagdoll(&_skeletonModel);
}
MyAvatar::~MyAvatar() {
_physicsSimulation.removeEntity(&_skeletonModel);
_physicsSimulation.removeRagdoll(&_skeletonModel);
_physicsSimulation.setRagdoll(NULL);
_physicsSimulation.setEntity(NULL);
_lookAtTargetAvatar.clear();
}
@ -206,9 +206,10 @@ void MyAvatar::simulate(float deltaTime) {
{
PerformanceTimer perfTimer("ragdoll");
if (Menu::getInstance()->isOptionChecked(MenuOption::CollideAsRagdoll)) {
const int minError = 0.01f;
const float minError = 0.01f;
const float maxIterations = 10;
const quint64 maxUsec = 2000;
_physicsSimulation.setTranslation(_position);
_physicsSimulation.stepForward(deltaTime, minError, maxIterations, maxUsec);
} else {
_skeletonModel.moveShapesTowardJoints(1.0f);
@ -235,12 +236,10 @@ void MyAvatar::simulate(float deltaTime) {
} else {
_trapDuration = 0.0f;
}
/* TODO: Andrew to make this work
if (_collisionGroups & COLLISION_GROUP_AVATARS) {
PerformanceTimer perfTimer("avatars");
updateCollisionWithAvatars(deltaTime);
}
*/
}
// consider updating our billboard
@ -1551,8 +1550,6 @@ bool findAvatarAvatarPenetration(const glm::vec3 positionA, float radiusA, float
return false;
}
const float BODY_COLLISION_RESOLUTION_TIMESCALE = 0.5f; // seconds
void MyAvatar::updateCollisionWithAvatars(float deltaTime) {
// Reset detector for nearest avatar
_distanceToNearestAvatar = std::numeric_limits<float>::max();
@ -1563,41 +1560,51 @@ void MyAvatar::updateCollisionWithAvatars(float deltaTime) {
}
float myBoundingRadius = getBoundingRadius();
const float BODY_COLLISION_RESOLUTION_FACTOR = glm::max(1.0f, deltaTime / BODY_COLLISION_RESOLUTION_TIMESCALE);
// find nearest avatar
float nearestDistance2 = std::numeric_limits<float>::max();
Avatar* nearestAvatar = NULL;
foreach (const AvatarSharedPointer& avatarPointer, avatars) {
Avatar* avatar = static_cast<Avatar*>(avatarPointer.data());
if (static_cast<Avatar*>(this) == avatar) {
// don't collide with ourselves
continue;
}
float distance = glm::length(_position - avatar->getPosition());
if (_distanceToNearestAvatar > distance) {
_distanceToNearestAvatar = distance;
float distance2 = glm::distance2(_position, avatar->getPosition());
if (nearestDistance2 > distance2) {
nearestDistance2 = distance2;
nearestAvatar = avatar;
}
float theirBoundingRadius = avatar->getBoundingRadius();
if (distance < myBoundingRadius + theirBoundingRadius) {
// collide our body against theirs
QVector<const Shape*> myShapes;
_skeletonModel.getBodyShapes(myShapes);
QVector<const Shape*> theirShapes;
avatar->getSkeletonModel().getBodyShapes(theirShapes);
}
_distanceToNearestAvatar = glm::sqrt(nearestDistance2);
CollisionInfo collision;
if (ShapeCollider::collideShapesCoarse(myShapes, theirShapes, collision)) {
float penetrationDepth = glm::length(collision._penetration);
if (penetrationDepth > myBoundingRadius) {
qDebug() << "WARNING: ignoring avatar-avatar penetration depth " << penetrationDepth;
}
else if (penetrationDepth > EPSILON) {
setPosition(getPosition() - BODY_COLLISION_RESOLUTION_FACTOR * collision._penetration);
_lastBodyPenetration += collision._penetration;
emit collisionWithAvatar(getSessionUUID(), avatar->getSessionUUID(), collision);
}
if (Menu::getInstance()->isOptionChecked(MenuOption::CollideAsRagdoll)) {
if (nearestAvatar != NULL) {
if (_distanceToNearestAvatar > myBoundingRadius + nearestAvatar->getBoundingRadius()) {
// they aren't close enough to put into the _physicsSimulation
// so we clear the pointer
nearestAvatar = NULL;
}
}
foreach (const AvatarSharedPointer& avatarPointer, avatars) {
Avatar* avatar = static_cast<Avatar*>(avatarPointer.data());
if (static_cast<Avatar*>(this) == avatar) {
// don't collide with ourselves
continue;
}
SkeletonModel* skeleton = &(avatar->getSkeletonModel());
PhysicsSimulation* simulation = skeleton->getSimulation();
if (avatar == nearestAvatar) {
if (simulation != &(_physicsSimulation)) {
skeleton->setEnableShapes(true);
_physicsSimulation.addEntity(skeleton);
_physicsSimulation.addRagdoll(skeleton);
}
} else if (simulation == &(_physicsSimulation)) {
_physicsSimulation.removeRagdoll(skeleton);
_physicsSimulation.removeEntity(skeleton);
skeleton->setEnableShapes(false);
}
// collide their hands against us
avatar->getHand()->collideAgainstAvatar(this, false);
}
}
}

