Merge pull request #8042 from jherico/lasers

First pass prototype of laser rendering in OpenVR plugin
This commit is contained in:
Howard Stearns 2016-06-13 18:06:15 -07:00 committed by GitHub
commit d05987de6d
25 changed files with 620 additions and 214 deletions

View file

@ -105,3 +105,13 @@ QString HMDScriptingInterface::preferredAudioInput() const {
QString HMDScriptingInterface::preferredAudioOutput() const {
return qApp->getActiveDisplayPlugin()->getPreferredAudioOutDevice();
}
bool HMDScriptingInterface::setHandLasers(int hands, bool enabled, const glm::vec4& color, const glm::vec3& direction) const {
return qApp->getActiveDisplayPlugin()->setHandLaser(hands,
enabled ? DisplayPlugin::HandLaserMode::Overlay : DisplayPlugin::HandLaserMode::None,
color, direction);
}
void HMDScriptingInterface::disableHandLasers(int hands) const {
qApp->getActiveDisplayPlugin()->setHandLaser(hands, DisplayPlugin::HandLaserMode::None);
}

View file

@ -36,6 +36,8 @@ public:
Q_INVOKABLE glm::vec2 overlayToSpherical(const glm::vec2 & overlayPos) const;
Q_INVOKABLE QString preferredAudioInput() const;
Q_INVOKABLE QString preferredAudioOutput() const;
Q_INVOKABLE bool setHandLasers(int hands, bool enabled, const glm::vec4& color, const glm::vec3& direction) const;
Q_INVOKABLE void disableHandLasers(int hands) const;
public:
HMDScriptingInterface();

View file

@ -32,6 +32,7 @@ class Mapping;
using MappingPointer = std::shared_ptr<Mapping>;
using MappingList = std::list<MappingPointer>;
struct Pose;
}
#endif

View file

@ -213,9 +213,10 @@ OpenGLDisplayPlugin::OpenGLDisplayPlugin() {
}
void OpenGLDisplayPlugin::cleanupForSceneTexture(const gpu::TexturePointer& sceneTexture) {
Lock lock(_mutex);
Q_ASSERT(_sceneTextureToFrameIndexMap.contains(sceneTexture));
_sceneTextureToFrameIndexMap.remove(sceneTexture);
withRenderThreadLock([&] {
Q_ASSERT(_sceneTextureToFrameIndexMap.contains(sceneTexture));
_sceneTextureToFrameIndexMap.remove(sceneTexture);
});
}
@ -394,10 +395,9 @@ void OpenGLDisplayPlugin::submitSceneTexture(uint32_t frameIndex, const gpu::Tex
return;
}
{
Lock lock(_mutex);
withRenderThreadLock([&] {
_sceneTextureToFrameIndexMap[sceneTexture] = frameIndex;
}
});
// Submit it to the presentation thread via escrow
_sceneTextureEscrow.submit(sceneTexture);
@ -431,11 +431,12 @@ void OpenGLDisplayPlugin::updateTextures() {
}
void OpenGLDisplayPlugin::updateFrameData() {
Lock lock(_mutex);
auto previousFrameIndex = _currentPresentFrameIndex;
_currentPresentFrameIndex = _sceneTextureToFrameIndexMap[_currentSceneTexture];
auto skippedCount = (_currentPresentFrameIndex - previousFrameIndex) - 1;
_droppedFrameRate.increment(skippedCount);
withPresentThreadLock([&] {
auto previousFrameIndex = _currentPresentFrameIndex;
_currentPresentFrameIndex = _sceneTextureToFrameIndexMap[_currentSceneTexture];
auto skippedCount = (_currentPresentFrameIndex - previousFrameIndex) - 1;
_droppedFrameRate.increment(skippedCount);
});
}
void OpenGLDisplayPlugin::compositeOverlay() {
@ -492,14 +493,14 @@ void OpenGLDisplayPlugin::compositeLayers() {
}
_compositeFramebuffer->Bound(Framebuffer::Target::Draw, [&] {
Context::Viewport(targetRenderSize.x, targetRenderSize.y);
Context::Clear().DepthBuffer();
glBindTexture(GL_TEXTURE_2D, getSceneTextureId());
compositeScene();
auto sceneTextureId = getSceneTextureId();
auto overlayTextureId = getOverlayTextureId();
glBindTexture(GL_TEXTURE_2D, sceneTextureId);
compositeScene();
if (overlayTextureId) {
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glBindTexture(GL_TEXTURE_2D, overlayTextureId);
Context::Enable(Capability::Blend);
Context::BlendFunc(BlendFunction::SrcAlpha, BlendFunction::OneMinusSrcAlpha);
compositeOverlay();
auto compositorHelper = DependencyManager::get<CompositorHelper>();
@ -507,11 +508,16 @@ void OpenGLDisplayPlugin::compositeLayers() {
auto& cursorManager = Cursor::Manager::instance();
const auto& cursorData = _cursorsData[cursorManager.getCursor()->getIcon()];
glBindTexture(GL_TEXTURE_2D, cursorData.texture);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, overlayTextureId);
compositePointer();
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0);
}
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_BLEND);
Context::Disable(Capability::Blend);
}
compositeExtra();
});
}
@ -549,7 +555,11 @@ float OpenGLDisplayPlugin::newFramePresentRate() const {
}
float OpenGLDisplayPlugin::droppedFrameRate() const {
return _droppedFrameRate.rate();
float result;
withRenderThreadLock([&] {
result = _droppedFrameRate.rate();
});
return result;
}
float OpenGLDisplayPlugin::presentRate() const {
@ -664,3 +674,11 @@ void OpenGLDisplayPlugin::useProgram(const ProgramPtr& program) {
_activeProgram = program;
}
}
void OpenGLDisplayPlugin::assertIsRenderThread() const {
Q_ASSERT(QThread::currentThread() != _presentThread);
}
void OpenGLDisplayPlugin::assertIsPresentThread() const {
Q_ASSERT(QThread::currentThread() == _presentThread);
}

View file

@ -74,6 +74,7 @@ protected:
virtual void compositeScene();
virtual void compositeOverlay();
virtual void compositePointer();
virtual void compositeExtra() {};
virtual bool hasFocus() const override;
@ -109,7 +110,6 @@ protected:
int32_t _alphaUniform { -1 };
ShapeWrapperPtr _plane;
mutable Mutex _mutex;
RateCounter<> _droppedFrameRate;
RateCounter<> _newFrameRate;
RateCounter<> _presentRate;
@ -135,7 +135,27 @@ protected:
BasicFramebufferWrapperPtr _compositeFramebuffer;
bool _lockCurrentTexture { false };
void assertIsRenderThread() const;
void assertIsPresentThread() const;
template<typename F>
void withPresentThreadLock(F f) const {
assertIsPresentThread();
Lock lock(_presentMutex);
f();
}
template<typename F>
void withRenderThreadLock(F f) const {
assertIsRenderThread();
Lock lock(_presentMutex);
f();
}
private:
// Any resource shared by the main thread and the presentation thread must
// be serialized through this mutex
mutable Mutex _presentMutex;
ProgramPtr _activeProgram;
};

