merge fix

This commit is contained in:
Philip Rosedale 2014-11-20 17:35:50 -06:00
commit cd2a6f0f9c
73 changed files with 346 additions and 919 deletions

View file

@ -67,4 +67,3 @@ add_subdirectory(ice-server)
add_subdirectory(interface)
add_subdirectory(tests)
add_subdirectory(tools)
add_subdirectory(voxel-edit)

View file

@ -401,8 +401,8 @@ int AudioMixer::addStreamToMixForListeningNodeWithStream(AudioMixerClientData* l
if (distanceBetween < RADIUS_OF_HEAD) {
// Diminish effect if source would be inside head
penumbraFilterGainL += (1.f - penumbraFilterGainL) * (1.f - distanceBetween / RADIUS_OF_HEAD);
penumbraFilterGainR += (1.f - penumbraFilterGainR) * (1.f - distanceBetween / RADIUS_OF_HEAD);
penumbraFilterGainL += (1.0f - penumbraFilterGainL) * (1.0f - distanceBetween / RADIUS_OF_HEAD);
penumbraFilterGainR += (1.0f - penumbraFilterGainR) * (1.0f - distanceBetween / RADIUS_OF_HEAD);
}
bool wantDebug = false;

View file

@ -146,11 +146,11 @@ void AvatarMixer::broadcastAvatarData() {
float distanceToAvatar = glm::length(myPosition - otherPosition);
// The full rate distance is the distance at which EVERY update will be sent for this avatar
// at a distance of twice the full rate distance, there will be a 50% chance of sending this avatar's update
const float FULL_RATE_DISTANCE = 2.f;
const float FULL_RATE_DISTANCE = 2.0f;
// Decide whether to send this avatar's data based on it's distance from us
if ((_performanceThrottlingRatio == 0 || randFloat() < (1.0f - _performanceThrottlingRatio))
&& (distanceToAvatar == 0.f || randFloat() < FULL_RATE_DISTANCE / distanceToAvatar)) {
&& (distanceToAvatar == 0.0f || randFloat() < FULL_RATE_DISTANCE / distanceToAvatar)) {
QByteArray avatarByteArray;
avatarByteArray.append(otherNode->getUUID().toRfc4122());
avatarByteArray.append(otherAvatar.toByteArray());

View file

@ -700,8 +700,8 @@ bool OctreeServer::handleHTTPRequest(HTTPConnection* connection, const QUrl& url
statsString += "\r\n";
const char* memoryScaleLabel;
const float MEGABYTES = 1000000.f;
const float GIGABYTES = 1000000000.f;
const float MEGABYTES = 1000000.0f;
const float GIGABYTES = 1000000000.0f;
float memoryScale;
if (OctreeElement::getTotalMemoryUsage() / MEGABYTES < 1000.0f) {
memoryScaleLabel = "MB";

