3
0
Fork 0
mirror of https://github.com/lubosz/overte.git synced 2025-04-27 12:35:31 +02:00

Merge branch 'master' into ajt/new-anim-system

This commit is contained in:
Anthony J. Thibault 2015-09-02 09:53:56 -07:00
commit d151474446
33 changed files with 341 additions and 169 deletions

View file

@ -295,7 +295,7 @@ void AvatarMixer::broadcastAvatarData() {
avatarPacketList.startSegment();
numAvatarDataBytes += avatarPacketList.write(otherNode->getUUID().toRfc4122());
numAvatarDataBytes += avatarPacketList.write(otherAvatar.toByteArray());
numAvatarDataBytes += avatarPacketList.write(otherAvatar.toByteArray(false));
avatarPacketList.endSegment();

View file

@ -77,10 +77,7 @@ void ScriptableAvatar::update(float deltatime) {
int mapping = animationJoints.indexOf(modelJoints[i]);
if (mapping != -1 && !_maskedJoints.contains(modelJoints[i])) {
JointData& data = _jointData[i];
data.valid = true;
data.rotation = safeMix(floorFrame.rotations.at(i), ceilFrame.rotations.at(i), frameFraction);
} else {
_jointData[i].valid = false;
}
}
} else {

View file

@ -47,13 +47,13 @@ if (WIN32)
elseif(APPLE)
# FIXME need to account for different architectures
set(${EXTERNAL_NAME_UPPER}_LIBRARIES ${SOURCE_DIR}/lib/osx32/libopenvr_api.dylib CACHE TYPE INTERNAL)
set(${EXTERNAL_NAME_UPPER}_LIBRARIES ${SOURCE_DIR}/lib/osx_x64/release_dll/libsixense_x64.dylib CACHE TYPE INTERNAL)
add_paths_to_fixup_libs(${SOURCE_DIR}/bin/osx32)
elseif(NOT ANDROID)
# FIXME need to account for different architectures
set(${EXTERNAL_NAME_UPPER}_LIBRARIES ${SOURCE_DIR}/lib/linux32/libopenvr_api.so CACHE TYPE INTERNAL)
set(${EXTERNAL_NAME_UPPER}_LIBRARIES ${SOURCE_DIR}/lib/linux_x64/release/libsixense_x64.so CACHE TYPE INTERNAL)
add_paths_to_fixup_libs(${SOURCE_DIR}/bin/linux32)
endif()

View file

@ -20,7 +20,9 @@
elRefresh = document.getElementById("refresh");
elDelete = document.getElementById("delete");
elTeleport = document.getElementById("teleport");
elRadius = document.getElementById("radius");
elNoEntitiesMessage = document.getElementById("no-entities");
elNoEntitiesRadius = document.getElementById("no-entities-radius");
document.getElementById("entity-name").onclick = function() {
setSortColumn('name');
@ -186,6 +188,13 @@
}
}, false);
elRadius.onchange = function () {
elRadius.value = Math.max(elRadius.value, 0);
EventBridge.emitWebEvent(JSON.stringify({ type: 'radius', radius: elRadius.value }));
refreshEntities();
elNoEntitiesRadius.firstChild.nodeValue = elRadius.value;
}
if (window.EventBridge !== undefined) {
EventBridge.scriptEventReceived.connect(function(data) {
data = JSON.parse(data);
@ -218,14 +227,15 @@
</head>
<body onload='loaded();'>
<div id="entity-list-header">
<input type="button" id="refresh" value="Refresh"></button>
<input type="button" id="teleport" value="Teleport"></button>
<input type="button" id="delete" style="background-color: rgb(244, 64, 64); float: right" value="Delete"></button>
<input type="button" id="refresh" value="Refresh" />
<input type="button" id="teleport" value="Teleport" />
<input type="button" id="delete" style="background-color: rgb(244, 64, 64); float: right" value="Delete" />
</div>
<div id="entity-list">
<div id="search-area">
<input type="text" class="search" id="filter" placeholder="Filter" />
<span id="radius-and-unit"><input type="number" id="radius" value="100" />&nbsp;m</span>
</div>
<table id="entity-table">
<thead>
@ -246,7 +256,7 @@
</table>
</div>
<div id="no-entities">
No entities found within 50 meter radius. Try moving to a different location and refreshing.
No entities found within a <span id="no-entities-radius">100</span> meter radius. Try moving to a different location and refreshing.
</div>
</body>
</html>

View file

@ -102,13 +102,23 @@ input[type=button] {
}
#search-area {
width: 100%;
padding: 0.5em;
box-sizing: border-box;
padding-right: 6em;
}
#search-area input {
width: 100%;
#filter {
width: 99%;
}
#radius-and-unit {
width: 6em;
float: right;
margin-right: -6em;
}
#radius {
width: 4em;
}
textarea, input {

View file

@ -4,6 +4,8 @@ EntityListTool = function(opts) {
var url = Script.resolvePath('html/entityList.html');
var webView = new WebWindow('Entities', url, 200, 280, true);
var searchRadius = 100;
var visible = false;
webView.setVisible(visible);
@ -33,7 +35,7 @@ EntityListTool = function(opts) {
that.sendUpdate = function() {
var entities = [];
var ids = Entities.findEntities(MyAvatar.position, 100);
var ids = Entities.findEntities(MyAvatar.position, searchRadius);
for (var i = 0; i < ids.length; i++) {
var id = ids[i];
var properties = Entities.getEntityProperties(id);
@ -80,6 +82,9 @@ EntityListTool = function(opts) {
}
} else if (data.type == "delete") {
deleteSelectedEntities();
} else if (data.type === "radius") {
searchRadius = data.radius;
that.sendUpdate();
}
});

View file

@ -443,8 +443,6 @@ Menu::Menu() {
SLOT(toggleConnexion(bool)));
MenuWrapper* handOptionsMenu = developerMenu->addMenu("Hands");
addCheckableActionToQMenuAndActionHash(handOptionsMenu, MenuOption::AlignForearmsWithWrists, 0, false);
addCheckableActionToQMenuAndActionHash(handOptionsMenu, MenuOption::AlternateIK, 0, false);
addCheckableActionToQMenuAndActionHash(handOptionsMenu, MenuOption::DisplayHands, 0, true);
addCheckableActionToQMenuAndActionHash(handOptionsMenu, MenuOption::DisplayHandTargets, 0, false);
addCheckableActionToQMenuAndActionHash(handOptionsMenu, MenuOption::HandMouseInput, 0, true);

View file

@ -131,8 +131,6 @@ namespace MenuOption {
const QString AboutApp = "About Interface";
const QString AddRemoveFriends = "Add/Remove Friends...";
const QString AddressBar = "Show Address Bar";
const QString AlignForearmsWithWrists = "Align Forearms with Wrists";
const QString AlternateIK = "Alternate IK";
const QString Animations = "Animations...";
const QString Atmosphere = "Atmosphere";
const QString Attachments = "Attachments...";