View file

@ -9,6 +9,7 @@
#include <memory>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/intersect.hpp>
#include <QtCore/QLoggingCategory>
#include <QtWidgets/QApplication>
@ -37,7 +38,6 @@ QRect HmdDisplayPlugin::getRecommendedOverlayRect() const {
return CompositorHelper::VIRTUAL_SCREEN_RECOMMENDED_OVERLAY_RECT;
}
bool HmdDisplayPlugin::internalActivate() {
_monoPreview = _container->getBoolSetting("monoPreview", DEFAULT_MONO_VIEW);
@ -197,14 +197,43 @@ static ProgramPtr getReprojectionProgram() {
#endif
static const char * LASER_VS = R"VS(#version 410 core
uniform mat4 mvp = mat4(1);
in vec3 Position;
out vec3 vPosition;
void main() {
gl_Position = mvp * vec4(Position, 1);
vPosition = Position;
}
)VS";
static const char * LASER_FS = R"FS(#version 410 core
uniform vec4 color = vec4(1.0, 1.0, 1.0, 1.0);
in vec3 vPosition;
out vec4 FragColor;
void main() {
FragColor = color;
}
)FS";
void HmdDisplayPlugin::customizeContext() {
Parent::customizeContext();
// Only enable mirroring if we know vsync is disabled
enableVsync(false);
_enablePreview = !isVsyncEnabled();
_sphereSection = loadSphereSection(_program, CompositorHelper::VIRTUAL_UI_TARGET_FOV.y, CompositorHelper::VIRTUAL_UI_ASPECT_RATIO);
compileProgram(_laserProgram, LASER_VS, LASER_FS);
_laserGeometry = loadLaser(_laserProgram);
compileProgram(_reprojectionProgram, REPROJECTION_VS, REPROJECTION_FS);
using namespace oglplus;
REPROJECTION_MATRIX_LOCATION = Uniform<glm::mat3>(*_reprojectionProgram, "reprojection").Location();
INVERSE_PROJECTION_MATRIX_LOCATION = Uniform<glm::mat4>(*_reprojectionProgram, "inverseProjections").Location();
@ -215,6 +244,8 @@ void HmdDisplayPlugin::uncustomizeContext() {
_sphereSection.reset();
_compositeFramebuffer.reset();
_reprojectionProgram.reset();
_laserProgram.reset();
_laserGeometry.reset();
Parent::uncustomizeContext();
}
@ -288,6 +319,7 @@ void HmdDisplayPlugin::compositePointer() {
});
}
void HmdDisplayPlugin::internalPresent() {
PROFILE_RANGE_EX(__FUNCTION__, 0xff00ff00, (uint64_t)presentCount())
@ -344,22 +376,114 @@ void HmdDisplayPlugin::setEyeRenderPose(uint32_t frameIndex, Eye eye, const glm:
void HmdDisplayPlugin::updateFrameData() {
// Check if we have old frame data to discard
{
Lock lock(_mutex);
withPresentThreadLock([&] {
auto itr = _frameInfos.find(_currentPresentFrameIndex);
if (itr != _frameInfos.end()) {
_frameInfos.erase(itr);
}
}
});
Parent::updateFrameData();
{
Lock lock(_mutex);
withPresentThreadLock([&] {
_currentPresentFrameInfo = _frameInfos[_currentPresentFrameIndex];
}
});
}
glm::mat4 HmdDisplayPlugin::getHeadPose() const {
return _currentRenderFrameInfo.renderPose;
}
bool HmdDisplayPlugin::setHandLaser(uint32_t hands, HandLaserMode mode, const vec4& color, const vec3& direction) {
HandLaserInfo info;
info.mode = mode;
info.color = color;
info.direction = direction;
withRenderThreadLock([&] {
if (hands & Hand::LeftHand) {
_handLasers[0] = info;
}
if (hands & Hand::RightHand) {
_handLasers[1] = info;
}
});
// FIXME defer to a child class plugin to determine if hand lasers are actually
// available based on the presence or absence of hand controllers
return true;
}
void HmdDisplayPlugin::compositeExtra() {
std::array<HandLaserInfo, 2> handLasers;
std::array<mat4, 2> renderHandPoses;
withPresentThreadLock([&] {
handLasers = _handLasers;
renderHandPoses = _handPoses;
});
// If neither hand laser is activated, exit
if (!handLasers[0].valid() && !handLasers[1].valid()) {
return;
}
static const glm::mat4 identity;
if (renderHandPoses[0] == identity && renderHandPoses[1] == identity) {
return;
}
// Render hand lasers
using namespace oglplus;
useProgram(_laserProgram);
_laserGeometry->Use();
std::array<mat4, 2> handLaserModelMatrices;
for (int i = 0; i < 2; ++i) {
if (renderHandPoses[i] == identity) {
continue;
}
const auto& handLaser = handLasers[i];
if (!handLaser.valid()) {
continue;
}
const auto& laserDirection = handLaser.direction;
auto model = renderHandPoses[i];
auto castDirection = glm::quat_cast(model) * laserDirection;
if (glm::abs(glm::length2(castDirection) - 1.0f) > EPSILON) {
castDirection = glm::normalize(castDirection);
}
// FIXME fetch the actual UI radius from... somewhere?
float uiRadius = 1.0f;
// Find the intersection of the laser with he UI and use it to scale the model matrix
float distance;
if (!glm::intersectRaySphere(vec3(renderHandPoses[i][3]), castDirection, vec3(0), uiRadius * uiRadius, distance)) {
continue;
}
// Make sure we rotate to match the desired laser direction
if (laserDirection != Vectors::UNIT_NEG_Z) {
auto rotation = glm::rotation(Vectors::UNIT_NEG_Z, laserDirection);
model = model * glm::mat4_cast(rotation);
}
model = glm::scale(model, vec3(distance));
handLaserModelMatrices[i] = model;
}
for_each_eye([&](Eye eye) {
eyeViewport(eye);
auto eyePose = _currentPresentFrameInfo.presentPose * getEyeToHeadTransform(eye);
auto view = glm::inverse(eyePose);
const auto& projection = _eyeProjections[eye];
for (int i = 0; i < 2; ++i) {
if (handLaserModelMatrices[i] == identity) {
continue;
}
Uniform<glm::mat4>(*_laserProgram, "mvp").Set(projection * view * handLaserModelMatrices[i]);
Uniform<glm::vec4>(*_laserProgram, "color").Set(handLasers[i].color);
_laserGeometry->Draw();
// TODO render some kind of visual indicator at the intersection point with the UI.
}
});
}