View file

@ -6,7 +6,7 @@
// Modified by Brad Hefta-Gaub to use Entities on Sept. 3, 2014
// Copyright 2014 High Fidelity, Inc.
//
// This sample script creates a swarm of butterfly entities that fly around the avatar.
// This sample script creates a swarm of butterfly entities that fly around your avatar.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
@ -40,17 +40,17 @@ function vInterpolate(a, b, fraction) {
var startTimeInSeconds = new Date().getTime() / 1000;
var NATURAL_SIZE_OF_BUTTERFLY = { x: 9.512, y: 4.427, z: 1.169 };
var NATURAL_SIZE_OF_BUTTERFLY = { x: 1.76, y: 0.825, z: 0.20 };
var lifeTime = 600; // lifetime of the butterflies in seconds
var range = 1.0; // Over what distance in meters do you want the flock to fly around
var range = 3.0; // Over what distance in meters do you want the flock to fly around
var frame = 0;
var CHANCE_OF_MOVING = 0.9;
var BUTTERFLY_GRAVITY = 0;//-0.06;
var BUTTERFLY_FLAP_SPEED = 1.0;
var BUTTERFLY_GRAVITY = 0;
var BUTTERFLY_FLAP_SPEED = 0.5;
var BUTTERFLY_VELOCITY = 0.55;
var DISTANCE_IN_FRONT_OF_ME = 1.5;
var DISTANCE_ABOVE_ME = 1.0;
var DISTANCE_ABOVE_ME = 1.5;
var flockPosition = Vec3.sum(MyAvatar.position,Vec3.sum(
Vec3.multiply(Quat.getFront(MyAvatar.orientation), DISTANCE_ABOVE_ME),
Vec3.multiply(Quat.getFront(MyAvatar.orientation), DISTANCE_IN_FRONT_OF_ME)));
@ -81,11 +81,11 @@ function addButterfly() {
var color = { red: 100, green: 100, blue: 100 };
var size = 0;
var minSize = 0.06;
var randomSize = 0.2;
var maxSize = minSize + randomSize;
var MINSIZE = 0.06;
var RANGESIZE = 0.2;
var maxSize = MINSIZE + RANGESIZE;
size = 0.06 + Math.random() * 0.2;
size = MINSIZE + Math.random() * RANGESIZE;
var dimensions = Vec3.multiply(NATURAL_SIZE_OF_BUTTERFLY, (size / maxSize));
@ -103,11 +103,11 @@ function addButterfly() {
dimensions: dimensions,
color: color,
rotation: rotation,
animationURL: "http://business.ozblog.me/objects/butterfly/newButterfly2.fbx",
animationURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/models/content/butterfly/butterfly.fbx",
animationIsPlaying: true,
modelURL: "http://business.ozblog.me/objects/butterfly/newButterfly2.fbx"
modelURL: "https://s3-us-west-1.amazonaws.com/highfidelity-public/models/content/butterfly/butterfly.fbx"
};
properties.position.z = properties.position.z+1;
//properties.position.z = properties.position.z + 1;
butterflies.push(new defineButterfly(Entities.addEntity(properties), properties.position));
}
@ -121,17 +121,15 @@ function updateButterflies(deltaTime) {
// Check to see if we've been running long enough that our butterflies are dead
var nowTimeInSeconds = new Date().getTime() / 1000;
if ((nowTimeInSeconds - startTimeInSeconds) >= lifeTime) {
// print("our butterflies are dying, stop our script");
Script.stop();
return;
}
frame++;
// Only update every third frame
// Only update every third frame because we don't need to do it too quickly
if ((frame % 3) == 0) {
flockPosition = Vec3.sum(MyAvatar.position,Vec3.sum(
Vec3.multiply(Quat.getFront(MyAvatar.orientation), DISTANCE_ABOVE_ME),
Vec3.multiply(Quat.getFront(MyAvatar.orientation), DISTANCE_IN_FRONT_OF_ME)));
flockPosition = Vec3.sum(MyAvatar.position,Vec3.sum(Vec3.multiply(Quat.getFront(MyAvatar.orientation), DISTANCE_ABOVE_ME),
Vec3.multiply(Quat.getFront(MyAvatar.orientation), DISTANCE_IN_FRONT_OF_ME)));
// Update all the butterflies
for (var i = 0; i < numButterflies; i++) {

View file

@ -26,7 +26,7 @@
var birdsInFlock = 20;
var birdLifetime = 60; // 2 minutes
var birdLifetime = 300; // 1 minute
var count=0; // iterations
var enableFlyTowardPoints = true; // some birds have a point they want to fly to

View file

@ -33,12 +33,11 @@ EntityListTool = function(opts) {
var ids = data.entityIds;
var entityIDs = [];
for (var i = 0; i < ids.length; i++) {
var entityID = Entities.getEntityItemID(ids[i]);
if (entityID.isKnownID) {
entityIDs.push(entityID);
} else {
print("Tried to select invalid entity: " + ids[i]);
}
entityIDs.push({
id: ids[i],
isKnownID: true,
creatorTokenID: 0,
});
}
selectionManager.setSelections(entityIDs);
if (data.focus) {