View file

@ -200,11 +200,9 @@ void Avatar::simulate(float deltaTime) {
if (!_shouldRenderBillboard && inViewFrustum) {
{
PerformanceTimer perfTimer("skeleton");
if (_hasNewJointRotations) {
for (int i = 0; i < _jointData.size(); i++) {
const JointData& data = _jointData.at(i);
_skeletonModel.setJointState(i, data.valid, data.rotation);
}
for (int i = 0; i < _jointData.size(); i++) {
const JointData& data = _jointData.at(i);
_skeletonModel.setJointState(i, true, data.rotation);
}
_skeletonModel.simulate(deltaTime, _hasNewJointRotations);
simulateAttachments(deltaTime);
@ -784,8 +782,10 @@ Transform Avatar::calculateDisplayNameTransform(const ViewFrustum& frustum, floa
void Avatar::renderDisplayName(gpu::Batch& batch, const ViewFrustum& frustum, const glm::ivec4& viewport) const {
bool shouldShowReceiveStats = DependencyManager::get<AvatarManager>()->shouldShowReceiveStats() && !isMyAvatar();
// If we have nothing to draw, or it's tottaly transparent, return
if ((_displayName.isEmpty() && !shouldShowReceiveStats) || _displayNameAlpha == 0.0f) {
// If we have nothing to draw, or it's totally transparent, or it's too close or behind the camera, return
const float CLIP_DISTANCE = 0.2f;
if ((_displayName.isEmpty() && !shouldShowReceiveStats) || _displayNameAlpha == 0.0f
|| (glm::dot(frustum.getDirection(), getDisplayNamePosition() - frustum.getPosition()) <= CLIP_DISTANCE)) {
return;
}
auto renderer = textRenderer(DISPLAYNAME);

View file

@ -123,18 +123,18 @@ MyAvatar::~MyAvatar() {
_lookAtTargetAvatar.reset();
}
QByteArray MyAvatar::toByteArray() {
QByteArray MyAvatar::toByteArray(bool cullSmallChanges) {
CameraMode mode = Application::getInstance()->getCamera()->getMode();
if (mode == CAMERA_MODE_THIRD_PERSON || mode == CAMERA_MODE_INDEPENDENT) {
// fake the avatar position that is sent up to the AvatarMixer
glm::vec3 oldPosition = _position;
_position = getSkeletonPosition();
QByteArray array = AvatarData::toByteArray();
QByteArray array = AvatarData::toByteArray(cullSmallChanges);
// copy the correct position back
_position = oldPosition;
return array;
}
return AvatarData::toByteArray();
return AvatarData::toByteArray(cullSmallChanges);
}
void MyAvatar::reset() {
@ -220,7 +220,7 @@ void MyAvatar::simulate(float deltaTime) {
_jointData.resize(_rig->getJointStateCount());
for (int i = 0; i < _jointData.size(); i++) {
JointData& data = _jointData[i];
data.valid = _rig->getJointStateRotation(i, data.rotation);
_rig->getJointStateRotation(i, data.rotation);
}
}

View file

@ -203,7 +203,8 @@ private:
glm::vec3 getWorldBodyPosition() const;
glm::quat getWorldBodyOrientation() const;
QByteArray toByteArray();
QByteArray toByteArray(bool cullSmallChanges);
void simulate(float deltaTime);
void updateFromTrackers(float deltaTime);
virtual void render(RenderArgs* renderArgs, const glm::vec3& cameraPositio) override;

View file

@ -41,7 +41,7 @@ SkeletonModel::~SkeletonModel() {
void SkeletonModel::initJointStates(QVector<JointState> states) {
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
glm::mat4 rootTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
int rootJointIndex = geometry.rootJointIndex;
int leftHandJointIndex = geometry.leftHandJointIndex;
@ -51,7 +51,7 @@ void SkeletonModel::initJointStates(QVector<JointState> states) {
int rightElbowJointIndex = rightHandJointIndex >= 0 ? geometry.joints.at(rightHandJointIndex).parentIndex : -1;
int rightShoulderJointIndex = rightElbowJointIndex >= 0 ? geometry.joints.at(rightElbowJointIndex).parentIndex : -1;
_rig->initJointStates(states, parentTransform,
_rig->initJointStates(states, rootTransform,
rootJointIndex,
leftHandJointIndex,
leftElbowJointIndex,
@ -83,7 +83,7 @@ void SkeletonModel::initJointStates(QVector<JointState> states) {
// of its root joint and we need that done before we try to build shapes hence we
// recompute all joint transforms at this time.
for (int i = 0; i < _rig->getJointStateCount(); i++) {
_rig->updateJointState(i, parentTransform);
_rig->updateJointState(i, rootTransform);
}
buildShapes();
@ -157,11 +157,11 @@ void SkeletonModel::simulate(float deltaTime, bool fullUpdate) {
setBlendshapeCoefficients(_owningAvatar->getHead()->getBlendshapeCoefficients());
Model::simulate(deltaTime, fullUpdate);
if (!isActive() || !_owningAvatar->isMyAvatar()) {
return; // only simulate for own avatar
}
MyAvatar* myAvatar = static_cast<MyAvatar*>(_owningAvatar);
if (myAvatar->isPlaying()) {
// Don't take inputs if playing back a recording.
@ -248,40 +248,24 @@ void SkeletonModel::applyHandPosition(int jointIndex, const glm::vec3& position)
rotationBetween(handRotation * glm::vec3(-sign, 0.0f, 0.0f), forearmVector),
true, PALM_PRIORITY);
}
void SkeletonModel::applyPalmData(int jointIndex, PalmData& palm) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f;
int parentJointIndex = geometry.joints.at(jointIndex).parentIndex;
if (parentJointIndex == -1) {
return;
}
// rotate palm to align with its normal (normal points out of hand's palm)
// the palm's position must be transformed into the model-frame
glm::quat inverseRotation = glm::inverse(_rotation);
glm::vec3 palmPosition = inverseRotation * (palm.getPosition() - _translation);
glm::vec3 palmNormal = inverseRotation * palm.getNormal();
glm::vec3 fingerDirection = inverseRotation * palm.getFingerDirection();
glm::quat palmRotation = rotationBetween(geometry.palmDirection, palmNormal);
palmRotation = rotationBetween(palmRotation * glm::vec3(-sign, 0.0f, 0.0f), fingerDirection) * palmRotation;
// the palm's "raw" rotation is already in the model-frame
glm::quat palmRotation = palm.getRawRotation();
if (Menu::getInstance()->isOptionChecked(MenuOption::AlternateIK)) {
_rig->setHandPosition(jointIndex, palmPosition, palmRotation, extractUniformScale(_scale), PALM_PRIORITY);
} else if (Menu::getInstance()->isOptionChecked(MenuOption::AlignForearmsWithWrists)) {
float forearmLength = geometry.joints.at(jointIndex).distanceToParent * extractUniformScale(_scale);
glm::vec3 forearm = palmRotation * glm::vec3(sign * forearmLength, 0.0f, 0.0f);
setJointPosition(parentJointIndex, palmPosition + forearm,
glm::quat(), false, -1, false, glm::vec3(0.0f, -1.0f, 0.0f), PALM_PRIORITY);
_rig->setJointRotationInBindFrame(parentJointIndex, palmRotation, PALM_PRIORITY);
// lock hand to forearm by slamming its rotation (in parent-frame) to identity
_rig->setJointRotationInConstrainedFrame(jointIndex, glm::quat(), PALM_PRIORITY);
} else {
inverseKinematics(jointIndex, palmPosition, palmRotation, PALM_PRIORITY);
}
inverseKinematics(jointIndex, palmPosition, palmRotation, PALM_PRIORITY);
}
void SkeletonModel::renderJointConstraints(gpu::Batch& batch, int jointIndex) {
@ -301,13 +285,13 @@ void SkeletonModel::renderJointConstraints(gpu::Batch& batch, int jointIndex) {
_rotation :
_rotation * _rig->getJointState(joint.parentIndex).getRotation();
float fanScale = directionSize * 0.75f;
Transform transform = Transform();
transform.setTranslation(position);
transform.setRotation(parentRotation);
transform.setScale(fanScale);
batch.setModelTransform(transform);
const int AXIS_COUNT = 3;
auto geometryCache = DependencyManager::get<GeometryCache>();
@ -318,7 +302,7 @@ void SkeletonModel::renderJointConstraints(gpu::Batch& batch, int jointIndex) {
}
glm::vec3 axis;
axis[i] = 1.0f;
glm::vec3 otherAxis;
if (i == 0) {
otherAxis.y = 1.0f;
@ -339,18 +323,18 @@ void SkeletonModel::renderJointConstraints(gpu::Batch& batch, int jointIndex) {
// better if the skeleton model cached these buffers for each of the joints they are rendering
geometryCache->updateVertices(_triangleFanID, points, color);
geometryCache->renderVertices(batch, gpu::TRIANGLE_FAN, _triangleFanID);
}
renderOrientationDirections(batch, jointIndex, position, _rotation * jointState.getRotation(), directionSize);
jointIndex = joint.parentIndex;
} while (jointIndex != -1 && geometry.joints.at(jointIndex).isFree);
}
void SkeletonModel::renderOrientationDirections(gpu::Batch& batch, int jointIndex,
void SkeletonModel::renderOrientationDirections(gpu::Batch& batch, int jointIndex,
glm::vec3 position, const glm::quat& orientation, float size) {
auto geometryCache = DependencyManager::get<GeometryCache>();
if (!_jointOrientationLines.contains(jointIndex)) {
@ -486,7 +470,7 @@ void SkeletonModel::buildShapes() {
if (_geometry == NULL || _rig->jointStatesEmpty()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (geometry.joints.isEmpty() || geometry.rootJointIndex == -1) {
// rootJointIndex == -1 if the avatar model has no skeleton
@ -550,7 +534,7 @@ void SkeletonModel::renderBoundingCollisionShapes(gpu::Batch& batch, float alpha
geometryCache->renderSphere(batch, _boundingCapsuleRadius, BALL_SUBDIVISIONS, BALL_SUBDIVISIONS,
glm::vec4(0.6f, 0.6f, 0.8f, alpha));
// draw a yellow sphere at the capsule bottom point
// draw a yellow sphere at the capsule bottom point
glm::vec3 bottomPoint = topPoint - glm::vec3(0.0f, -_boundingCapsuleHeight, 0.0f);
glm::vec3 axis = topPoint - bottomPoint;
transform.setTranslation(bottomPoint);