View file

@ -30,7 +30,7 @@ public:
virtual glm::mat4 getHeadPose() const override;
bool setHandLaser(uint32_t hands, HandLaserMode mode, const vec4& color, const vec3& direction) override;
protected:
virtual void hmdPresent() = 0;
@ -46,7 +46,21 @@ protected:
void customizeContext() override;
void uncustomizeContext() override;
void updateFrameData() override;
void compositeExtra() override;
struct HandLaserInfo {
HandLaserMode mode { HandLaserMode::None };
vec4 color { 1.0f };
vec3 direction { 0, 0, -1 };
// Is this hand laser info suitable for drawing?
bool valid() const {
return (mode != HandLaserMode::None && color.a > 0.0f && direction != vec3());
}
};
std::array<HandLaserInfo, 2> _handLasers;
std::array<glm::mat4, 2> _handPoses;
std::array<glm::mat4, 2> _eyeOffsets;
std::array<glm::mat4, 2> _eyeProjections;
std::array<glm::mat4, 2> _eyeInverseProjections;
@ -75,5 +89,7 @@ private:
bool _enableReprojection { true };
ShapeWrapperPtr _sphereSection;
ProgramPtr _reprojectionProgram;
ProgramPtr _laserProgram;
ShapeWrapperPtr _laserGeometry;
};

View file

@ -45,9 +45,11 @@ in vec2 vTexCoord;
out vec4 FragColor;
void main() {
FragColor = texture(sampler, vTexCoord);
FragColor.a *= alpha;
if (FragColor.a <= 0.0) {
discard;
}
}
)FS";
@ -359,6 +361,94 @@ ShapeWrapperPtr loadSphereSection(ProgramPtr program, float fov, float aspect, i
);
}
namespace oglplus {
namespace shapes {
class Laser : public DrawingInstructionWriter, public DrawMode {
public:
using IndexArray = std::vector<GLuint>;
using PosArray = std::vector<float>;
/// The type of the index container returned by Indices()
// vertex positions
PosArray _pos_data;
IndexArray _idx_data;
unsigned int _prim_count { 0 };
public:
Laser() {
int vertices = 2;
_pos_data.resize(vertices * 3);
_pos_data[0] = 0;
_pos_data[1] = 0;
_pos_data[2] = 0;
_pos_data[3] = 0;
_pos_data[4] = 0;
_pos_data[5] = -1;
_idx_data.push_back(0);
_idx_data.push_back(1);
_prim_count = 1;
}
/// Returns the winding direction of faces
FaceOrientation FaceWinding(void) const {
return FaceOrientation::CCW;
}
/// Queries the bounding sphere coordinates and dimensions
template <typename T>
void BoundingSphere(Sphere<T>& bounding_sphere) const {
bounding_sphere = Sphere<T>(0, 0, -0.5, 0.5);
}
typedef GLuint(Laser::*VertexAttribFunc)(std::vector<GLfloat>&) const;
/// Makes the vertex positions and returns the number of values per vertex
template <typename T>
GLuint Positions(std::vector<T>& dest) const {
dest.clear();
dest.insert(dest.begin(), _pos_data.begin(), _pos_data.end());
return 3;
}
typedef VertexAttribsInfo<
Laser,
std::tuple<VertexPositionsTag>
> VertexAttribs;
/// Returns element indices that are used with the drawing instructions
const IndexArray & Indices(Default = Default()) const {
return _idx_data;
}
/// Returns the instructions for rendering of faces
DrawingInstructions Instructions(PrimitiveType primitive) const {
DrawingInstructions instr = MakeInstructions();
DrawOperation operation;
operation.method = DrawOperation::Method::DrawElements;
operation.mode = primitive;
operation.first = 0;
operation.count = _prim_count * 3;
operation.restart_index = DrawOperation::NoRestartIndex();
operation.phase = 0;
AddInstruction(instr, operation);
return instr;
}
/// Returns the instructions for rendering of faces
DrawingInstructions Instructions(Default = Default()) const {
return Instructions(PrimitiveType::Lines);
}
};
}
}
ShapeWrapperPtr loadLaser(const ProgramPtr& program) {
return std::make_shared<shapes::ShapeWrapper>(shapes::ShapeWrapper("Position", shapes::Laser(), *program));
}
void TextureRecycler::setSize(const uvec2& size) {
if (size == _size) {
return;

View file

@ -64,8 +64,9 @@ ProgramPtr loadCubemapShader();
void compileProgram(ProgramPtr & result, const std::string& vs, const std::string& fs);
ShapeWrapperPtr loadSkybox(ProgramPtr program);
ShapeWrapperPtr loadPlane(ProgramPtr program, float aspect = 1.0f);
ShapeWrapperPtr loadSphereSection(ProgramPtr program, float fov = PI / 3.0f * 2.0f, float aspect = 16.0f / 9.0f, int slices = 32, int stacks = 32);
ShapeWrapperPtr loadSphereSection(ProgramPtr program, float fov = PI / 3.0f * 2.0f, float aspect = 16.0f / 9.0f, int slices = 128, int stacks = 128);
ShapeWrapperPtr loadLaser(const ProgramPtr& program);
// A basic wrapper for constructing a framebuffer with a renderbuffer
// for the depth attachment and an undefined type for the color attachement

View file

@ -173,6 +173,7 @@ void AccountManager::setAuthURL(const QUrl& authURL) {
<< "from previous settings file";
}
}
settings.endGroup();
if (_accountInfo.getAccessToken().token.isEmpty()) {
qCWarning(networking) << "Unable to load account file. No existing account settings will be loaded.";

View file

@ -168,6 +168,26 @@ public:
static const QString& MENU_PATH();
enum Hand {
LeftHand = 0x01,
RightHand = 0x02,
};
enum class HandLaserMode {
None, // Render no hand lasers
Overlay, // Render hand lasers only if they intersect with the UI layer, and stop at the UI layer
};
virtual bool setHandLaser(
uint32_t hands, // Bits from the Hand enum
HandLaserMode mode, // Mode in which to render
const vec4& color = vec4(1), // The color of the rendered laser
const vec3& direction = vec3(0, 0, -1) // The direction in which to render the hand lasers
) {
return false;
}
signals:
void recommendedFramebufferSizeChanged(const QSize & size);
// Indicates that this display plugin is no longer valid for use.