View file

@ -53,11 +53,31 @@ Grid = function(opts) {
}
}
that.snapToGrid = function(position, majorOnly) {
that.snapToSurface = function(position, dimensions) {
if (!snapToGrid) {
return position;
}
if (dimensions === undefined) {
dimensions = { x: 0, y: 0, z: 0 };
}
return {
x: position.x,
y: origin.y + (dimensions.y / 2),
z: position.z
};
}
that.snapToGrid = function(position, majorOnly, dimensions) {
if (!snapToGrid) {
return position;
}
if (dimensions === undefined) {
dimensions = { x: 0, y: 0, z: 0 };
}
var spacing = majorOnly ? (minorGridSpacing * majorGridEvery) : minorGridSpacing;
position = Vec3.subtract(position, origin);
@ -66,7 +86,7 @@ Grid = function(opts) {
position.y = Math.round(position.y / spacing) * spacing;
position.z = Math.round(position.z / spacing) * spacing;
return Vec3.sum(position, origin);
return Vec3.sum(Vec3.sum(position, Vec3.multiply(0.5, dimensions)), origin);
}
that.snapToSpacing = function(delta, majorOnly) {

View file

@ -47,7 +47,7 @@ var elevatorSound = SoundCache.getSound(HIFI_PUBLIC_BUCKET + "sounds/Lobby/eleva
var currentMusakInjector = null;
var currentSound = null;
var inOculusMode = Menu.isOptionChecked("EnableVRMode");
var inOculusMode = Menu.isOptionChecked("Enable VR Mode");
function reticlePosition() {
var RETICLE_DISTANCE = 1;
@ -171,17 +171,6 @@ function playRandomMusak() {
}
function cleanupLobby() {
// for each of the 21 placeholder textures, set them back to default so the cached model doesn't have changed textures
var panelTexturesReset = {};
panelTexturesReset["textures"] = {};
for (var j = 0; j < MAX_NUM_PANELS; j++) {
panelTexturesReset["textures"]["file" + (j + 1)] = HIFI_PUBLIC_BUCKET + "models/sets/Lobby/LobbyPrototype/Texture.jpg";
};
Overlays.editOverlay(panelWall, panelTexturesReset);
Overlays.deleteOverlay(panelWall);
Overlays.deleteOverlay(orbShell);

View file

@ -61,6 +61,12 @@ var DEFAULT_TEXT_DIMENSION_X = 1.0;
var DEFAULT_TEXT_DIMENSION_Y = 1.0;
var DEFAULT_TEXT_DIMENSION_Z = 0.01;
var DEFAULT_DIMENSIONS = {
x: DEFAULT_DIMENSION,
y: DEFAULT_DIMENSION,
z: DEFAULT_DIMENSION
};
var MENU_INSPECT_TOOL_ENABLED = "Inspect Tool";
var MENU_EASE_ON_FOCUS = "Ease Orientation on Focus";
@ -220,8 +226,8 @@ var toolBar = (function () {
if (position.x > 0 && position.y > 0 && position.z > 0) {
var entityId = Entities.addEntity({
type: "Model",
position: position,
dimensions: { x: DEFAULT_DIMENSION, y: DEFAULT_DIMENSION, z: DEFAULT_DIMENSION },
position: grid.snapToSurface(grid.snapToGrid(position, false, DEFAULT_DIMENSIONS), DEFAULT_DIMENSIONS),
dimensions: DEFAULT_DIMENSIONS,
modelURL: url
});
print("Model added: " + url);
@ -345,8 +351,8 @@ var toolBar = (function () {
if (position.x > 0 && position.y > 0 && position.z > 0) {
Entities.addEntity({
type: "Box",
position: position,
dimensions: { x: DEFAULT_DIMENSION, y: DEFAULT_DIMENSION, z: DEFAULT_DIMENSION },
position: grid.snapToSurface(grid.snapToGrid(position, false, DEFAULT_DIMENSIONS), DEFAULT_DIMENSIONS),
dimensions: DEFAULT_DIMENSIONS,
color: { red: 255, green: 0, blue: 0 }
});
@ -362,8 +368,8 @@ var toolBar = (function () {
if (position.x > 0 && position.y > 0 && position.z > 0) {
Entities.addEntity({
type: "Sphere",
position: position,
dimensions: { x: DEFAULT_DIMENSION, y: DEFAULT_DIMENSION, z: DEFAULT_DIMENSION },
position: grid.snapToSurface(grid.snapToGrid(position, false, DEFAULT_DIMENSIONS), DEFAULT_DIMENSIONS),
dimensions: DEFAULT_DIMENSIONS,
color: { red: 255, green: 0, blue: 0 }
});
} else {
@ -378,8 +384,8 @@ var toolBar = (function () {
if (position.x > 0 && position.y > 0 && position.z > 0) {
Entities.addEntity({
type: "Light",
position: position,
dimensions: { x: DEFAULT_DIMENSION, y: DEFAULT_DIMENSION, z: DEFAULT_DIMENSION },
position: grid.snapToSurface(grid.snapToGrid(position, false, DEFAULT_DIMENSIONS), DEFAULT_DIMENSIONS),
dimensions: DEFAULT_DIMENSIONS,
isSpotlight: false,
diffuseColor: { red: 255, green: 255, blue: 255 },
ambientColor: { red: 255, green: 255, blue: 255 },
@ -403,8 +409,8 @@ var toolBar = (function () {
if (position.x > 0 && position.y > 0 && position.z > 0) {
Entities.addEntity({
type: "Text",
position: position,
dimensions: { x: DEFAULT_TEXT_DIMENSION_X, y: DEFAULT_TEXT_DIMENSION_Y, z: DEFAULT_TEXT_DIMENSION_Z },
position: grid.snapToSurface(grid.snapToGrid(position, false, DEFAULT_DIMENSIONS), DEFAULT_DIMENSIONS),
dimensions: DEFAULT_DIMENSIONS,
backgroundColor: { red: 0, green: 0, blue: 0 },
textColor: { red: 255, green: 255, blue: 255 },
text: "some text",