View file

@ -490,11 +490,13 @@ void SkeletonModel::renderRagdoll() {
float alpha = 0.3f;
float radius1 = 0.008f;
float radius2 = 0.01f;
glm::vec3 simulationTranslation = getTranslationInSimulationFrame();
for (int i = 0; i < numPoints; ++i) {
glPushMatrix();
// draw each point as a yellow hexagon with black border
glm::vec3 position = _rotation * _ragdollPoints[i]._position;
// NOTE: ragdollPoints are in simulation-frame but we want them to be model-relative
glm::vec3 position = _ragdollPoints[i]._position - simulationTranslation;
glTranslatef(position.x, position.y, position.z);
// draw each point as a yellow hexagon with black border
glColor4f(0.0f, 0.0f, 0.0f, alpha);
glutSolidSphere(radius2, BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
glColor4f(1.0f, 1.0f, 0.0f, alpha);
@ -511,13 +513,14 @@ void SkeletonModel::initRagdollPoints() {
clearRagdollConstraintsAndPoints();
_muscleConstraints.clear();
initRagdollTransform();
// one point for each joint
int numJoints = _jointStates.size();
_ragdollPoints.fill(VerletPoint(), numJoints);
for (int i = 0; i < numJoints; ++i) {
int numStates = _jointStates.size();
_ragdollPoints.fill(VerletPoint(), numStates);
for (int i = 0; i < numStates; ++i) {
const JointState& state = _jointStates.at(i);
glm::vec3 position = state.getPosition();
_ragdollPoints[i].initPosition(position);
// _ragdollPoints start in model-frame
_ragdollPoints[i].initPosition(state.getPosition());
}
}
@ -534,12 +537,12 @@ void SkeletonModel::buildRagdollConstraints() {
const JointState& state = _jointStates.at(i);
int parentIndex = state.getParentIndex();
if (parentIndex == -1) {
FixedConstraint* anchor = new FixedConstraint(&(_ragdollPoints[i]), glm::vec3(0.0f));
_ragdollConstraints.push_back(anchor);
FixedConstraint* anchor = new FixedConstraint(&_translationInSimulationFrame, &(_ragdollPoints[i]));
_fixedConstraints.push_back(anchor);
} else {
DistanceConstraint* bone = new DistanceConstraint(&(_ragdollPoints[i]), &(_ragdollPoints[parentIndex]));
bone->setDistance(state.getDistanceToParent());
_ragdollConstraints.push_back(bone);
_boneConstraints.push_back(bone);
families.insert(parentIndex, i);
}
float boneLength = glm::length(state.getPositionInParentFrame());
@ -558,11 +561,11 @@ void SkeletonModel::buildRagdollConstraints() {
if (numChildren > 1) {
for (int i = 1; i < numChildren; ++i) {
DistanceConstraint* bone = new DistanceConstraint(&(_ragdollPoints[children[i-1]]), &(_ragdollPoints[children[i]]));
_ragdollConstraints.push_back(bone);
_boneConstraints.push_back(bone);
}
if (numChildren > 2) {
DistanceConstraint* bone = new DistanceConstraint(&(_ragdollPoints[children[numChildren-1]]), &(_ragdollPoints[children[0]]));
_ragdollConstraints.push_back(bone);
_boneConstraints.push_back(bone);
}
}
++itr;
@ -604,6 +607,7 @@ void SkeletonModel::updateVisibleJointStates() {
}
QVector<glm::vec3> points;
points.reserve(_jointStates.size());
glm::quat invRotation = glm::inverse(_rotation);
for (int i = 0; i < _jointStates.size(); i++) {
JointState& state = _jointStates[i];
points.push_back(_ragdollPoints[i]._position);
@ -628,8 +632,9 @@ void SkeletonModel::updateVisibleJointStates() {
// we're looking for the rotation that moves visible bone parallel to ragdoll bone
// rotationBetween(jointTip - jointPivot, shapeTip - shapePivot)
// NOTE: points are in simulation-frame so rotate line segment into model-frame
glm::quat delta = rotationBetween(state.getVisiblePosition() - extractTranslation(parentTransform),
points[i] - points[parentIndex]);
invRotation * (points[i] - points[parentIndex]));
// apply
parentState.mixVisibleRotationDelta(delta, 0.01f);
@ -641,6 +646,7 @@ void SkeletonModel::updateVisibleJointStates() {
// virtual
void SkeletonModel::stepRagdollForward(float deltaTime) {
setRagdollTransform(_translation, _rotation);
Ragdoll::stepRagdollForward(deltaTime);
updateMuscles();
int numConstraints = _muscleConstraints.size();
@ -665,6 +671,7 @@ void SkeletonModel::buildShapes() {
}
initRagdollPoints();
float massScale = getMassScale();
float uniformScale = extractUniformScale(_scale);
const int numStates = _jointStates.size();
@ -678,25 +685,30 @@ void SkeletonModel::buildShapes() {
// this shape is forced to be a sphere
type = Shape::SPHERE_SHAPE;
}
if (radius < EPSILON) {
type = Shape::UNKNOWN_SHAPE;
}
Shape* shape = NULL;
int parentIndex = joint.parentIndex;
if (type == Shape::SPHERE_SHAPE) {
shape = new VerletSphereShape(radius, &(_ragdollPoints[i]));
shape->setEntity(this);
_ragdollPoints[i]._mass = glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume());
_ragdollPoints[i].setMass(massScale * glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume()));
} else if (type == Shape::CAPSULE_SHAPE) {
assert(parentIndex != -1);
shape = new VerletCapsuleShape(radius, &(_ragdollPoints[parentIndex]), &(_ragdollPoints[i]));
shape->setEntity(this);
_ragdollPoints[i]._mass = glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume());