View file

@ -334,6 +334,7 @@ void ScriptEngines::clearScripts() {
Settings settings;
settings.beginWriteArray(SETTINGS_KEY);
settings.remove("");
settings.endArray();
}
void ScriptEngines::saveScripts() {

View file

@ -18,6 +18,7 @@
const QString Settings::firstRun { "firstRun" };
Settings::Settings() :
_manager(DependencyManager::get<Setting::Manager>()),
_locker(&(_manager->getLock()))
@ -25,6 +26,9 @@ Settings::Settings() :
}
Settings::~Settings() {
if (_prefixes.size() != 0) {
qFatal("Unstable Settings Prefixes: You must call endGroup for every beginGroup and endArray for every begin*Array call");
}
}
void Settings::remove(const QString& key) {
@ -50,14 +54,17 @@ bool Settings::contains(const QString& key) const {
}
int Settings::beginReadArray(const QString & prefix) {
_prefixes.push(prefix);
return _manager->beginReadArray(prefix);
}
void Settings::beginWriteArray(const QString& prefix, int size) {
_prefixes.push(prefix);
_manager->beginWriteArray(prefix, size);
}
void Settings::endArray() {
_prefixes.pop();
_manager->endArray();
}
@ -66,10 +73,12 @@ void Settings::setArrayIndex(int i) {
}
void Settings::beginGroup(const QString& prefix) {
_prefixes.push(prefix);
_manager->beginGroup(prefix);
}
void Settings::endGroup() {
_prefixes.pop();
_manager->endGroup();
}

View file

@ -58,8 +58,10 @@ public:
void setQuatValue(const QString& name, const glm::quat& quatValue);
void getQuatValueIfValid(const QString& name, glm::quat& quatValue);
private:
QSharedPointer<Setting::Manager> _manager;
QWriteLocker _locker;
QStack<QString> _prefixes;
};
namespace Setting {

View file

@ -98,6 +98,8 @@ namespace Setting {
// Register Handle
manager->registerHandle(this);
_isInitialized = true;
} else {
qWarning() << "Settings interface used after manager destroyed";
}
// Load value from disk

View file

@ -8,6 +8,7 @@
#include "OculusBaseDisplayPlugin.h"
#include <ViewFrustum.h>
#include <controllers/Pose.h>
#include "OculusHelpers.h"
@ -24,8 +25,24 @@ bool OculusBaseDisplayPlugin::beginFrameRender(uint32_t frameIndex) {
auto trackingState = ovr_GetTrackingState(_session, _currentRenderFrameInfo.predictedDisplayTime, ovrTrue);
_currentRenderFrameInfo.renderPose = toGlm(trackingState.HeadPose.ThePose);
_currentRenderFrameInfo.presentPose = _currentRenderFrameInfo.renderPose;
Lock lock(_mutex);
_frameInfos[frameIndex] = _currentRenderFrameInfo;
std::array<glm::mat4, 2> handPoses;
// Make controller poses available to the presentation thread
ovr_for_each_hand([&](ovrHandType hand) {
static const auto REQUIRED_HAND_STATUS = ovrStatus_OrientationTracked & ovrStatus_PositionTracked;
if (REQUIRED_HAND_STATUS != (trackingState.HandStatusFlags[hand] & REQUIRED_HAND_STATUS)) {
return;
}
auto correctedPose = ovrControllerPoseToHandPose(hand, trackingState.HandPoses[hand]);
static const glm::quat HAND_TO_LASER_ROTATION = glm::rotation(Vectors::UNIT_Z, Vectors::UNIT_NEG_Y);
handPoses[hand] = glm::translate(glm::mat4(), correctedPose.translation) * glm::mat4_cast(correctedPose.rotation * HAND_TO_LASER_ROTATION);
});
withRenderThreadLock([&] {
_handPoses = handPoses;
_frameInfos[frameIndex] = _currentRenderFrameInfo;
});
return true;
}

View file

@ -243,91 +243,13 @@ void OculusControllerManager::TouchDevice::focusOutEvent() {
void OculusControllerManager::TouchDevice::handlePose(float deltaTime,
const controller::InputCalibrationData& inputCalibrationData, ovrHandType hand,
const ovrPoseStatef& handPose) {
// When the sensor-to-world rotation is identity the coordinate axes look like this:
//
// user
// forward
// -z
// |
// y| user
// y o----x right
// o-----x user
// | up
// |
// z
//
// Rift
// From ABOVE the hand canonical axes looks like this:
//
// | | | | y | | | |
// | | | | | | | | |
// | | | | |
// |left | / x---- + \ |right|
// | _/ z \_ |
// | | | |
// | | | |
//
// So when the user is in Rift space facing the -zAxis with hands outstretched and palms down
// the rotation to align the Touch axes with those of the hands is:
//
// touchToHand = halfTurnAboutY * quaterTurnAboutX
// Due to how the Touch controllers fit into the palm there is an offset that is different for each hand.
// You can think of this offset as the inverse of the measured rotation when the hands are posed, such that
// the combination (measurement * offset) is identity at this orientation.
//
// Qoffset = glm::inverse(deltaRotation when hand is posed fingers forward, palm down)
//
// An approximate offset for the Touch can be obtained by inspection:
//
// Qoffset = glm::inverse(glm::angleAxis(sign * PI/2.0f, zAxis) * glm::angleAxis(PI/4.0f, xAxis))
//
// So the full equation is:
//
// Q = combinedMeasurement * touchToHand
//
// Q = (deltaQ * QOffset) * (yFlip * quarterTurnAboutX)
//
// Q = (deltaQ * inverse(deltaQForAlignedHand)) * (yFlip * quarterTurnAboutX)
auto poseId = hand == ovrHand_Left ? controller::LEFT_HAND : controller::RIGHT_HAND;
auto& pose = _poseStateMap[poseId];
static const glm::quat yFlip = glm::angleAxis(PI, Vectors::UNIT_Y);
static const glm::quat quarterX = glm::angleAxis(PI_OVER_TWO, Vectors::UNIT_X);
static const glm::quat touchToHand = yFlip * quarterX;
static const glm::quat leftQuarterZ = glm::angleAxis(-PI_OVER_TWO, Vectors::UNIT_Z);
static const glm::quat rightQuarterZ = glm::angleAxis(PI_OVER_TWO, Vectors::UNIT_Z);
static const glm::quat eighthX = glm::angleAxis(PI / 4.0f, Vectors::UNIT_X);
static const glm::quat leftRotationOffset = glm::inverse(leftQuarterZ * eighthX) * touchToHand;
static const glm::quat rightRotationOffset = glm::inverse(rightQuarterZ * eighthX) * touchToHand;
static const float CONTROLLER_LENGTH_OFFSET = 0.0762f; // three inches
static const glm::vec3 CONTROLLER_OFFSET = glm::vec3(CONTROLLER_LENGTH_OFFSET / 2.0f,
CONTROLLER_LENGTH_OFFSET / 2.0f,
CONTROLLER_LENGTH_OFFSET * 2.0f);
static const glm::vec3 leftTranslationOffset = glm::vec3(-1.0f, 1.0f, 1.0f) * CONTROLLER_OFFSET;
static const glm::vec3 rightTranslationOffset = CONTROLLER_OFFSET;
auto translationOffset = (hand == ovrHand_Left ? leftTranslationOffset : rightTranslationOffset);
auto rotationOffset = (hand == ovrHand_Left ? leftRotationOffset : rightRotationOffset);
glm::quat rotation = toGlm(handPose.ThePose.Orientation);
pose.translation = toGlm(handPose.ThePose.Position);
pose.translation += rotation * translationOffset;
pose.rotation = rotation * rotationOffset;
pose.angularVelocity = toGlm(handPose.AngularVelocity);
pose.velocity = toGlm(handPose.LinearVelocity);
pose.valid = true;
pose = ovrControllerPoseToHandPose(hand, handPose);
// transform into avatar frame
glm::mat4 controllerToAvatar = glm::inverse(inputCalibrationData.avatarMat) * inputCalibrationData.sensorToWorldMat;
pose = pose.transform(controllerToAvatar);
}
bool OculusControllerManager::TouchDevice::triggerHapticPulse(float strength, float duration, controller::Hand hand) {