View file

@ -604,7 +604,7 @@ void Application::initializeGL() {
}
// update before the first render
update(1.f / _fps);
update(1.0f / _fps);
InfoView::showFirstTime(INFO_HELP_PATH);
}
@ -668,7 +668,7 @@ void Application::paintGL() {
// Update camera position
if (!OculusManager::isConnected()) {
_myCamera.update(1.f / _fps);
_myCamera.update(1.0f / _fps);
}
// Note: whichCamera is used to pick between the normal camera myCamera for our
@ -693,7 +693,7 @@ void Application::paintGL() {
_viewFrustumOffsetCamera.setRotation(_myCamera.getRotation() * frustumRotation);
_viewFrustumOffsetCamera.update(1.f/_fps);
_viewFrustumOffsetCamera.update(1.0f/_fps);
whichCamera = &_viewFrustumOffsetCamera;
}
@ -712,7 +712,7 @@ void Application::paintGL() {
} else {
OculusManager::display(_myAvatar->getWorldAlignedOrientation(), _myAvatar->getDefaultEyePosition(), *whichCamera);
}
_myCamera.update(1.f / _fps);
_myCamera.update(1.0f / _fps);
} else if (TV3DManager::isConnected()) {
@ -918,7 +918,7 @@ void Application::keyPressEvent(QKeyEvent* event) {
if (!_myAvatar->getDriveKeys(UP)) {
_myAvatar->jump();
}
_myAvatar->setDriveKeys(UP, 1.f);
_myAvatar->setDriveKeys(UP, 1.0f);
break;
case Qt::Key_Asterisk:
@ -927,14 +927,14 @@ void Application::keyPressEvent(QKeyEvent* event) {
case Qt::Key_C:
case Qt::Key_PageDown:
_myAvatar->setDriveKeys(DOWN, 1.f);
_myAvatar->setDriveKeys(DOWN, 1.0f);
break;
case Qt::Key_W:
if (isOption && !isShifted && !isMeta) {
Menu::getInstance()->triggerOption(MenuOption::Wireframe);
} else {
_myAvatar->setDriveKeys(FWD, 1.f);
_myAvatar->setDriveKeys(FWD, 1.0f);
}
break;
@ -946,7 +946,7 @@ void Application::keyPressEvent(QKeyEvent* event) {
} else if (!isOption && !isShifted && isMeta) {
takeSnapshot();
} else {
_myAvatar->setDriveKeys(BACK, 1.f);
_myAvatar->setDriveKeys(BACK, 1.0f);
}
break;
@ -964,13 +964,13 @@ void Application::keyPressEvent(QKeyEvent* event) {
if (isShifted) {
Menu::getInstance()->triggerOption(MenuOption::Atmosphere);
} else {
_myAvatar->setDriveKeys(ROT_LEFT, 1.f);
_myAvatar->setDriveKeys(ROT_LEFT, 1.0f);
}
break;
case Qt::Key_D:
if (!isMeta) {
_myAvatar->setDriveKeys(ROT_RIGHT, 1.f);
_myAvatar->setDriveKeys(ROT_RIGHT, 1.0f);
}
break;
@ -998,7 +998,7 @@ void Application::keyPressEvent(QKeyEvent* event) {
_raiseMirror += 0.05f;
}
} else {
_myAvatar->setDriveKeys(isShifted ? UP : FWD, 1.f);
_myAvatar->setDriveKeys(isShifted ? UP : FWD, 1.0f);
}
break;
@ -1010,23 +1010,23 @@ void Application::keyPressEvent(QKeyEvent* event) {
_raiseMirror -= 0.05f;
}
} else {
_myAvatar->setDriveKeys(isShifted ? DOWN : BACK, 1.f);
_myAvatar->setDriveKeys(isShifted ? DOWN : BACK, 1.0f);
}
break;
case Qt::Key_Left:
if (_myCamera.getMode() == CAMERA_MODE_MIRROR) {
_rotateMirror += PI / 20.f;
_rotateMirror += PI / 20.0f;
} else {
_myAvatar->setDriveKeys(isShifted ? LEFT : ROT_LEFT, 1.f);
_myAvatar->setDriveKeys(isShifted ? LEFT : ROT_LEFT, 1.0f);
}
break;
case Qt::Key_Right:
if (_myCamera.getMode() == CAMERA_MODE_MIRROR) {
_rotateMirror -= PI / 20.f;
_rotateMirror -= PI / 20.0f;
} else {