_ragdollPoints[i].setMass(massScale * glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume()));
}
if (parentIndex != -1) {
// always disable collisions between joint and its parent
disableCollisions(i, parentIndex);
if (shape) {
disableCollisions(i, parentIndex);
}
} else {
// give the base joint a very large mass since it doesn't actually move
// in the local-frame simulation (it defines the origin)
_ragdollPoints[i]._mass = VERY_BIG_MASS;
_ragdollPoints[i].setMass(VERY_BIG_MASS);
}
_shapes.push_back(shape);
}
@ -712,8 +724,9 @@ void SkeletonModel::buildShapes() {
// ... then move shapes back to current joint positions
if (_ragdollPoints.size() == numStates) {
int numJoints = _jointStates.size();
for (int i = 0; i < numJoints; ++i) {
int numStates = _jointStates.size();
for (int i = 0; i < numStates; ++i) {
// ragdollPoints start in model-frame
_ragdollPoints[i].initPosition(_jointStates.at(i).getPosition());
}
}
@ -735,9 +748,11 @@ void SkeletonModel::moveShapesTowardJoints(float deltaTime) {
float fraction = glm::clamp(deltaTime / RAGDOLL_FOLLOWS_JOINTS_TIMESCALE, 0.0f, 1.0f);
float oneMinusFraction = 1.0f - fraction;
glm::vec3 simulationTranslation = getTranslationInSimulationFrame();
for (int i = 0; i < numStates; ++i) {
// ragdollPoints are in simulation-frame but jointStates are in model-frame
_ragdollPoints[i].initPosition(oneMinusFraction * _ragdollPoints[i]._position +
fraction * _jointStates.at(i).getPosition());
fraction * (simulationTranslation + _rotation * (_jointStates.at(i).getPosition())));
}
}
@ -748,23 +763,22 @@ void SkeletonModel::updateMuscles() {
int j = constraint->getParentIndex();
int k = constraint->getChildIndex();
assert(j != -1 && k != -1);
constraint->setChildOffset(_jointStates.at(k).getPosition() - _jointStates.at(j).getPosition());
// ragdollPoints are in simulation-frame but jointStates are in model-frame
constraint->setChildOffset(_rotation * (_jointStates.at(k).getPosition() - _jointStates.at(j).getPosition()));
}
}
void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
// compute default joint transforms
int numJoints = geometry.joints.size();
if (numJoints != _ragdollPoints.size()) {
return;
}
int numStates = _jointStates.size();
QVector<glm::mat4> transforms;
transforms.fill(glm::mat4(), numJoints);
transforms.fill(glm::mat4(), numStates);
// compute the default transforms and slam the ragdoll positions accordingly
// (which puts the shapes where we want them)
for (int i = 0; i < numJoints; i++) {
const FBXJoint& joint = geometry.joints.at(i);
for (int i = 0; i < numStates; i++) {
JointState& state = _jointStates[i];
const FBXJoint& joint = state.getFBXJoint();
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
transforms[i] = _jointStates[i].getTransform();
@ -836,7 +850,7 @@ void SkeletonModel::resetShapePositionsToDefaultPose() {
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (geometry.joints.isEmpty() || _shapes.size() != geometry.joints.size()) {
if (geometry.joints.isEmpty()) {
return;
}
@ -891,3 +905,54 @@ void SkeletonModel::renderBoundingCollisionShapes(float alpha) {
glPopMatrix();
}
const int BALL_SUBDIVISIONS = 10;
// virtual
void SkeletonModel::renderJointCollisionShapes(float alpha) {
glPushMatrix();
Application::getInstance()->loadTranslatedViewMatrix(_translation);
glm::vec3 simulationTranslation = getTranslationInSimulationFrame();
for (int i = 0; i < _shapes.size(); i++) {
Shape* shape = _shapes[i];
if (!shape) {
continue;
}
glPushMatrix();
// shapes are stored in simulation-frame but we want position to be model-relative
if (shape->getType() == Shape::SPHERE_SHAPE) {
glm::vec3 position = shape->getTranslation() - simulationTranslation;
glTranslatef(position.x, position.y, position.z);
// draw a grey sphere at shape position
glColor4f(0.75f, 0.75f, 0.75f, alpha);
glutSolidSphere(shape->getBoundingRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
} else if (shape->getType() == Shape::CAPSULE_SHAPE) {
CapsuleShape* capsule = static_cast<CapsuleShape*>(shape);
// draw a blue sphere at the capsule endpoint
glm::vec3 endPoint;
capsule->getEndPoint(endPoint);
endPoint = endPoint - simulationTranslation;
glTranslatef(endPoint.x, endPoint.y, endPoint.z);
glColor4f(0.6f, 0.6f, 0.8f, alpha);
glutSolidSphere(capsule->getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
// draw a yellow sphere at the capsule startpoint
glm::vec3 startPoint;
capsule->getStartPoint(startPoint);
startPoint = startPoint - simulationTranslation;
glm::vec3 axis = endPoint - startPoint;
glTranslatef(-axis.x, -axis.y, -axis.z);
glColor4f(0.8f, 0.8f, 0.6f, alpha);
glutSolidSphere(capsule->getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
// draw a green cylinder between the two points
glm::vec3 origin(0.0f);
glColor4f(0.6f, 0.8f, 0.6f, alpha);
Avatar::renderJointConnectingCone( origin, axis, capsule->getRadius(), capsule->getRadius());
}
glPopMatrix();
}
glPopMatrix();
}