View file

@ -12,7 +12,7 @@
#include "AvatarRig.h"
/// Updates the state of the joint at the specified index.
void AvatarRig::updateJointState(int index, glm::mat4 parentTransform) {
void AvatarRig::updateJointState(int index, glm::mat4 rootTransform) {
if (index < 0 && index >= _jointStates.size()) {
return; // bail
}
@ -21,7 +21,7 @@ void AvatarRig::updateJointState(int index, glm::mat4 parentTransform) {
// compute model transforms
if (index == _rootJointIndex) {
// we always zero-out the translation part of an avatar's root join-transform.
state.computeTransform(parentTransform);
state.computeTransform(rootTransform);
clearJointTransformTranslation(index);
} else {
// guard against out-of-bounds access to _jointStates

View file

@ -21,7 +21,7 @@ class AvatarRig : public Rig {
public:
~AvatarRig() {}
virtual void updateJointState(int index, glm::mat4 parentTransform);
virtual void updateJointState(int index, glm::mat4 rootTransform);
virtual void setHandPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation,
float scale, float priority);
};

View file

@ -12,13 +12,13 @@
#include "EntityRig.h"
/// Updates the state of the joint at the specified index.
void EntityRig::updateJointState(int index, glm::mat4 parentTransform) {
void EntityRig::updateJointState(int index, glm::mat4 rootTransform) {
JointState& state = _jointStates[index];
// compute model transforms
int parentIndex = state.getParentIndex();
if (parentIndex == -1) {
state.computeTransform(parentTransform);
state.computeTransform(rootTransform);
} else {
// guard against out-of-bounds access to _jointStates
if (parentIndex >= 0 && parentIndex < _jointStates.size()) {

View file

@ -21,7 +21,7 @@ class EntityRig : public Rig {
public:
~EntityRig() {}
virtual void updateJointState(int index, glm::mat4 parentTransform);
virtual void updateJointState(int index, glm::mat4 rootTransform);
virtual void setHandPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation,
float scale, float priority) {}
};

View file

@ -153,6 +153,24 @@ void JointState::setRotationInBindFrame(const glm::quat& rotation, float priorit
}
}
void JointState::setRotationInModelFrame(const glm::quat& rotationInModelFrame, float priority, bool constrain) {
// rotation is from bind- to model-frame
if (priority >= _animationPriority) {
glm::quat parentRotation = computeParentRotation();
// R = Rp * Rpre * r * Rpost
// R' = Rp * Rpre * r' * Rpost
// r' = (Rp * Rpre)^ * R' * Rpost^
glm::quat targetRotation = glm::inverse(parentRotation * _preRotation) * rotationInModelFrame * glm::inverse(_postRotation);
if (constrain && _constraint) {
_constraint->softClamp(targetRotation, _rotationInConstrainedFrame, 0.5f);
}
_rotationInConstrainedFrame = glm::normalize(targetRotation);
_transformChanged = true;
_animationPriority = priority;
}
}
void JointState::clearTransformTranslation() {
_transform[3][0] = 0.0f;
_transform[3][1] = 0.0f;

View file

@ -82,6 +82,11 @@ public:
/// NOTE: the JointState's model-frame transform/rotation are NOT updated!
void setRotationInBindFrame(const glm::quat& rotation, float priority, bool constrain = false);
/// \param rotationInModelRame is in model-frame
/// computes and sets new _rotationInConstrainedFrame to match rotationInModelFrame
/// NOTE: the JointState's model-frame transform/rotation are NOT updated!
void setRotationInModelFrame(const glm::quat& rotationInModelFrame, float priority, bool constrain);
void setRotationInConstrainedFrame(glm::quat targetRotation, float priority, bool constrain = false, float mix = 1.0f);
void setVisibleRotationInConstrainedFrame(const glm::quat& targetRotation);
const glm::quat& getRotationInConstrainedFrame() const { return _rotationInConstrainedFrame; }