View file

@ -15,6 +15,9 @@
#include <QtCore/QFile>
#include <QtCore/QDir>
#include <controllers/Input.h>
#include <controllers/Pose.h>
using Mutex = std::mutex;
using Lock = std::unique_lock<Mutex>;
@ -191,3 +194,88 @@ void SwapFramebufferWrapper::onBind(oglplus::Framebuffer::Target target) {
void SwapFramebufferWrapper::onUnbind(oglplus::Framebuffer::Target target) {
glFramebufferTexture2D(toEnum(target), GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
}
controller::Pose ovrControllerPoseToHandPose(
ovrHandType hand,
const ovrPoseStatef& handPose) {
// When the sensor-to-world rotation is identity the coordinate axes look like this:
//
// user
// forward
// -z
// |
// y| user
// y o----x right
// o-----x user
// | up
// |
// z
//
// Rift
// From ABOVE the hand canonical axes looks like this:
//
// | | | | y | | | |
// | | | | | | | | |
// | | | | |
// |left | / x---- + \ |right|
// | _/ z \_ |
// | | | |
// | | | |
//
// So when the user is in Rift space facing the -zAxis with hands outstretched and palms down
// the rotation to align the Touch axes with those of the hands is:
//
// touchToHand = halfTurnAboutY * quaterTurnAboutX
// Due to how the Touch controllers fit into the palm there is an offset that is different for each hand.
// You can think of this offset as the inverse of the measured rotation when the hands are posed, such that
// the combination (measurement * offset) is identity at this orientation.
//
// Qoffset = glm::inverse(deltaRotation when hand is posed fingers forward, palm down)
//
// An approximate offset for the Touch can be obtained by inspection:
//
// Qoffset = glm::inverse(glm::angleAxis(sign * PI/2.0f, zAxis) * glm::angleAxis(PI/4.0f, xAxis))
//
// So the full equation is:
//
// Q = combinedMeasurement * touchToHand
//
// Q = (deltaQ * QOffset) * (yFlip * quarterTurnAboutX)
//
// Q = (deltaQ * inverse(deltaQForAlignedHand)) * (yFlip * quarterTurnAboutX)
static const glm::quat yFlip = glm::angleAxis(PI, Vectors::UNIT_Y);
static const glm::quat quarterX = glm::angleAxis(PI_OVER_TWO, Vectors::UNIT_X);
static const glm::quat touchToHand = yFlip * quarterX;
static const glm::quat leftQuarterZ = glm::angleAxis(-PI_OVER_TWO, Vectors::UNIT_Z);
static const glm::quat rightQuarterZ = glm::angleAxis(PI_OVER_TWO, Vectors::UNIT_Z);
static const glm::quat eighthX = glm::angleAxis(PI / 4.0f, Vectors::UNIT_X);
static const glm::quat leftRotationOffset = glm::inverse(leftQuarterZ * eighthX) * touchToHand;
static const glm::quat rightRotationOffset = glm::inverse(rightQuarterZ * eighthX) * touchToHand;
static const float CONTROLLER_LENGTH_OFFSET = 0.0762f; // three inches
static const glm::vec3 CONTROLLER_OFFSET = glm::vec3(CONTROLLER_LENGTH_OFFSET / 2.0f,
CONTROLLER_LENGTH_OFFSET / 2.0f,
CONTROLLER_LENGTH_OFFSET * 2.0f);
static const glm::vec3 leftTranslationOffset = glm::vec3(-1.0f, 1.0f, 1.0f) * CONTROLLER_OFFSET;
static const glm::vec3 rightTranslationOffset = CONTROLLER_OFFSET;
auto translationOffset = (hand == ovrHand_Left ? leftTranslationOffset : rightTranslationOffset);
auto rotationOffset = (hand == ovrHand_Left ? leftRotationOffset : rightRotationOffset);
glm::quat rotation = toGlm(handPose.ThePose.Orientation);
controller::Pose pose;
pose.translation = toGlm(handPose.ThePose.Position);
pose.translation += rotation * translationOffset;
pose.rotation = rotation * rotationOffset;
pose.angularVelocity = toGlm(handPose.AngularVelocity);
pose.velocity = toGlm(handPose.LinearVelocity);
pose.valid = true;
return pose;
}

View file

@ -13,6 +13,7 @@
#include <glm/gtc/matrix_transform.hpp>
#include <gl/OglplusHelpers.h>
#include <controllers/Forward.h>
void logWarning(const char* what);
void logFatal(const char* what);
@ -128,3 +129,7 @@ protected:
private:
ovrSession _session;
};
controller::Pose ovrControllerPoseToHandPose(
ovrHandType hand,
const ovrPoseStatef& handPose);