View file

@ -105,6 +105,7 @@ public:
void computeBoundingShape(const FBXGeometry& geometry);
void renderBoundingCollisionShapes(float alpha);
void renderJointCollisionShapes(float alpha);
float getBoundingShapeRadius() const { return _boundingShape.getRadius(); }
const CapsuleShape& getBoundingShape() const { return _boundingShape; }

View file

@ -188,10 +188,12 @@ void Model::initSkinProgram(ProgramObject& program, Model::SkinLocations& locati
QVector<JointState> Model::createJointStates(const FBXGeometry& geometry) {
QVector<JointState> jointStates;
foreach (const FBXJoint& joint, geometry.joints) {
// NOTE: the state keeps a pointer to an FBXJoint
for (int i = 0; i < geometry.joints.size(); ++i) {
const FBXJoint& joint = geometry.joints[i];
// store a pointer to the FBXJoint in the JointState
JointState state;
state.setFBXJoint(&joint);
jointStates.append(state);
}
return jointStates;
@ -199,8 +201,8 @@ QVector<JointState> Model::createJointStates(const FBXGeometry& geometry) {
void Model::initJointTransforms() {
// compute model transforms
int numJoints = _jointStates.size();
for (int i = 0; i < numJoints; ++i) {
int numStates = _jointStates.size();
for (int i = 0; i < numStates; ++i) {
JointState& state = _jointStates[i];
const FBXJoint& joint = state.getFBXJoint();
int parentIndex = joint.parentIndex;
@ -538,9 +540,9 @@ void Model::setJointStates(QVector<JointState> states) {
_jointStates = states;
initJointTransforms();
int numJoints = _jointStates.size();
int numStates = _jointStates.size();
float radius = 0.0f;
for (int i = 0; i < numJoints; ++i) {
for (int i = 0; i < numStates; ++i) {
float distance = glm::length(_jointStates[i].getPosition());
if (distance > radius) {
radius = distance;
@ -1243,55 +1245,7 @@ float Model::getLimbLength(int jointIndex) const {
const int BALL_SUBDIVISIONS = 10;
void Model::renderJointCollisionShapes(float alpha) {
glPushMatrix();
Application::getInstance()->loadTranslatedViewMatrix(_translation);
for (int i = 0; i < _shapes.size(); i++) {
Shape* shape = _shapes[i];
if (!shape) {
continue;
}
glPushMatrix();
// NOTE: the shapes are in the avatar local-frame
if (shape->getType() == Shape::SPHERE_SHAPE) {
// shapes are stored in world-frame, so we have to transform into model frame
glm::vec3 position = _rotation * shape->getTranslation();
glTranslatef(position.x, position.y, position.z);
const glm::quat& rotation = shape->getRotation();
glm::vec3 axis = glm::axis(rotation);
glRotatef(glm::degrees(glm::angle(rotation)), axis.x, axis.y, axis.z);
// draw a grey sphere at shape position
glColor4f(0.75f, 0.75f, 0.75f, alpha);
glutSolidSphere(shape->getBoundingRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
} else if (shape->getType() == Shape::CAPSULE_SHAPE) {
CapsuleShape* capsule = static_cast<CapsuleShape*>(shape);
// draw a blue sphere at the capsule endpoint
glm::vec3 endPoint;
capsule->getEndPoint(endPoint);
endPoint = _rotation * endPoint;
glTranslatef(endPoint.x, endPoint.y, endPoint.z);
glColor4f(0.6f, 0.6f, 0.8f, alpha);
glutSolidSphere(capsule->getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
// draw a yellow sphere at the capsule startpoint
glm::vec3 startPoint;
capsule->getStartPoint(startPoint);
startPoint = _rotation * startPoint;
glm::vec3 axis = endPoint - startPoint;
glTranslatef(-axis.x, -axis.y, -axis.z);
glColor4f(0.8f, 0.8f, 0.6f, alpha);
glutSolidSphere(capsule->getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
// draw a green cylinder between the two points
glm::vec3 origin(0.0f);
glColor4f(0.6f, 0.8f, 0.6f, alpha);
Avatar::renderJointConnectingCone( origin, axis, capsule->getRadius(), capsule->getRadius());
}
glPopMatrix();
}
glPopMatrix();
// implement this when we have shapes for regular models
}
void Model::setBlendedVertices(const QVector<glm::vec3>& vertices, const QVector<glm::vec3>& normals) {

View file

@ -149,7 +149,7 @@ public:
virtual void buildShapes();
virtual void updateShapePositions();
void renderJointCollisionShapes(float alpha);
virtual void renderJointCollisionShapes(float alpha);
/// Sets blended vertices computed in a separate thread.
void setBlendedVertices(const QVector<glm::vec3>& vertices, const QVector<glm::vec3>& normals);