View file

@ -194,7 +194,7 @@ void Rig::deleteAnimations() {
}
}
void Rig::initJointStates(QVector<JointState> states, glm::mat4 parentTransform,
void Rig::initJointStates(QVector<JointState> states, glm::mat4 rootTransform,
int rootJointIndex,
int leftHandJointIndex,
int leftElbowJointIndex,
@ -212,7 +212,7 @@ void Rig::initJointStates(QVector<JointState> states, glm::mat4 parentTransform,
_rightElbowJointIndex = rightElbowJointIndex;
_rightShoulderJointIndex = rightShoulderJointIndex;
initJointTransforms(parentTransform);
initJointTransforms(rootTransform);
int numStates = _jointStates.size();
for (int i = 0; i < numStates; ++i) {
@ -235,14 +235,14 @@ int Rig::indexOfJoint(const QString& jointName) {
}
void Rig::initJointTransforms(glm::mat4 parentTransform) {
void Rig::initJointTransforms(glm::mat4 rootTransform) {
// compute model transforms
int numStates = _jointStates.size();
for (int i = 0; i < numStates; ++i) {
JointState& state = _jointStates[i];
int parentIndex = state.getParentIndex();
if (parentIndex == -1) {
state.initTransform(parentTransform);
state.initTransform(rootTransform);
} else {
const JointState& parentState = _jointStates.at(parentIndex);
state.initTransform(parentState.getTransform());
@ -466,7 +466,7 @@ void Rig::computeMotionAnimationState(float deltaTime, const glm::vec3& worldPos
_lastPosition = worldPosition;
}
void Rig::updateAnimations(float deltaTime, glm::mat4 parentTransform) {
void Rig::updateAnimations(float deltaTime, glm::mat4 rootTransform) {
if (_enableAnimGraph) {
if (!_animNode) {
@ -489,7 +489,7 @@ void Rig::updateAnimations(float deltaTime, glm::mat4 parentTransform) {
}
for (int i = 0; i < _jointStates.size(); i++) {
updateJointState(i, parentTransform);
updateJointState(i, rootTransform);
}
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].resetTransformChanged();
@ -541,7 +541,7 @@ void Rig::updateAnimations(float deltaTime, glm::mat4 parentTransform) {
}
for (int i = 0; i < _jointStates.size(); i++) {
updateJointState(i, parentTransform);
updateJointState(i, rootTransform);
}
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].resetTransformChanged();
@ -551,7 +551,7 @@ void Rig::updateAnimations(float deltaTime, glm::mat4 parentTransform) {
bool Rig::setJointPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation, bool useRotation,
int lastFreeIndex, bool allIntermediatesFree, const glm::vec3& alignment, float priority,
const QVector<int>& freeLineage, glm::mat4 parentTransform) {
const QVector<int>& freeLineage, glm::mat4 rootTransform) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return false;
}
@ -603,7 +603,7 @@ bool Rig::setJointPosition(int jointIndex, const glm::vec3& position, const glm:
glm::vec3 positionSum;
for (int k = j - 1; k > 0; k--) {
int index = freeLineage.at(k);
updateJointState(index, parentTransform);
updateJointState(index, rootTransform);
positionSum += extractTranslation(_jointStates.at(index).getTransform());
}
glm::vec3 projectedCenterOfMass = glm::cross(jointVector,
@ -626,15 +626,15 @@ bool Rig::setJointPosition(int jointIndex, const glm::vec3& position, const glm:
// now update the joint states from the top
for (int j = freeLineage.size() - 1; j >= 0; j--) {
updateJointState(freeLineage.at(j), parentTransform);
updateJointState(freeLineage.at(j), rootTransform);
}
return true;
}
void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::quat& targetRotation, float priority,
const QVector<int>& freeLineage, glm::mat4 parentTransform) {
// NOTE: targetRotation is from bind- to model-frame
const QVector<int>& freeLineage, glm::mat4 rootTransform) {
// NOTE: targetRotation is from in model-frame
if (endIndex == -1 || _jointStates.isEmpty()) {
return;
@ -652,12 +652,27 @@ void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::q
const JointState& state = _jointStates.at(index);
int parentIndex = state.getParentIndex();
if (parentIndex == -1) {
topParentTransform = parentTransform;
topParentTransform = rootTransform;
} else {
topParentTransform = _jointStates[parentIndex].getTransform();
}
}
// relax toward default rotation
// NOTE: ideally this should use dt and a relaxation timescale to compute how much to relax
for (int j = 0; j < numFree; j++) {
int nextIndex = freeLineage.at(j);
JointState& nextState = _jointStates[nextIndex];
if (! nextState.getIsFree()) {
continue;
}
// Apply the zero rotationDelta, but use mixRotationDelta() which blends a bit of the default pose
// in the process. This provides stability to the IK solution for most models.
float mixFactor = 0.08f;
nextState.mixRotationDelta(glm::quat(), mixFactor, priority);
}
// this is a cyclic coordinate descent algorithm: see
// http://www.ryanjuckett.com/programming/animation/21-cyclic-coordinate-descent-in-2d
@ -666,7 +681,7 @@ void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::q
glm::vec3 endPosition = endState.getPosition();
float distanceToGo = glm::distance(targetPosition, endPosition);
const int MAX_ITERATION_COUNT = 2;
const int MAX_ITERATION_COUNT = 3;
const float ACCEPTABLE_IK_ERROR = 0.005f; // 5mm
int numIterations = 0;
do {
@ -704,7 +719,7 @@ void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::q
float gravityAngle = glm::angle(gravityDelta);
const float MIN_GRAVITY_ANGLE = 0.1f;
float mixFactor = 0.5f;
float mixFactor = 0.1f;
if (gravityAngle < MIN_GRAVITY_ANGLE) {
// the final rotation is a mix of the two
mixFactor = 0.5f * gravityAngle / MIN_GRAVITY_ANGLE;
@ -712,11 +727,10 @@ void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::q
deltaRotation = safeMix(deltaRotation, gravityDelta, mixFactor);
}
// Apply the rotation, but use mixRotationDelta() which blends a bit of the default pose
// in the process. This provides stability to the IK solution for most models.
// Apply the rotation delta.
glm::quat oldNextRotation = nextState.getRotation();
float mixFactor = 0.03f;
nextState.mixRotationDelta(deltaRotation, mixFactor, priority);
float mixFactor = 0.05f;
nextState.applyRotationDelta(deltaRotation, mixFactor, priority);
// measure the result of the rotation which may have been modified by
// blending and constraints
@ -735,10 +749,10 @@ void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::q
// measure our success
endPosition = endState.getPosition();
distanceToGo = glm::distance(targetPosition, endPosition);
} while (numIterations < MAX_ITERATION_COUNT && distanceToGo < ACCEPTABLE_IK_ERROR);
} while (numIterations < MAX_ITERATION_COUNT && distanceToGo > ACCEPTABLE_IK_ERROR);
// set final rotation of the end joint
endState.setRotationInBindFrame(targetRotation, priority, true);
endState.setRotationInModelFrame(targetRotation, priority, true);
}
bool Rig::restoreJointPosition(int jointIndex, float fraction, float priority, const QVector<int>& freeLineage) {

View file

@ -95,7 +95,7 @@ public:
float priority = 1.0f, bool loop = false, bool hold = false, float firstFrame = 0.0f,
float lastFrame = FLT_MAX, const QStringList& maskedJoints = QStringList(), bool startAutomatically = false);
void initJointStates(QVector<JointState> states, glm::mat4 parentTransform,
void initJointStates(QVector<JointState> states, glm::mat4 rootTransform,
int rootJointIndex,
int leftHandJointIndex,
int leftElbowJointIndex,
@ -107,7 +107,7 @@ public:
int getJointStateCount() const { return _jointStates.size(); }
int indexOfJoint(const QString& jointName) ;
void initJointTransforms(glm::mat4 parentTransform);
void initJointTransforms(glm::mat4 rootTransform);
void clearJointTransformTranslation(int jointIndex);
void reset(const QVector<FBXJoint>& fbxJoints);
bool getJointStateRotation(int index, glm::quat& rotation) const;
@ -138,12 +138,12 @@ public:
// Start or stop animations as needed.
void computeMotionAnimationState(float deltaTime, const glm::vec3& worldPosition, const glm::vec3& worldVelocity, const glm::quat& worldRotation);
// Regardless of who started the animations or how many, update the joints.
void updateAnimations(float deltaTime, glm::mat4 parentTransform);
void updateAnimations(float deltaTime, glm::mat4 rootTransform);
bool setJointPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation, bool useRotation,
int lastFreeIndex, bool allIntermediatesFree, const glm::vec3& alignment, float priority,
const QVector<int>& freeLineage, glm::mat4 parentTransform);
const QVector<int>& freeLineage, glm::mat4 rootTransform);
void inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::quat& targetRotation, float priority,
const QVector<int>& freeLineage, glm::mat4 parentTransform);
const QVector<int>& freeLineage, glm::mat4 rootTransform);
bool restoreJointPosition(int jointIndex, float fraction, float priority, const QVector<int>& freeLineage);
float getLimbLength(int jointIndex, const QVector<int>& freeLineage,
const glm::vec3 scale, const QVector<FBXJoint>& fbxJoints) const;
@ -155,7 +155,7 @@ public:
glm::quat getJointDefaultRotationInParentFrame(int jointIndex);
void updateVisibleJointStates();
virtual void updateJointState(int index, glm::mat4 parentTransform) = 0;
virtual void updateJointState(int index, glm::mat4 rootTransform) = 0;
void setEnableRig(bool isEnabled) { _enableRig = isEnabled; }
void setEnableAnimGraph(bool isEnabled) { _enableAnimGraph = isEnabled; }