View file

@ -45,8 +45,9 @@ bool OculusLegacyDisplayPlugin::beginFrameRender(uint32_t frameIndex) {
_currentRenderFrameInfo.predictedDisplayTime = _currentRenderFrameInfo.sensorSampleTime = ovr_GetTimeInSeconds();
_trackingState = ovrHmd_GetTrackingState(_hmd, _currentRenderFrameInfo.predictedDisplayTime);
_currentRenderFrameInfo.rawRenderPose = _currentRenderFrameInfo.renderPose = toGlm(_trackingState.HeadPose.ThePose);
Lock lock(_mutex);
_frameInfos[frameIndex] = _currentRenderFrameInfo;
withRenderThreadLock([&]{
_frameInfos[frameIndex] = _currentRenderFrameInfo;
});
return true;
}

View file

@ -18,6 +18,7 @@
#include <GLMHelpers.h>
#include <gl/GlWindow.h>
#include <controllers/Pose.h>
#include <PerfStat.h>
#include <plugins/PluginContainer.h>
#include <ViewFrustum.h>
@ -29,11 +30,13 @@ Q_DECLARE_LOGGING_CATEGORY(displayplugins)
const QString OpenVrDisplayPlugin::NAME("OpenVR (Vive)");
const QString StandingHMDSensorMode = "Standing HMD Sensor Mode"; // this probably shouldn't be hardcoded here
static vr::IVRCompositor* _compositor{ nullptr };
static vr::IVRCompositor* _compositor { nullptr };
vr::TrackedDevicePose_t _trackedDevicePose[vr::k_unMaxTrackedDeviceCount];
mat4 _trackedDevicePoseMat4[vr::k_unMaxTrackedDeviceCount];
vec3 _trackedDeviceLinearVelocities[vr::k_unMaxTrackedDeviceCount];
vec3 _trackedDeviceAngularVelocities[vr::k_unMaxTrackedDeviceCount];
static mat4 _sensorResetMat;
static std::array<vr::Hmd_Eye, 2> VR_EYES { { vr::Eye_Left, vr::Eye_Right } };
bool _openVrDisplayActive { false };
@ -59,16 +62,14 @@ bool OpenVrDisplayPlugin::internalActivate() {
// left + right eyes
_renderTargetSize.x *= 2;
{
Lock lock(_poseMutex);
withRenderThreadLock([&] {
openvr_for_each_eye([&](vr::Hmd_Eye eye) {
_eyeOffsets[eye] = toGlm(_system->GetEyeToHeadTransform(eye));
_eyeProjections[eye] = toGlm(_system->GetProjectionMatrix(eye, DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP, vr::API_OpenGL));
});
// FIXME Calculate the proper combined projection by using GetProjectionRaw values from both eyes
_cullingProjection = _eyeProjections[0];
}
});
_compositor = vr::VRCompositor();
Q_ASSERT(_compositor);
@ -113,7 +114,7 @@ void OpenVrDisplayPlugin::internalDeactivate() {
void OpenVrDisplayPlugin::customizeContext() {
// Display plugins in DLLs must initialize glew locally
static std::once_flag once;
std::call_once(once, []{
std::call_once(once, [] {
glewExperimental = true;
GLenum err = glewInit();
glGetError(); // clear the potential error from glewExperimental
@ -123,9 +124,10 @@ void OpenVrDisplayPlugin::customizeContext() {
}
void OpenVrDisplayPlugin::resetSensors() {
Lock lock(_poseMutex);
glm::mat4 m = toGlm(_trackedDevicePose[0].mDeviceToAbsoluteTracking);
_sensorResetMat = glm::inverse(cancelOutRollAndPitch(m));
withRenderThreadLock([&] {
glm::mat4 m = toGlm(_trackedDevicePose[0].mDeviceToAbsoluteTracking);
_sensorResetMat = glm::inverse(cancelOutRollAndPitch(m));
});
}
@ -150,6 +152,24 @@ bool OpenVrDisplayPlugin::beginFrameRender(uint32_t frameIndex) {
_system->GetDeviceToAbsoluteTrackingPose(vr::TrackingUniverseStanding, _currentRenderFrameInfo.predictedDisplayTime, _trackedDevicePose, vr::k_unMaxTrackedDeviceCount);
vr::TrackedDeviceIndex_t handIndices[2] { vr::k_unTrackedDeviceIndexInvalid, vr::k_unTrackedDeviceIndexInvalid };
{
vr::TrackedDeviceIndex_t controllerIndices[2] ;
auto trackedCount = _system->GetSortedTrackedDeviceIndicesOfClass(vr::TrackedDeviceClass_Controller, controllerIndices, 2);
// Find the left and right hand controllers, if they exist
for (uint32_t i = 0; i < std::min<uint32_t>(trackedCount, 2); ++i) {
if (_trackedDevicePose[i].bPoseIsValid) {
auto role = _system->GetControllerRoleForTrackedDeviceIndex(controllerIndices[i]);
if (vr::TrackedControllerRole_LeftHand == role) {
handIndices[0] = controllerIndices[i];
} else if (vr::TrackedControllerRole_RightHand == role) {
handIndices[1] = controllerIndices[i];
}
}
}
}
// copy and process predictedTrackedDevicePoses
for (int i = 0; i < vr::k_unMaxTrackedDeviceCount; i++) {
_trackedDevicePoseMat4[i] = _sensorResetMat * toGlm(_trackedDevicePose[i].mDeviceToAbsoluteTracking);
@ -159,18 +179,38 @@ bool OpenVrDisplayPlugin::beginFrameRender(uint32_t frameIndex) {
_currentRenderFrameInfo.rawRenderPose = toGlm(_trackedDevicePose[vr::k_unTrackedDeviceIndex_Hmd].mDeviceToAbsoluteTracking);
_currentRenderFrameInfo.renderPose = _trackedDevicePoseMat4[vr::k_unTrackedDeviceIndex_Hmd];
Lock lock(_mutex);
_frameInfos[frameIndex] = _currentRenderFrameInfo;
bool keyboardVisible = isOpenVrKeyboardShown();
std::array<mat4, 2> handPoses;
if (!keyboardVisible) {
for (int i = 0; i < 2; ++i) {
if (handIndices[i] == vr::k_unTrackedDeviceIndexInvalid) {
continue;
}
auto deviceIndex = handIndices[i];
const mat4& mat = _trackedDevicePoseMat4[deviceIndex];
const vec3& linearVelocity = _trackedDeviceLinearVelocities[deviceIndex];
const vec3& angularVelocity = _trackedDeviceAngularVelocities[deviceIndex];
auto correctedPose = openVrControllerPoseToHandPose(i == 0, mat, linearVelocity, angularVelocity);
static const glm::quat HAND_TO_LASER_ROTATION = glm::rotation(Vectors::UNIT_Z, Vectors::UNIT_NEG_Y);
handPoses[i] = glm::translate(glm::mat4(), correctedPose.translation) * glm::mat4_cast(correctedPose.rotation * HAND_TO_LASER_ROTATION);
}
}
withRenderThreadLock([&] {
// Make controller poses available to the presentation thread
_handPoses = handPoses;
_frameInfos[frameIndex] = _currentRenderFrameInfo;
});
return true;
}
void OpenVrDisplayPlugin::hmdPresent() {
PROFILE_RANGE_EX(__FUNCTION__, 0xff00ff00, (uint64_t)_currentPresentFrameIndex)
// Flip y-axis since GL UV coords are backwards.
static vr::VRTextureBounds_t leftBounds{ 0, 0, 0.5f, 1 };
static vr::VRTextureBounds_t rightBounds{ 0.5f, 0, 1, 1 };
static vr::VRTextureBounds_t leftBounds { 0, 0, 0.5f, 1 };
static vr::VRTextureBounds_t rightBounds { 0.5f, 0, 1, 1 };
vr::Texture_t texture { (void*)oglplus::GetName(_compositeFramebuffer->color), vr::API_OpenGL, vr::ColorSpace_Auto };
@ -191,6 +231,10 @@ bool OpenVrDisplayPlugin::isHmdMounted() const {
}
void OpenVrDisplayPlugin::updatePresentPose() {
mat4 sensorResetMat;
withPresentThreadLock([&] {
sensorResetMat = _sensorResetMat;
});
{
float fSecondsSinceLastVsync;
_system->GetTimeSinceLastVsync(&fSecondsSinceLastVsync, nullptr);
@ -202,9 +246,8 @@ void OpenVrDisplayPlugin::updatePresentPose() {
_system->GetDeviceToAbsoluteTrackingPose(vr::TrackingUniverseStanding, fPredictedSecondsFromNow, &pose, 1);
_currentPresentFrameInfo.rawPresentPose = toGlm(pose.mDeviceToAbsoluteTracking);
}
_currentPresentFrameInfo.presentPose = _sensorResetMat * _currentPresentFrameInfo.rawPresentPose;
_currentPresentFrameInfo.presentPose = sensorResetMat * _currentPresentFrameInfo.rawPresentPose;
mat3 renderRotation(_currentPresentFrameInfo.rawRenderPose);
mat3 presentRotation(_currentPresentFrameInfo.rawPresentPose);
_currentPresentFrameInfo.presentReprojection = glm::mat3(glm::inverse(renderRotation) * presentRotation);
}