View file

@ -10,26 +10,26 @@
//
#include "FixedConstraint.h"
#include "Shape.h" // for MAX_SHAPE_MASS
#include "VerletPoint.h"
FixedConstraint::FixedConstraint(VerletPoint* point, const glm::vec3& anchor) : _point(point), _anchor(anchor) {
FixedConstraint::FixedConstraint(glm::vec3* anchor, VerletPoint* point) : _anchor(anchor), _point(point) {
assert(anchor);
assert(point);
}
float FixedConstraint::enforce() {
assert(_point != NULL);
// TODO: use fast approximate sqrt here
float distance = glm::distance(_anchor, _point->_position);
_point->_position = _anchor;
return distance;
_point->_position = *_anchor;
_point->_lastPosition = *_anchor;
return 0.0f;
}
void FixedConstraint::setAnchor(glm::vec3* anchor) {
assert(anchor);
_anchor = anchor;
}
void FixedConstraint::setPoint(VerletPoint* point) {
assert(point);
_point = point;
_point->_mass = MAX_SHAPE_MASS;
}
void FixedConstraint::setAnchor(const glm::vec3& anchor) {
_anchor = anchor;
}

View file

@ -18,15 +18,19 @@
class VerletPoint;
// FixedConstraint takes pointers to a glm::vec3 and a VerletPoint.
// The enforcement will copy the value of the vec3 into the VerletPoint.
class FixedConstraint : public Constraint {
public:
FixedConstraint(VerletPoint* point, const glm::vec3& anchor);
FixedConstraint(glm::vec3* anchor, VerletPoint* point);
~FixedConstraint() {}
float enforce();
void setAnchor(glm::vec3* anchor);
void setPoint(VerletPoint* point);
void setAnchor(const glm::vec3& anchor);
private:
glm::vec3* _anchor;
VerletPoint* _point;
glm::vec3 _anchor;
};
#endif // hifi_FixedConstraint_h