View file

@ -31,6 +31,10 @@
quint64 DEFAULT_FILTERED_LOG_EXPIRY = 2 * USECS_PER_SECOND;
// this controls how large a change in joint-rotation must be before the interface sends it to the avatar mixer
const float MIN_ROTATION_DOT = 0.9999999f;
using namespace std;
const glm::vec3 DEFAULT_LOCAL_AABOX_CORNER(-0.5f);
@ -141,7 +145,7 @@ void AvatarData::setHandPosition(const glm::vec3& handPosition) {
_handPosition = glm::inverse(getOrientation()) * (handPosition - _position);
}
QByteArray AvatarData::toByteArray() {
QByteArray AvatarData::toByteArray(bool cullSmallChanges) {
// TODO: DRY this up to a shared method
// that can pack any type given the number of bytes
// and return the number of bytes to push the pointer
@ -234,11 +238,19 @@ QByteArray AvatarData::toByteArray() {
// joint data
*destinationBuffer++ = _jointData.size();
unsigned char* validityPosition = destinationBuffer;
unsigned char validity = 0;
int validityBit = 0;
foreach (const JointData& data, _jointData) {
if (data.valid) {
validity |= (1 << validityBit);
_lastSentJointData.resize(_jointData.size());
// foreach (const JointData& data, _jointData) {
for (int i=0; i < _jointData.size(); i++) {
const JointData& data = _jointData.at(i);
if (_lastSentJointData[i].rotation != data.rotation) {
if (!cullSmallChanges || fabsf(glm::dot(data.rotation, _lastSentJointData[i].rotation)) <= MIN_ROTATION_DOT) {
validity |= (1 << validityBit);
}
}
if (++validityBit == BITS_IN_BYTE) {
*destinationBuffer++ = validity;
@ -248,9 +260,18 @@ QByteArray AvatarData::toByteArray() {
if (validityBit != 0) {
*destinationBuffer++ = validity;
}
foreach (const JointData& data, _jointData) {
if (data.valid) {
validityBit = 0;
validity = *validityPosition++;
for (int i = 0; i < _jointData.size(); i ++) {
const JointData& data = _jointData[ i ];
if (validity & (1 << validityBit)) {
destinationBuffer += packOrientationQuatToBytes(destinationBuffer, data.rotation);
_lastSentJointData[i].rotation = data.rotation;
}
if (++validityBit == BITS_IN_BYTE) {
validityBit = 0;
validity = *validityPosition++;
}
}
@ -494,6 +515,10 @@ int AvatarData::parseDataFromBuffer(const QByteArray& buffer) {
}
int numValidJoints = 0;
_jointData.resize(numJoints);
QVector<bool> valids;
valids.resize(numJoints);
{ // validity bits
unsigned char validity = 0;
int validityBit = 0;
@ -505,7 +530,7 @@ int AvatarData::parseDataFromBuffer(const QByteArray& buffer) {
if (valid) {
++numValidJoints;
}
_jointData[i].valid = valid;
valids[i] = valid;
validityBit = (validityBit + 1) % BITS_IN_BYTE;
}
}
@ -527,7 +552,7 @@ int AvatarData::parseDataFromBuffer(const QByteArray& buffer) {
{ // joint data
for (int i = 0; i < numJoints; i++) {
JointData& data = _jointData[i];
if (data.valid) {
if (valids[i]) {
_hasNewJointRotations = true;
sourceBuffer += unpackOrientationQuatFromBytes(sourceBuffer, data.rotation);
}
@ -731,7 +756,6 @@ void AvatarData::setJointData(int index, const glm::quat& rotation) {
_jointData.resize(index + 1);
}
JointData& data = _jointData[index];
data.valid = true;
data.rotation = rotation;
}
@ -746,7 +770,6 @@ void AvatarData::clearJointData(int index) {
if (_jointData.size() <= index) {
_jointData.resize(index + 1);
}
_jointData[index].valid = false;
}
bool AvatarData::isJointDataValid(int index) const {
@ -759,7 +782,7 @@ bool AvatarData::isJointDataValid(int index) const {
Q_RETURN_ARG(bool, result), Q_ARG(int, index));
return result;
}
return index < _jointData.size() && _jointData.at(index).valid;
return index < _jointData.size();
}
glm::quat AvatarData::getJointRotation(int index) const {
@ -1060,7 +1083,7 @@ void AvatarData::setJointMappingsFromNetworkReply() {
void AvatarData::sendAvatarDataPacket() {
auto nodeList = DependencyManager::get<NodeList>();
QByteArray avatarByteArray = toByteArray();
QByteArray avatarByteArray = toByteArray(true);
auto avatarPacket = NLPacket::create(PacketType::AvatarData, avatarByteArray.size());
avatarPacket->write(avatarByteArray);

View file

@ -171,7 +171,7 @@ public:
glm::vec3 getHandPosition() const;
void setHandPosition(const glm::vec3& handPosition);
virtual QByteArray toByteArray();
virtual QByteArray toByteArray(bool cullSmallChanges);
/// \return true if an error should be logged
bool shouldLogError(const quint64& now);
@ -357,6 +357,7 @@ protected:
char _handState;
QVector<JointData> _jointData; ///< the state of the skeleton joints
QVector<JointData> _lastSentJointData; ///< the state of the skeleton joints last time we transmitted
// key state
KeyState _keyState;
@ -408,7 +409,6 @@ Q_DECLARE_METATYPE(AvatarData*)
class JointData {
public:
bool valid;
glm::quat rotation;
};

View file

@ -104,10 +104,10 @@ bool OpenGLDisplayPlugin::eventFilter(QObject* receiver, QEvent* event) {
if (QCoreApplication::sendEvent(QCoreApplication::instance(), event)) {
return true;
}
break;
default:
break;
}
return false;
}