_myAvatar->setDriveKeys(isShifted ? RIGHT : ROT_RIGHT, 1.f);
_myAvatar->setDriveKeys(isShifted ? RIGHT : ROT_RIGHT, 1.0f);
}
break;
@ -1177,48 +1177,48 @@ void Application::keyReleaseEvent(QKeyEvent* event) {
switch (event->key()) {
case Qt::Key_E:
case Qt::Key_PageUp:
_myAvatar->setDriveKeys(UP, 0.f);
_myAvatar->setDriveKeys(UP, 0.0f);
break;
case Qt::Key_C:
case Qt::Key_PageDown:
_myAvatar->setDriveKeys(DOWN, 0.f);
_myAvatar->setDriveKeys(DOWN, 0.0f);
break;
case Qt::Key_W:
_myAvatar->setDriveKeys(FWD, 0.f);
_myAvatar->setDriveKeys(FWD, 0.0f);
break;
case Qt::Key_S:
_myAvatar->setDriveKeys(BACK, 0.f);
_myAvatar->setDriveKeys(BACK, 0.0f);
break;
case Qt::Key_A:
_myAvatar->setDriveKeys(ROT_LEFT, 0.f);
_myAvatar->setDriveKeys(ROT_LEFT, 0.0f);
break;
case Qt::Key_D:
_myAvatar->setDriveKeys(ROT_RIGHT, 0.f);
_myAvatar->setDriveKeys(ROT_RIGHT, 0.0f);
break;
case Qt::Key_Up:
_myAvatar->setDriveKeys(FWD, 0.f);
_myAvatar->setDriveKeys(UP, 0.f);
_myAvatar->setDriveKeys(FWD, 0.0f);
_myAvatar->setDriveKeys(UP, 0.0f);
break;
case Qt::Key_Down:
_myAvatar->setDriveKeys(BACK, 0.f);
_myAvatar->setDriveKeys(DOWN, 0.f);
_myAvatar->setDriveKeys(BACK, 0.0f);
_myAvatar->setDriveKeys(DOWN, 0.0f);
break;
case Qt::Key_Left:
_myAvatar->setDriveKeys(LEFT, 0.f);
_myAvatar->setDriveKeys(ROT_LEFT, 0.f);
_myAvatar->setDriveKeys(LEFT, 0.0f);
_myAvatar->setDriveKeys(ROT_LEFT, 0.0f);
break;
case Qt::Key_Right:
_myAvatar->setDriveKeys(RIGHT, 0.f);
_myAvatar->setDriveKeys(ROT_RIGHT, 0.f);
_myAvatar->setDriveKeys(RIGHT, 0.0f);
_myAvatar->setDriveKeys(ROT_RIGHT, 0.0f);
break;
case Qt::Key_Control:
case Qt::Key_Shift:
@ -1522,7 +1522,7 @@ void Application::idle() {
PerformanceTimer perfTimer("update");
PerformanceWarning warn(showWarnings, "Application::idle()... update()");
const float BIGGEST_DELTA_TIME_SECS = 0.25f;
update(glm::clamp((float)timeSinceLastUpdate / 1000.f, 0.f, BIGGEST_DELTA_TIME_SECS));
update(glm::clamp((float)timeSinceLastUpdate / 1000.0f, 0.0f, BIGGEST_DELTA_TIME_SECS));
}
{
PerformanceTimer perfTimer("updateGL");
@ -1653,8 +1653,8 @@ void Application::makeVoxel(glm::vec3 position,
}
glm::vec3 Application::getMouseVoxelWorldCoordinates(const VoxelDetail& mouseVoxel) {
return glm::vec3((mouseVoxel.x + mouseVoxel.s / 2.f) * TREE_SCALE, (mouseVoxel.y + mouseVoxel.s / 2.f) * TREE_SCALE,
(mouseVoxel.z + mouseVoxel.s / 2.f) * TREE_SCALE);
return glm::vec3((mouseVoxel.x + mouseVoxel.s / 2.0f) * TREE_SCALE, (mouseVoxel.y + mouseVoxel.s / 2.0f) * TREE_SCALE,
(mouseVoxel.z + mouseVoxel.s / 2.0f) * TREE_SCALE);
}
FaceTracker* Application::getActiveFaceTracker() {
@ -1867,7 +1867,7 @@ void Application::init() {
3.0f * TREE_SCALE / 2.0f));
_sharedVoxelSystemViewFrustum.setNearClip(TREE_SCALE / 2.0f);
_sharedVoxelSystemViewFrustum.setFarClip(3.0f * TREE_SCALE / 2.0f);
_sharedVoxelSystemViewFrustum.setFieldOfView(90.f);
_sharedVoxelSystemViewFrustum.setFieldOfView(90.0f);
_sharedVoxelSystemViewFrustum.setOrientation(glm::quat());
_sharedVoxelSystemViewFrustum.calculate();
_sharedVoxelSystem.setViewFrustum(&_sharedVoxelSystemViewFrustum);