View file

@ -24,19 +24,51 @@ int MAX_ENTITIES_PER_SIMULATION = 64;
int MAX_COLLISIONS_PER_SIMULATION = 256;
PhysicsSimulation::PhysicsSimulation() : _frame(0), _collisions(MAX_COLLISIONS_PER_SIMULATION) {
PhysicsSimulation::PhysicsSimulation() : _translation(0.0f), _frameCount(0), _entity(NULL), _ragdoll(NULL),
_collisions(MAX_COLLISIONS_PER_SIMULATION) {
}
PhysicsSimulation::~PhysicsSimulation() {
// entities have a backpointer to this simulator that must be cleaned up
int numEntities = _entities.size();
int numEntities = _otherEntities.size();
for (int i = 0; i < numEntities; ++i) {
_entities[i]->_simulation = NULL;
_otherEntities[i]->_simulation = NULL;
}
_otherEntities.clear();
if (_entity) {
_entity->_simulation = NULL;
}
_entities.clear();
// but Ragdolls do not
_dolls.clear();
_ragdoll = NULL;
_otherRagdolls.clear();
}
void PhysicsSimulation::setRagdoll(Ragdoll* ragdoll) {
if (_ragdoll != ragdoll) {
if (_ragdoll) {
_ragdoll->_ragdollSimulation = NULL;
}
_ragdoll = ragdoll;
if (_ragdoll) {
assert(!(_ragdoll->_ragdollSimulation));
_ragdoll->_ragdollSimulation = this;
}
}
}
void PhysicsSimulation::setEntity(PhysicsEntity* entity) {
if (_entity != entity) {
if (_entity) {
assert(_entity->_simulation == this);
_entity->_simulation = NULL;
}
_entity = entity;
if (_entity) {
assert(!(_entity->_simulation));
_entity->_simulation = this;
}
}
}
bool PhysicsSimulation::addEntity(PhysicsEntity* entity) {
@ -44,25 +76,25 @@ bool PhysicsSimulation::addEntity(PhysicsEntity* entity) {
return false;
}
if (entity->_simulation == this) {
int numEntities = _entities.size();
int numEntities = _otherEntities.size();
for (int i = 0; i < numEntities; ++i) {
if (entity == _entities.at(i)) {
if (entity == _otherEntities.at(i)) {
// already in list
assert(entity->_simulation == this);
return true;
}
}
// belongs to some other simulation
return false;
}
int numEntities = _entities.size();
int numEntities = _otherEntities.size();
if (numEntities > MAX_ENTITIES_PER_SIMULATION) {
// list is full
return false;
}
// add to list
assert(!(entity->_simulation));
entity->_simulation = this;
_entities.push_back(entity);
_otherEntities.push_back(entity);
return true;
}
@ -71,17 +103,17 @@ void PhysicsSimulation::removeEntity(PhysicsEntity* entity) {
return;
}
removeShapes(entity);
int numEntities = _entities.size();
int numEntities = _otherEntities.size();
for (int i = 0; i < numEntities; ++i) {
if (entity == _entities.at(i)) {
if (entity == _otherEntities.at(i)) {
if (i == numEntities - 1) {
// remove it
_entities.pop_back();
_otherEntities.pop_back();
} else {
// swap the last for this one
PhysicsEntity* lastEntity = _entities[numEntities - 1];
_entities.pop_back();
_entities[i] = lastEntity;
PhysicsEntity* lastEntity = _otherEntities[numEntities - 1];
_otherEntities.pop_back();
_otherEntities[i] = lastEntity;
}
entity->_simulation = NULL;
break;
@ -101,57 +133,75 @@ void PhysicsSimulation::removeShapes(const PhysicsEntity* entity) {
}
}
const float OTHER_RAGDOLL_MASS_SCALE = 10.0f;
bool PhysicsSimulation::addRagdoll(Ragdoll* doll) {
if (!doll) {
return false;
}
int numDolls = _dolls.size();
int numDolls = _otherRagdolls.size();
if (numDolls > MAX_DOLLS_PER_SIMULATION) {
// list is full
return false;
}
for (int i = 0; i < numDolls; ++i) {
if (doll == _dolls[i]) {
// already in list
return true;
if (doll->_ragdollSimulation == this) {
for (int i = 0; i < numDolls; ++i) {
if (doll == _otherRagdolls[i]) {
// already in list
return true;
}
}
}
// add to list
_dolls.push_back(doll);
assert(!(doll->_ragdollSimulation));
doll->_ragdollSimulation = this;
_otherRagdolls.push_back(doll);
// set the massScale of otherRagdolls artificially high
doll->setMassScale(OTHER_RAGDOLL_MASS_SCALE);
return true;
}
void PhysicsSimulation::removeRagdoll(Ragdoll* doll) {
int numDolls = _dolls.size();
int numDolls = _otherRagdolls.size();
if (doll->_ragdollSimulation != this) {
return;
}
for (int i = 0; i < numDolls; ++i) {
if (doll == _dolls[i]) {
if (doll == _otherRagdolls[i]) {
if (i == numDolls - 1) {
// remove it
_dolls.pop_back();
_otherRagdolls.pop_back();
} else {
// swap the last for this one
Ragdoll* lastDoll = _dolls[numDolls - 1];
_dolls.pop_back();
_dolls[i] = lastDoll;
Ragdoll* lastDoll = _otherRagdolls[numDolls - 1];
_otherRagdolls.pop_back();
_otherRagdolls[i] = lastDoll;
}
doll->_ragdollSimulation = NULL;
doll->setMassScale(1.0f);
break;
}
}
}
void PhysicsSimulation::stepForward(float deltaTime, float minError, int maxIterations, quint64 maxUsec) {
++_frame;
++_frameCount;
if (!_ragdoll) {
return;
}
quint64 now = usecTimestampNow();
quint64 startTime = now;
quint64 expiry = startTime + maxUsec;
moveRagdolls(deltaTime);
buildContactConstraints();
int numDolls = _dolls.size();
int numDolls = _otherRagdolls.size();
{
PerformanceTimer perfTimer("enforce");
_ragdoll->enforceRagdollConstraints();
for (int i = 0; i < numDolls; ++i) {
_dolls[i]->enforceRagdollConstraints();
_otherRagdolls[i]->enforceRagdollConstraints();
}
}
@ -164,9 +214,9 @@ void PhysicsSimulation::stepForward(float deltaTime, float minError, int maxIter
{ // enforce constraints
PerformanceTimer perfTimer("enforce");
error = 0.0f;
error = _ragdoll->enforceRagdollConstraints();
for (int i = 0; i < numDolls; ++i) {
error = glm::max(error, _dolls[i]->enforceRagdollConstraints());
error = glm::max(error, _otherRagdolls[i]->enforceRagdollConstraints());
}
}
enforceContactConstraints();
@ -180,40 +230,38 @@ void PhysicsSimulation::stepForward(float deltaTime, float minError, int maxIter
void PhysicsSimulation::moveRagdolls(float deltaTime) {
PerformanceTimer perfTimer("integrate");
int numDolls = _dolls.size();
_ragdoll->stepRagdollForward(deltaTime);
int numDolls = _otherRagdolls.size();
for (int i = 0; i < numDolls; ++i) {
_dolls.at(i)->stepRagdollForward(deltaTime);
_otherRagdolls[i]->stepRagdollForward(deltaTime);
}
}
void PhysicsSimulation::computeCollisions() {
PerformanceTimer perfTimer("collide");
_collisions.clear();
// TODO: keep track of QSet<PhysicsEntity*> collidedEntities;
int numEntities = _entities.size();
for (int i = 0; i < numEntities; ++i) {
PhysicsEntity* entity = _entities.at(i);
const QVector<Shape*> shapes = entity->getShapes();
int numShapes = shapes.size();
// collide with self
for (int j = 0; j < numShapes; ++j) {
const Shape* shape = shapes.at(j);
if (!shape) {
continue;
}
for (int k = j+1; k < numShapes; ++k) {
const Shape* otherShape = shapes.at(k);
if (otherShape && entity->collisionsAreEnabled(j, k)) {
ShapeCollider::collideShapes(shape, otherShape, _collisions);
}
}
}
// collide with others
for (int j = i+1; j < numEntities; ++j) {
const QVector<Shape*> otherShapes = _entities.at(j)->getShapes();
ShapeCollider::collideShapesWithShapes(shapes, otherShapes, _collisions);
const QVector<Shape*> shapes = _entity->getShapes();
int numShapes = shapes.size();
// collide main ragdoll with self
for (int i = 0; i < numShapes; ++i) {
const Shape* shape = shapes.at(i);
if (!shape) {
continue;
}
for (int j = i+1; j < numShapes; ++j) {
const Shape* otherShape = shapes.at(j);
if (otherShape && _entity->collisionsAreEnabled(i, j)) {
ShapeCollider::collideShapes(shape, otherShape, _collisions);
}
}
}
// collide main ragdoll with others
int numEntities = _otherEntities.size();
for (int i = 0; i < numEntities; ++i) {
const QVector<Shape*> otherShapes = _otherEntities.at(i)->getShapes();
ShapeCollider::collideShapesWithShapes(shapes, otherShapes, _collisions);
}
}
@ -269,9 +317,9 @@ void PhysicsSimulation::updateContacts() {
}
QMap<quint64, ContactPoint>::iterator itr = _contacts.find(key);
if (itr == _contacts.end()) {
_contacts.insert(key, ContactPoint(*collision, _frame));
_contacts.insert(key, ContactPoint(*collision, _frameCount));
} else {
itr.value().updateContact(*collision, _frame);
itr.value().updateContact(*collision, _frameCount);
}
}
}
@ -281,7 +329,7 @@ const quint32 MAX_CONTACT_FRAME_LIFETIME = 2;
void PhysicsSimulation::pruneContacts() {
QMap<quint64, ContactPoint>::iterator itr = _contacts.begin();
while (itr != _contacts.end()) {
if (_frame - itr.value().getLastFrame() > MAX_CONTACT_FRAME_LIFETIME) {
if (_frameCount - itr.value().getLastFrame() > MAX_CONTACT_FRAME_LIFETIME) {
itr = _contacts.erase(itr);
} else {
++itr;