View file

@ -131,20 +131,20 @@ void ParticleEffectEntityItem::computeAndUpdateDimensions() {
float maxVelocityX = fabsf(_velocity.x) + _velocitySpread.x;
float maxAccelerationX = fabsf(_acceleration.x) + _accelerationSpread.x;
float maxXDistance = (maxVelocityX * time) + (0.5 * maxAccelerationX * time * time);
float maxXDistance = (maxVelocityX * time) + (0.5f * maxAccelerationX * time * time);
float maxVelocityY = fabs(_velocity.y) + _velocitySpread.y;
float maxVelocityY = fabsf(_velocity.y) + _velocitySpread.y;
float maxAccelerationY = fabsf(_acceleration.y) + _accelerationSpread.y;
float maxYDistance = (maxVelocityY * time) + (0.5 * maxAccelerationY * time * time);
float maxYDistance = (maxVelocityY * time) + (0.5f * maxAccelerationY * time * time);
float maxVelocityZ = fabsf(_velocity.z) + _velocitySpread.z;
float maxAccelerationZ = fabsf(_acceleration.z) + _accelerationSpread.z;
float maxZDistance = (maxVelocityZ * time) + (0.5 * maxAccelerationZ * time * time);
float maxZDistance = (maxVelocityZ * time) + (0.5f * maxAccelerationZ * time * time);
float maxDistance = std::max(maxXDistance, std::max(maxYDistance, maxZDistance));
//times 2 because dimensions are diameters not radii
glm::vec3 dims(2.0 * maxDistance);
glm::vec3 dims(2.0f * maxDistance);
EntityItem::setDimensions(dims);
}

View file

@ -21,6 +21,10 @@
#include "SixenseManager.h"
#include "UserActivityLogger.h"
#ifdef HAVE_SIXENSE
#include "sixense.h"
#endif
// TODO: This should not be here
#include <QLoggingCategory>
Q_DECLARE_LOGGING_CATEGORY(inputplugins)
@ -45,12 +49,14 @@ const float NECK_Z = 0.3f; // meters
const float CONTROLLER_THRESHOLD = 0.35f;
#endif
#ifdef __APPLE__
typedef int (*SixenseBaseFunction)();
typedef int (*SixenseTakeIntFunction)(int);
#ifdef HAVE_SIXENSE
typedef int (*SixenseTakeIntAndSixenseControllerData)(int, sixenseControllerData*);
#endif
#endif
const QString SixenseManager::NAME = "Sixense";
@ -66,8 +72,8 @@ SixenseManager& SixenseManager::getInstance() {
}
SixenseManager::SixenseManager() :
InputDevice("Hydra"),
#if defined(HAVE_SIXENSE) && defined(__APPLE__)
InputDevice("Hydra"),
#ifdef __APPLE__
_sixenseLibrary(NULL),
#endif
_hydrasConnected(false)
@ -213,18 +219,16 @@ void SixenseManager::update(float deltaTime, bool jointsCaptured) {
// NOTE: Sixense API returns pos data in millimeters but we IMMEDIATELY convert to meters.
glm::vec3 position(data->pos[0], data->pos[1], data->pos[2]);
position *= METERS_PER_MILLIMETER;
// Check to see if this hand/controller is on the base
const float CONTROLLER_AT_BASE_DISTANCE = 0.075f;
if (glm::length(position) >= CONTROLLER_AT_BASE_DISTANCE) {
handleButtonEvent(data->buttons, numActiveControllers - 1);
handleAxisEvent(data->joystick_x, data->joystick_y, data->trigger, numActiveControllers - 1);
// Rotation of Palm
glm::quat rotation(data->rot_quat[3], -data->rot_quat[0], data->rot_quat[1], -data->rot_quat[2]);
rotation = glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f)) * _orbRotation * rotation;
if (!jointsCaptured) {
// Rotation of Palm
glm::quat rotation(data->rot_quat[3], data->rot_quat[0], data->rot_quat[1], data->rot_quat[2]);
handlePoseEvent(position, rotation, numActiveControllers - 1);
} else {
_poseStateMap.clear();
@ -232,7 +236,7 @@ void SixenseManager::update(float deltaTime, bool jointsCaptured) {
} else {
_poseStateMap[(numActiveControllers - 1) == 0 ? LEFT_HAND : RIGHT_HAND] = UserInputMapper::PoseValue();
}
// // Read controller buttons and joystick into the hand
// palm->setControllerButtons(data->buttons);
// palm->setTrigger(data->trigger);
@ -242,7 +246,7 @@ void SixenseManager::update(float deltaTime, bool jointsCaptured) {
if (numActiveControllers == 2) {
updateCalibration(controllers);
}
for (auto axisState : _axisStateMap) {
if (fabsf(axisState.second) < CONTROLLER_THRESHOLD) {
_axisStateMap[axisState.first] = 0.0f;
@ -436,16 +440,66 @@ void SixenseManager::handleButtonEvent(unsigned int buttons, int index) {
void SixenseManager::handlePoseEvent(glm::vec3 position, glm::quat rotation, int index) {
#ifdef HAVE_SIXENSE
// From ABOVE the sixense coordinate frame looks like this:
//
// |
// USB cables
// |
// .-. user
// (Orb) --neckX---- forward
// '-' |
// | | user
// neckZ y +---- right
// | (o)-----x
// |
// |
// z
// Transform the measured position into body frame.
glm::vec3 neck = _neckBase;
// Set y component of the "neck" to raise the measured position a little bit.
neck.y = 0.5f;
position = _orbRotation * (position - neck);
// adjustment for hydra controllers fit into hands
float sign = (index == 0) ? -1.0f : 1.0f;
rotation *= glm::angleAxis(sign * PI/4.0f, glm::vec3(0.0f, 0.0f, 1.0f));
// From ABOVE the hand canonical axes looks like this:
//
// | | | | y | | | |
// | | | | | | | | |
// | | | | |
// |left | / x----(+) \ |right|
// | _/ z \_ |
// | | | |
// | | | |
//
// To convert sixense's delta-rotation into the hand's frame we will have to transform it like so:
//
// deltaHand = Qsh^ * deltaSixense * Qsh
//
// where Qsh = transform from sixense axes to hand axes. By inspection we can determine Qsh:
//
// Qsh = angleAxis(PI, zAxis) * angleAxis(-PI/2, xAxis)
//
const glm::vec3 xAxis = glm::vec3(1.0f, 0.0f, 0.0f);
const glm::vec3 zAxis = glm::vec3(0.0f, 0.0f, 1.0f);
const glm::quat sixenseToHand = glm::angleAxis(PI, zAxis) * glm::angleAxis(-PI/2.0f, xAxis);
// In addition to Qsh each hand has pre-offset introduced by the shape of the sixense controllers
// and how they fit into the hand in their relaxed state. This offset is a quarter turn about
// the sixense's z-axis, with its direction different for the two hands:
float sign = (index == 0) ? 1.0f : -1.0f;
const glm::quat preOffset = glm::angleAxis(sign * PI / 2.0f, zAxis);
// Finally, there is a post-offset (same for both hands) to get the hand's rest orientation
// (fingers forward, palm down) aligned properly in the avatar's model-frame.
const glm::quat postOffset = glm::angleAxis(PI / 2.0f, xAxis);
// The total rotation of the hand uses the formula:
//
// rotation = postOffset * Qsh^ * (measuredRotation * preOffset) * Qsh
//
rotation = postOffset * glm::inverse(sixenseToHand) * rotation * preOffset * sixenseToHand;
_poseStateMap[makeInput(JointChannel(index)).getChannel()] = UserInputMapper::PoseValue(position, rotation);
#endif // HAVE_SIXENSE
}
@ -453,7 +507,7 @@ void SixenseManager::handlePoseEvent(glm::vec3 position, glm::quat rotation, int
void SixenseManager::registerToUserInputMapper(UserInputMapper& mapper) {
// Grab the current free device ID
_deviceID = mapper.getFreeDeviceID();
auto proxy = std::make_shared<UserInputMapper::DeviceProxy>(_name);
proxy->getButton = [this] (const UserInputMapper::Input& input, int timestamp) -> bool { return this->getButton(input.getChannel()); };
proxy->getAxis = [this] (const UserInputMapper::Input& input, int timestamp) -> float { return this->getAxis(input.getChannel()); };
@ -465,25 +519,25 @@ void SixenseManager::registerToUserInputMapper(UserInputMapper& mapper) {
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_2, 0), "Left Button 2"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_3, 0), "Left Button 3"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_4, 0), "Left Button 4"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_FWD, 0), "L1"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BACK_TRIGGER, 0), "L2"));
availableInputs.append(UserInputMapper::InputPair(makeInput(AXIS_Y_POS, 0), "Left Stick Up"));
availableInputs.append(UserInputMapper::InputPair(makeInput(AXIS_Y_NEG, 0), "Left Stick Down"));
availableInputs.append(UserInputMapper::InputPair(makeInput(AXIS_X_POS, 0), "Left Stick Right"));
availableInputs.append(UserInputMapper::InputPair(makeInput(AXIS_X_NEG, 0), "Left Stick Left"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_TRIGGER, 0), "Left Trigger Press"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_0, 1), "Right Start"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_1, 1), "Right Button 1"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_2, 1), "Right Button 2"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_3, 1), "Right Button 3"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_4, 1), "Right Button 4"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BUTTON_FWD, 1), "R1"));
availableInputs.append(UserInputMapper::InputPair(makeInput(BACK_TRIGGER, 1), "R2"));
availableInputs.append(UserInputMapper::InputPair(makeInput(AXIS_Y_POS, 1), "Right Stick Up"));
availableInputs.append(UserInputMapper::InputPair(makeInput(AXIS_Y_NEG, 1), "Right Stick Down"));
availableInputs.append(UserInputMapper::InputPair(makeInput(AXIS_X_POS, 1), "Right Stick Right"));
@ -506,35 +560,35 @@ void SixenseManager::assignDefaultInputMapping(UserInputMapper& mapper) {
const float JOYSTICK_PITCH_SPEED = 0.25f;
const float BUTTON_MOVE_SPEED = 1.0f;
const float BOOM_SPEED = 0.1f;
// Left Joystick: Movement, strafing
mapper.addInputChannel(UserInputMapper::LONGITUDINAL_FORWARD, makeInput(AXIS_Y_POS, 0), JOYSTICK_MOVE_SPEED);
mapper.addInputChannel(UserInputMapper::LONGITUDINAL_BACKWARD, makeInput(AXIS_Y_NEG, 0), JOYSTICK_MOVE_SPEED);
mapper.addInputChannel(UserInputMapper::LATERAL_RIGHT, makeInput(AXIS_X_POS, 0), JOYSTICK_MOVE_SPEED);
mapper.addInputChannel(UserInputMapper::LATERAL_LEFT, makeInput(AXIS_X_NEG, 0), JOYSTICK_MOVE_SPEED);
// Right Joystick: Camera orientation
mapper.addInputChannel(UserInputMapper::YAW_RIGHT, makeInput(AXIS_X_POS, 1), JOYSTICK_YAW_SPEED);
mapper.addInputChannel(UserInputMapper::YAW_LEFT, makeInput(AXIS_X_NEG, 1), JOYSTICK_YAW_SPEED);
mapper.addInputChannel(UserInputMapper::PITCH_UP, makeInput(AXIS_Y_POS, 1), JOYSTICK_PITCH_SPEED);
mapper.addInputChannel(UserInputMapper::PITCH_DOWN, makeInput(AXIS_Y_NEG, 1), JOYSTICK_PITCH_SPEED);
// Buttons
mapper.addInputChannel(UserInputMapper::BOOM_IN, makeInput(BUTTON_3, 0), BOOM_SPEED);
mapper.addInputChannel(UserInputMapper::BOOM_OUT, makeInput(BUTTON_1, 0), BOOM_SPEED);
mapper.addInputChannel(UserInputMapper::VERTICAL_UP, makeInput(BUTTON_3, 1), BUTTON_MOVE_SPEED);
mapper.addInputChannel(UserInputMapper::VERTICAL_DOWN, makeInput(BUTTON_1, 1), BUTTON_MOVE_SPEED);
mapper.addInputChannel(UserInputMapper::SHIFT, makeInput(BUTTON_2, 0));
mapper.addInputChannel(UserInputMapper::SHIFT, makeInput(BUTTON_2, 1));
mapper.addInputChannel(UserInputMapper::ACTION1, makeInput(BUTTON_4, 0));
mapper.addInputChannel(UserInputMapper::ACTION2, makeInput(BUTTON_4, 1));
mapper.addInputChannel(UserInputMapper::LEFT_HAND, makeInput(LEFT_HAND));
mapper.addInputChannel(UserInputMapper::RIGHT_HAND, makeInput(RIGHT_HAND));
mapper.addInputChannel(UserInputMapper::LEFT_HAND_CLICK, makeInput(BACK_TRIGGER, 0));
mapper.addInputChannel(UserInputMapper::RIGHT_HAND_CLICK, makeInput(BACK_TRIGGER, 1));