View file

@ -43,5 +43,4 @@ private:
vr::IVRSystem* _system { nullptr };
std::atomic<vr::EDeviceActivityLevel> _hmdActivityLevel { vr::k_EDeviceActivityLevel_Unknown };
static const QString NAME;
mutable Mutex _poseMutex;
};

View file

@ -18,8 +18,9 @@
#include <QtQuick/QQuickWindow>
#include <Windows.h>
#include <OffscreenUi.h>
#include <controllers/Pose.h>
#include <NumericalConstants.h>
Q_DECLARE_LOGGING_CATEGORY(displayplugins)
Q_LOGGING_CATEGORY(displayplugins, "hifi.plugins.display")
@ -208,6 +209,10 @@ void disableOpenVrKeyboard() {
QObject::disconnect(_focusConnection);
}
bool isOpenVrKeyboardShown() {
return _keyboardShown;
}
void handleOpenVrEvents() {
if (!activeHmd) {
@ -238,3 +243,86 @@ void handleOpenVrEvents() {
}
controller::Pose openVrControllerPoseToHandPose(bool isLeftHand, const mat4& mat, const vec3& linearVelocity, const vec3& angularVelocity) {
// When the sensor-to-world rotation is identity the coordinate axes look like this:
//
// user
// forward
// -z
// |
// y| user
// y o----x right
// o-----x user
// | up
// |
// z
//
// Rift
// From ABOVE the hand canonical axes looks like this:
//
// | | | | y | | | |
// | | | | | | | | |
// | | | | |
// |left | / x---- + \ |right|
// | _/ z \_ |
// | | | |
// | | | |
//
// So when the user is in Rift space facing the -zAxis with hands outstretched and palms down
// the rotation to align the Touch axes with those of the hands is:
//
// touchToHand = halfTurnAboutY * quaterTurnAboutX
// Due to how the Touch controllers fit into the palm there is an offset that is different for each hand.
// You can think of this offset as the inverse of the measured rotation when the hands are posed, such that
// the combination (measurement * offset) is identity at this orientation.
//
// Qoffset = glm::inverse(deltaRotation when hand is posed fingers forward, palm down)
//
// An approximate offset for the Touch can be obtained by inspection:
//
// Qoffset = glm::inverse(glm::angleAxis(sign * PI/2.0f, zAxis) * glm::angleAxis(PI/4.0f, xAxis))
//
// So the full equation is:
//
// Q = combinedMeasurement * touchToHand
//
// Q = (deltaQ * QOffset) * (yFlip * quarterTurnAboutX)
//
// Q = (deltaQ * inverse(deltaQForAlignedHand)) * (yFlip * quarterTurnAboutX)
static const glm::quat yFlip = glm::angleAxis(PI, Vectors::UNIT_Y);
static const glm::quat quarterX = glm::angleAxis(PI_OVER_TWO, Vectors::UNIT_X);
static const glm::quat touchToHand = yFlip * quarterX;
static const glm::quat leftQuarterZ = glm::angleAxis(-PI_OVER_TWO, Vectors::UNIT_Z);
static const glm::quat rightQuarterZ = glm::angleAxis(PI_OVER_TWO, Vectors::UNIT_Z);
static const glm::quat eighthX = glm::angleAxis(PI / 4.0f, Vectors::UNIT_X);
static const glm::quat leftRotationOffset = glm::inverse(leftQuarterZ * eighthX) * touchToHand;
static const glm::quat rightRotationOffset = glm::inverse(rightQuarterZ * eighthX) * touchToHand;
static const float CONTROLLER_LENGTH_OFFSET = 0.0762f; // three inches
static const glm::vec3 CONTROLLER_OFFSET = glm::vec3(CONTROLLER_LENGTH_OFFSET / 2.0f,
CONTROLLER_LENGTH_OFFSET / 2.0f,
CONTROLLER_LENGTH_OFFSET * 2.0f);
static const glm::vec3 leftTranslationOffset = glm::vec3(-1.0f, 1.0f, 1.0f) * CONTROLLER_OFFSET;
static const glm::vec3 rightTranslationOffset = CONTROLLER_OFFSET;
auto translationOffset = (isLeftHand ? leftTranslationOffset : rightTranslationOffset);
auto rotationOffset = (isLeftHand ? leftRotationOffset : rightRotationOffset);
glm::vec3 position = extractTranslation(mat);
glm::quat rotation = glm::normalize(glm::quat_cast(mat));
position += rotation * translationOffset;
rotation = rotation * rotationOffset;
// transform into avatar frame
auto result = controller::Pose(position, rotation);
// handle change in velocity due to translationOffset
result.velocity = linearVelocity + glm::cross(angularVelocity, position - extractTranslation(mat));
result.angularVelocity = angularVelocity;
return result;
}