View file

@ -28,6 +28,12 @@ public:
PhysicsSimulation();
~PhysicsSimulation();
void setTranslation(const glm::vec3& translation) { _translation = translation; }
const glm::vec3& getTranslation() const { return _translation; }
void setRagdoll(Ragdoll* ragdoll);
void setEntity(PhysicsEntity* entity);
/// \return true if entity was added to or is already in the list
bool addEntity(PhysicsEntity* entity);
@ -56,10 +62,15 @@ protected:
void pruneContacts();
private:
quint32 _frame;
glm::vec3 _translation; // origin of simulation in world-frame
QVector<Ragdoll*> _dolls;
QVector<PhysicsEntity*> _entities;
quint32 _frameCount;
PhysicsEntity* _entity;
Ragdoll* _ragdoll;
QVector<Ragdoll*> _otherRagdolls;
QVector<PhysicsEntity*> _otherEntities;
CollisionList _collisions;
QMap<quint64, ContactPoint> _contacts;
};

View file

@ -9,13 +9,17 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <glm/gtx/norm.hpp>
#include "Ragdoll.h"
#include "Constraint.h"
#include "DistanceConstraint.h"
#include "FixedConstraint.h"
#include "PhysicsSimulation.h"
#include "SharedUtil.h" // for EPSILON
Ragdoll::Ragdoll() {
Ragdoll::Ragdoll() : _massScale(1.0f), _ragdollTranslation(0.0f), _translationInSimulationFrame(0.0f), _ragdollSimulation(NULL) {
}
Ragdoll::~Ragdoll() {
@ -23,6 +27,9 @@ Ragdoll::~Ragdoll() {
}
void Ragdoll::stepRagdollForward(float deltaTime) {
if (_ragdollSimulation) {
updateSimulationTransforms(_ragdollTranslation - _ragdollSimulation->getTranslation(), _ragdollRotation);
}
int numPoints = _ragdollPoints.size();
for (int i = 0; i < numPoints; ++i) {
_ragdollPoints[i].integrateForward();
@ -30,21 +37,79 @@ void Ragdoll::stepRagdollForward(float deltaTime) {
}
void Ragdoll::clearRagdollConstraintsAndPoints() {
int numConstraints = _ragdollConstraints.size();
int numConstraints = _boneConstraints.size();
for (int i = 0; i < numConstraints; ++i) {
delete _ragdollConstraints[i];
delete _boneConstraints[i];
}
_ragdollConstraints.clear();
_boneConstraints.clear();
numConstraints = _fixedConstraints.size();
for (int i = 0; i < numConstraints; ++i) {
delete _fixedConstraints[i];
}
_fixedConstraints.clear();
_ragdollPoints.clear();
}
float Ragdoll::enforceRagdollConstraints() {
float maxDistance = 0.0f;
const int numConstraints = _ragdollConstraints.size();
// enforce the bone constraints first
int numConstraints = _boneConstraints.size();
for (int i = 0; i < numConstraints; ++i) {
DistanceConstraint* c = static_cast<DistanceConstraint*>(_ragdollConstraints[i]);
//maxDistance = glm::max(maxDistance, _ragdollConstraints[i]->enforce());
maxDistance = glm::max(maxDistance, c->enforce());
maxDistance = glm::max(maxDistance, _boneConstraints[i]->enforce());
}
// enforce FixedConstraints second
numConstraints = _fixedConstraints.size();
for (int i = 0; i < _fixedConstraints.size(); ++i) {
maxDistance = glm::max(maxDistance, _fixedConstraints[i]->enforce());
}
return maxDistance;
}
void Ragdoll::initRagdollTransform() {
_ragdollTranslation = glm::vec3(0.0f);
_ragdollRotation = glm::quat();
_translationInSimulationFrame = glm::vec3(0.0f);
_rotationInSimulationFrame = glm::quat();
}
void Ragdoll::setRagdollTransform(const glm::vec3& translation, const glm::quat& rotation) {
_ragdollTranslation = translation;
_ragdollRotation = rotation;
}
void Ragdoll::updateSimulationTransforms(const glm::vec3& translation, const glm::quat& rotation) {
const float EPSILON2 = EPSILON * EPSILON;
if (glm::distance2(translation, _translationInSimulationFrame) < EPSILON2 &&
glm::abs(1.0f - glm::abs(glm::dot(rotation, _rotationInSimulationFrame))) < EPSILON2) {
// nothing to do
return;
}
// compute linear and angular deltas
glm::vec3 deltaPosition = translation - _translationInSimulationFrame;
glm::quat deltaRotation = rotation * glm::inverse(_rotationInSimulationFrame);
// apply the deltas to all ragdollPoints
int numPoints = _ragdollPoints.size();
for (int i = 0; i < numPoints; ++i) {
_ragdollPoints[i].move(deltaPosition, deltaRotation, _translationInSimulationFrame);
}
// remember the current transform
_translationInSimulationFrame = translation;
_rotationInSimulationFrame = rotation;
}
void Ragdoll::setMassScale(float scale) {
const float MIN_SCALE = 1.0e-2f;
const float MAX_SCALE = 1.0e6f;
scale = glm::clamp(glm::abs(scale), MIN_SCALE, MAX_SCALE);
if (scale != _massScale) {
float rescale = scale / _massScale;
int numPoints = _ragdollPoints.size();
for (int i = 0; i < numPoints; ++i) {
_ragdollPoints[i].setMass(rescale * _ragdollPoints[i].getMass());
}
_massScale = scale;
}
}