View file

@ -230,7 +230,7 @@ void UserInputMapper::update(float deltaTime) {
for (auto i = 0; i < NUM_ACTIONS; i++) {
_actionStates[i] *= _actionScales[i];
// Emit only on change, and emit when moving back to 0
if (fabs(_actionStates[i] - _lastActionStates[i]) > EPSILON) {
if (fabsf(_actionStates[i] - _lastActionStates[i]) > EPSILON) {
_lastActionStates[i] = _actionStates[i];
emit actionEvent(i, _actionStates[i]);
}
@ -319,4 +319,4 @@ void UserInputMapper::createActionNames() {
_actionNames[SHIFT] = "SHIFT";
_actionNames[ACTION1] = "ACTION1";
_actionNames[ACTION2] = "ACTION2";
}
}

View file

@ -324,9 +324,64 @@ void ViveControllerManager::handlePoseEvent(const mat4& mat, int index) {
glm::vec3 position = extractTranslation(mat);
glm::quat rotation = glm::quat_cast(mat);
// Flip the rotation appropriately for each hand
int sign = index == LEFT_HAND ? 1 : -1;
rotation = rotation * glm::angleAxis(PI, glm::vec3(1.0f, 0.0f, 0.0f)) * glm::angleAxis(sign * PI_OVER_TWO, glm::vec3(0.0f, 0.0f, 1.0f));
// When the sensor-to-world rotation is identity the coordinate axes look like this:
//
// user
// forward
// z
// |
// y| user
// y o----x right
// o-----x user
// | up
// |
// z
//
// Vive
//
// From ABOVE the hand canonical axes looks like this:
//
// | | | | y | | | |
// | | | | | | | | |
// | | | | |
// |left | / x---- + \ |right|
// | _/ z \_ |
// | | | |
// | | | |
//
// So when the user is standing in Vive space facing the -zAxis with hands outstretched and palms down
// the rotation to align the Vive axes with those of the hands is:
//
// QviveToHand = halfTurnAboutY * quaterTurnAboutX
// Due to how the Vive controllers fit into the palm there is an offset that is different for each hand.
// You can think of this offset as the inverse of the measured rotation when the hands are posed, such that
// the combination (measurement * offset) is identity at this orientation.
//
// Qoffset = glm::inverse(deltaRotation when hand is posed fingers forward, palm down)
//
// An approximate offset for the Vive can be obtained by inpection:
//
// Qoffset = glm::inverse(glm::angleAxis(sign * PI/4.0f, zAxis) * glm::angleAxis(PI/2.0f, xAxis))
//
// Finally there is another flip around the yAxis to re-align from model to Vive space, so the full equation is:
//
// Q = yFlip * combinedMeasurement * viveToHand
//
// Q = yFlip * (deltaQ * QOffset) * (yFlip * quarterTurnAboutX)
//
// Q = yFlip * (deltaQ * inverse(deltaQForAlignedHand)) * (yFlip * quarterTurnAboutX)
const glm::quat quarterX = glm::angleAxis(PI / 2.0f, glm::vec3(1.0f, 0.0f, 0.0f));
const glm::quat yFlip = glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f));
float sign = (index == LEFT_HAND) ? -1.0f : 1.0f;
const glm::quat signedQuaterZ = glm::angleAxis(sign * PI / 2.0f, glm::vec3(0.0f, 0.0f, 1.0f));
const glm::quat eighthX = glm::angleAxis(PI / 4.0f, glm::vec3(1.0f, 0.0f, 0.0f));
const glm::quat offset = glm::inverse(signedQuaterZ * eighthX);
rotation = yFlip * rotation * offset * yFlip * quarterX;
position += rotation * glm::vec3(0, 0, -CONTROLLER_LENGTH_OFFSET);