@ -2163,7 +2163,7 @@ void Application::updateMyAvatarLookAtPosition() {
} else {
// I am not looking at anyone else, so just look forward
lookAtSpot = _myAvatar->getHead()->getEyePosition() +
(_myAvatar->getHead()->getFinalOrientationInWorldFrame() * glm::vec3(0.f, 0.f, -TREE_SCALE));
(_myAvatar->getHead()->getFinalOrientationInWorldFrame() * glm::vec3(0.0f, 0.0f, -TREE_SCALE));
}
}
//
@ -3209,12 +3209,12 @@ void Application::renderRearViewMirror(const QRect& region, bool billboard) {
if (billboard) {
_mirrorCamera.setFieldOfView(BILLBOARD_FIELD_OF_VIEW); // degees
_mirrorCamera.setPosition(_myAvatar->getPosition() +
_myAvatar->getOrientation() * glm::vec3(0.f, 0.f, -1.0f) * BILLBOARD_DISTANCE * _myAvatar->getScale());
_myAvatar->getOrientation() * glm::vec3(0.0f, 0.0f, -1.0f) * BILLBOARD_DISTANCE * _myAvatar->getScale());
} else if (_rearMirrorTools->getZoomLevel() == BODY) {
_mirrorCamera.setFieldOfView(MIRROR_FIELD_OF_VIEW); // degrees
_mirrorCamera.setPosition(_myAvatar->getChestPosition() +
_myAvatar->getOrientation() * glm::vec3(0.f, 0.f, -1.0f) * MIRROR_REARVIEW_BODY_DISTANCE * _myAvatar->getScale());
_myAvatar->getOrientation() * glm::vec3(0.0f, 0.0f, -1.0f) * MIRROR_REARVIEW_BODY_DISTANCE * _myAvatar->getScale());
} else { // HEAD zoom level
_mirrorCamera.setFieldOfView(MIRROR_FIELD_OF_VIEW); // degrees
@ -3222,11 +3222,11 @@ void Application::renderRearViewMirror(const QRect& region, bool billboard) {
// as a hack until we have a better way of dealing with coordinate precision issues, reposition the
// face/body so that the average eye position lies at the origin
eyeRelativeCamera = true;
_mirrorCamera.setPosition(_myAvatar->getOrientation() * glm::vec3(0.f, 0.f, -1.0f) * MIRROR_REARVIEW_DISTANCE * _myAvatar->getScale());
_mirrorCamera.setPosition(_myAvatar->getOrientation() * glm::vec3(0.0f, 0.0f, -1.0f) * MIRROR_REARVIEW_DISTANCE * _myAvatar->getScale());
} else {
_mirrorCamera.setPosition(_myAvatar->getHead()->getEyePosition() +
_myAvatar->getOrientation() * glm::vec3(0.f, 0.f, -1.0f) * MIRROR_REARVIEW_DISTANCE * _myAvatar->getScale());
_myAvatar->getOrientation() * glm::vec3(0.0f, 0.0f, -1.0f) * MIRROR_REARVIEW_DISTANCE * _myAvatar->getScale());
}
}
_mirrorCamera.setAspectRatio((float)region.width() / region.height());
@ -4222,7 +4222,7 @@ void Application::toggleLogDialog() {
}
void Application::initAvatarAndViewFrustum() {
updateMyAvatar(0.f);
updateMyAvatar(0.0f);
}
void Application::checkVersion() {
@ -4396,7 +4396,7 @@ unsigned int Application::getRenderTargetFramerate() const {
float Application::getRenderResolutionScale() const {
if (Menu::getInstance()->isOptionChecked(MenuOption::RenderResolutionOne)) {
return 1.f;
return 1.0f;
} else if (Menu::getInstance()->isOptionChecked(MenuOption::RenderResolutionTwoThird)) {
return 0.666f;
} else if (Menu::getInstance()->isOptionChecked(MenuOption::RenderResolutionHalf)) {
@ -4406,6 +4406,6 @@ float Application::getRenderResolutionScale() const {
} else if (Menu::getInstance()->isOptionChecked(MenuOption::RenderResolutionQuarter)) {
return 0.25f;
} else {
return 1.f;
return 1.0f;
}
}