View file

@ -12,6 +12,8 @@
#include <glm/gtc/type_ptr.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <controllers/Forward.h>
bool openVrSupported();
vr::IVRSystem* acquireOpenVrSystem();
@ -20,6 +22,7 @@ void handleOpenVrEvents();
bool openVrQuitRequested();
void enableOpenVrKeyboard();
void disableOpenVrKeyboard();
bool isOpenVrKeyboardShown();
template<typename F>
@ -54,3 +57,5 @@ inline vr::HmdMatrix34_t toOpenVr(const mat4& m) {
}
return result;
}
controller::Pose openVrControllerPoseToHandPose(bool isLeftHand, const mat4& mat, const vec3& linearVelocity, const vec3& angularVelocity);

View file

@ -37,10 +37,6 @@ vr::IVRSystem* acquireOpenVrSystem();
void releaseOpenVrSystem();
static const float CONTROLLER_LENGTH_OFFSET = 0.0762f; // three inches
static const glm::vec3 CONTROLLER_OFFSET = glm::vec3(CONTROLLER_LENGTH_OFFSET / 2.0f,
CONTROLLER_LENGTH_OFFSET / 2.0f,
CONTROLLER_LENGTH_OFFSET * 2.0f);
static const char* CONTROLLER_MODEL_STRING = "vr_controller_05_wireless_b";
static const QString MENU_PARENT = "Avatar";
@ -382,86 +378,11 @@ void ViveControllerManager::InputDevice::handleButtonEvent(float deltaTime, uint
void ViveControllerManager::InputDevice::handlePoseEvent(float deltaTime, const controller::InputCalibrationData& inputCalibrationData,
const mat4& mat, const vec3& linearVelocity,
const vec3& angularVelocity, bool isLeftHand) {
// When the sensor-to-world rotation is identity the coordinate axes look like this:
//
// user
// forward
// -z
// |
// y| user
// y o----x right
// o-----x user
// | up
// |
// z
//
// Vive
//
// From ABOVE the hand canonical axes looks like this:
//
// | | | | y | | | |
// | | | | | | | | |
// | | | | |
// |left | / x---- + \ |right|
// | _/ z \_ |
// | | | |
// | | | |
//
// So when the user is standing in Vive space facing the -zAxis with hands outstretched and palms down
// the rotation to align the Vive axes with those of the hands is:
//
// QviveToHand = halfTurnAboutY * quaterTurnAboutX
// Due to how the Vive controllers fit into the palm there is an offset that is different for each hand.
// You can think of this offset as the inverse of the measured rotation when the hands are posed, such that
// the combination (measurement * offset) is identity at this orientation.
//
// Qoffset = glm::inverse(deltaRotation when hand is posed fingers forward, palm down)
//
// An approximate offset for the Vive can be obtained by inspection:
//
// Qoffset = glm::inverse(glm::angleAxis(sign * PI/4.0f, zAxis) * glm::angleAxis(PI/2.0f, xAxis))
//
// So the full equation is:
//
// Q = combinedMeasurement * viveToHand
//
// Q = (deltaQ * QOffset) * (yFlip * quarterTurnAboutX)
//
// Q = (deltaQ * inverse(deltaQForAlignedHand)) * (yFlip * quarterTurnAboutX)
static const glm::quat yFlip = glm::angleAxis(PI, Vectors::UNIT_Y);
static const glm::quat quarterX = glm::angleAxis(PI_OVER_TWO, Vectors::UNIT_X);
static const glm::quat viveToHand = yFlip * quarterX;
static const glm::quat leftQuaterZ = glm::angleAxis(-PI_OVER_TWO, Vectors::UNIT_Z);
static const glm::quat rightQuaterZ = glm::angleAxis(PI_OVER_TWO, Vectors::UNIT_Z);
static const glm::quat eighthX = glm::angleAxis(PI / 4.0f, Vectors::UNIT_X);
static const glm::quat leftRotationOffset = glm::inverse(leftQuaterZ * eighthX) * viveToHand;
static const glm::quat rightRotationOffset = glm::inverse(rightQuaterZ * eighthX) * viveToHand;
static const glm::vec3 leftTranslationOffset = glm::vec3(-1.0f, 1.0f, 1.0f) * CONTROLLER_OFFSET;
static const glm::vec3 rightTranslationOffset = CONTROLLER_OFFSET;
auto translationOffset = (isLeftHand ? leftTranslationOffset : rightTranslationOffset);
auto rotationOffset = (isLeftHand ? leftRotationOffset : rightRotationOffset);
glm::vec3 position = extractTranslation(mat);
glm::quat rotation = glm::normalize(glm::quat_cast(mat));
position += rotation * translationOffset;
rotation = rotation * rotationOffset;
auto pose = openVrControllerPoseToHandPose(isLeftHand, mat, linearVelocity, angularVelocity);
// transform into avatar frame
glm::mat4 controllerToAvatar = glm::inverse(inputCalibrationData.avatarMat) * inputCalibrationData.sensorToWorldMat;
auto avatarPose = controller::Pose(position, rotation);
// handle change in velocity due to translationOffset
avatarPose.velocity = linearVelocity + glm::cross(angularVelocity, position - extractTranslation(mat));
avatarPose.angularVelocity = angularVelocity;
_poseStateMap[isLeftHand ? controller::LEFT_HAND : controller::RIGHT_HAND] = avatarPose.transform(controllerToAvatar);
_poseStateMap[isLeftHand ? controller::LEFT_HAND : controller::RIGHT_HAND] = pose.transform(controllerToAvatar);
}
bool ViveControllerManager::InputDevice::triggerHapticPulse(float strength, float duration, controller::Hand hand) {