View file

@ -69,7 +69,7 @@ PacketVersion versionForPacketType(PacketType::Value packetType) {
case EntityData:
return VERSION_ENTITIES_PARTICLE_MODIFICATIONS;
case AvatarData:
return 12;
return 13;
default:
return 11;
}

View file

@ -243,7 +243,7 @@ void AmbientOcclusion::run(const render::SceneContextPointer& sceneContext, cons
batch._glUniform2f(_depthTexCoordScaleLoc, depthTexCoordScaleS, depthTexCoordScaleT);
batch._glUniform2f(_renderTargetResLoc, fbWidth, fbHeight);
batch._glUniform2f(_renderTargetResInvLoc, 1.0/fbWidth, 1.0/fbHeight);
batch._glUniform2f(_renderTargetResInvLoc, 1.0f / fbWidth, 1.0f / fbHeight);
glm::vec4 color(0.0f, 0.0f, 0.0f, 1.0f);
glm::vec2 bottomLeft(-1.0f, -1.0f);

View file

@ -599,7 +599,7 @@ void ScriptEngine::run() {
/ (1000 * 1000)) + 0.5);
const int SCRIPT_AUDIO_BUFFER_BYTES = SCRIPT_AUDIO_BUFFER_SAMPLES * sizeof(int16_t);
QByteArray avatarByteArray = _avatarData->toByteArray();
QByteArray avatarByteArray = _avatarData->toByteArray(true);
auto avatarPacket = NLPacket::create(PacketType::AvatarData, avatarByteArray.size());
avatarPacket->write(avatarByteArray);

View file

@ -372,20 +372,20 @@ QRectF glmToRect(const glm::vec2 & pos, const glm::vec2 & size) {
// create matrix from orientation and position
glm::mat4 createMatFromQuatAndPos(const glm::quat& q, const glm::vec3& p) {
glm::mat4 m = glm::mat4_cast(q);
m[3] = glm::vec4(p, 1);
m[3] = glm::vec4(p, 1.0f);
return m;
}
// cancel out roll and pitch
glm::quat cancelOutRollAndPitch(const glm::quat& q) {
glm::vec3 zAxis = q * glm::vec3(0, 0, 1);
glm::vec3 zAxis = q * glm::vec3(0.0f, 0.0f, 1.0f);
// cancel out the roll and pitch
glm::vec3 newZ = (zAxis.x == 0 && zAxis.z == 0) ? vec3(1, 0, 0) : glm::normalize(vec3(zAxis.x, 0, zAxis.z));
glm::vec3 newX = glm::cross(vec3(0, 1, 0), newZ);
glm::vec3 newZ = (zAxis.x == 0 && zAxis.z == 0.0f) ? vec3(1.0f, 0.0f, 0.0f) : glm::normalize(vec3(zAxis.x, 0.0f, zAxis.z));
glm::vec3 newX = glm::cross(vec3(0.0f, 1.0f, 0.0f), newZ);
glm::vec3 newY = glm::cross(newZ, newX);
glm::mat4 temp(glm::vec4(newX, 0), glm::vec4(newY, 0), glm::vec4(newZ, 0), glm::vec4(0, 0, 0, 1));
glm::mat4 temp(glm::vec4(newX, 0.0f), glm::vec4(newY, 0.0f), glm::vec4(newZ, 0.0f), glm::vec4(0.0f, 0.0f, 0.0f, 1.0f));
return glm::quat_cast(temp);
}
@ -394,16 +394,16 @@ glm::mat4 cancelOutRollAndPitch(const glm::mat4& m) {
glm::vec3 zAxis = glm::vec3(m[2]);
// cancel out the roll and pitch
glm::vec3 newZ = (zAxis.x == 0 && zAxis.z == 0) ? vec3(1, 0, 0) : glm::normalize(vec3(zAxis.x, 0, zAxis.z));
glm::vec3 newX = glm::cross(vec3(0, 1, 0), newZ);
glm::vec3 newZ = (zAxis.x == 0.0f && zAxis.z == 0.0f) ? vec3(1.0f, 0.0f, 0.0f) : glm::normalize(vec3(zAxis.x, 0.0f, zAxis.z));
glm::vec3 newX = glm::cross(vec3(0.0f, 1.0f, 0.0f), newZ);
glm::vec3 newY = glm::cross(newZ, newX);
glm::mat4 temp(glm::vec4(newX, 0), glm::vec4(newY, 0), glm::vec4(newZ, 0), m[3]);
glm::mat4 temp(glm::vec4(newX, 0.0f), glm::vec4(newY, 0.0f), glm::vec4(newZ, 0.0f), m[3]);
return temp;
}
glm::vec3 transformPoint(const glm::mat4& m, const glm::vec3& p) {
glm::vec4 temp = m * glm::vec4(p, 1);
glm::vec4 temp = m * glm::vec4(p, 1.0f);
return glm::vec3(temp.x / temp.w, temp.y / temp.w, temp.z / temp.w);
}

View file

@ -93,8 +93,8 @@ template <typename T>
void testByteCountCoded() {
testByteCountCodedStable<T>(0);
testByteCountCodedStable<T>(1);
testByteCountCodedStable<T>(1 << 16);
testByteCountCodedStable<T>(std::numeric_limits<T>::max() >> 16);
testByteCountCodedStable<T>(1 << 8*sizeof(T));
testByteCountCodedStable<T>(std::numeric_limits<T>::max() >> 8*sizeof(T));
testByteCountCodedStable<T>(std::numeric_limits<T>::max() >> 8);
testByteCountCodedStable<T>(std::numeric_limits<T>::max() >> 1);
testByteCountCodedStable<T>(std::numeric_limits<T>::max());

View file

@ -342,8 +342,8 @@ public:
glm::vec3 unitscale { 1.0f };
glm::vec3 up { 0.0f, 1.0f, 0.0f };
glm::vec3 cam_pos { 1.5f * sin(t), 0.0f, 2.0f };
// glm::vec3 camera_focus { 5.0f * cos(t * 0.1f), 0.0f, 0.0f };
glm::vec3 cam_pos { 1.5f * sinf(t), 0.0f, 2.0f };
// glm::vec3 camera_focus { 5.0f * cosf(t * 0.1f), 0.0f, 0.0f };
glm::vec3 camera_focus { 0.0f, 0.0f, 0.0f };
glm::quat cam_rotation;
// glm::quat cam_rotation = glm::quat_cast(glm::lookAt(cam_pos, camera_focus, up));