View file

@ -18,7 +18,14 @@
#include <QVector>
class Constraint;
//#include "PhysicsSimulation.h"
class DistanceConstraint;
class FixedConstraint;
class PhysicsSimulation;
// TODO: don't derive SkeletonModel from Ragdoll so we can clean up the Ragdoll API
// (==> won't need to worry about namespace conflicts between Entity and Ragdoll).
class Ragdoll {
public:
@ -35,13 +42,35 @@ public:
const QVector<VerletPoint>& getRagdollPoints() const { return _ragdollPoints; }
QVector<VerletPoint>& getRagdollPoints() { return _ragdollPoints; }
void initRagdollTransform();
/// set the translation and rotation of the Ragdoll and adjust all VerletPoints.
void setRagdollTransform(const glm::vec3& translation, const glm::quat& rotation);
const glm::vec3& getTranslationInSimulationFrame() const { return _translationInSimulationFrame; }
void setMassScale(float scale);
float getMassScale() const { return _massScale; }
protected:
void clearRagdollConstraintsAndPoints();
virtual void initRagdollPoints() = 0;
virtual void buildRagdollConstraints() = 0;
float _massScale;
glm::vec3 _ragdollTranslation; // world-frame
glm::quat _ragdollRotation; // world-frame
glm::vec3 _translationInSimulationFrame;
glm::quat _rotationInSimulationFrame;
QVector<VerletPoint> _ragdollPoints;
QVector<Constraint*> _ragdollConstraints;
QVector<DistanceConstraint*> _boneConstraints;
QVector<FixedConstraint*> _fixedConstraints;
private:
void updateSimulationTransforms(const glm::vec3& translation, const glm::quat& rotation);
friend class PhysicsSimulation;
PhysicsSimulation* _ragdollSimulation;
};
#endif // hifi_Ragdoll_h

View file

@ -122,4 +122,5 @@ bool isNaN(float value);
QString formatUsecTime(float usecs, int prec = 3);
#endif // hifi_SharedUtil_h

View file

@ -97,7 +97,7 @@ float VerletCapsuleShape::computeEffectiveMass(const glm::vec3& penetration, con
_endLagrangeCoef = 1.0f;
}
// the effective mass is the weighted sum of the two endpoints
return _startLagrangeCoef * _startPoint->_mass + _endLagrangeCoef * _endPoint->_mass;
return _startLagrangeCoef * _startPoint->getMass() + _endLagrangeCoef * _endPoint->getMass();
}
void VerletCapsuleShape::accumulateDelta(float relativeMassFactor, const glm::vec3& penetration) {

View file

@ -31,3 +31,19 @@ void VerletPoint::applyAccumulatedDelta() {
_numDeltas = 0;
}
}
void VerletPoint::move(const glm::vec3& deltaPosition, const glm::quat& deltaRotation, const glm::vec3& oldPivot) {
glm::vec3 arm = _position - oldPivot;
_position += deltaPosition + (deltaRotation * arm - arm);
arm = _lastPosition - oldPivot;
_lastPosition += deltaPosition + (deltaRotation * arm - arm);
}
void VerletPoint::setMass(float mass) {
const float MIN_MASS = 1.0e-6f;
const float MAX_MASS = 1.0e18f;
if (glm::isnan(mass)) {
mass = MIN_MASS;
}
_mass = glm::clamp(glm::abs(mass), MIN_MASS, MAX_MASS);
}

View file

@ -13,6 +13,8 @@
#define hifi_VerletPoint_h
#include <glm/glm.hpp>
#include <glm/gtc/quaternion.hpp>
class VerletPoint {
public:
@ -22,12 +24,16 @@ public:
void integrateForward();
void accumulateDelta(const glm::vec3& delta);
void applyAccumulatedDelta();
void move(const glm::vec3& deltaPosition, const glm::quat& deltaRotation, const glm::vec3& oldPivot);
void setMass(float mass);
float getMass() const { return _mass; }
glm::vec3 _position;
glm::vec3 _lastPosition;
float _mass;
private:
float _mass;
glm::vec3 _accumulatedDelta;
int _numDeltas;
};

View file

@ -36,7 +36,7 @@ const glm::vec3& VerletSphereShape::getTranslation() const {
// virtual
float VerletSphereShape::computeEffectiveMass(const glm::vec3& penetration, const glm::vec3& contactPoint) {
return _point->_mass;
return _point->getMass();
}
// virtual