View file

@ -81,7 +81,7 @@ public:
// setup for audio I/O
Audio(QObject* parent = 0);
float getLastInputLoudness() const { return glm::max(_lastInputLoudness - _noiseGateMeasuredFloor, 0.f); }
float getLastInputLoudness() const { return glm::max(_lastInputLoudness - _noiseGateMeasuredFloor, 0.0f); }
float getTimeSinceLastClip() const { return _timeSinceLastClip; }
float getAudioAverageInputLoudness() const { return _lastInputLoudness; }

View file

@ -80,14 +80,14 @@ void Environment::renderAtmospheres(Camera& camera) {
glm::vec3 Environment::getGravity (const glm::vec3& position) {
//
// 'Default' gravity pulls you downward in Y when you are near the X/Z plane
const glm::vec3 DEFAULT_GRAVITY(0.f, -1.f, 0.f);
const glm::vec3 DEFAULT_GRAVITY(0.0f, -1.0f, 0.0f);
glm::vec3 gravity(DEFAULT_GRAVITY);
float DEFAULT_SURFACE_RADIUS = 30.f;
float DEFAULT_SURFACE_RADIUS = 30.0f;
float gravityStrength;
// Weaken gravity with height
if (position.y > 0.f) {
gravityStrength = 1.f / powf((DEFAULT_SURFACE_RADIUS + position.y) / DEFAULT_SURFACE_RADIUS, 2.f);
if (position.y > 0.0f) {
gravityStrength = 1.0f / powf((DEFAULT_SURFACE_RADIUS + position.y) / DEFAULT_SURFACE_RADIUS, 2.0f);
gravity *= gravityStrength;
}
@ -103,7 +103,7 @@ glm::vec3 Environment::getGravity (const glm::vec3& position) {
gravity += glm::normalize(vector) * environmentData.getGravity();
} else {
// Outside a planet, the gravity falls off with distance
gravityStrength = 1.f / powf(glm::length(vector) / surfaceRadius, 2.f);
gravityStrength = 1.0f / powf(glm::length(vector) / surfaceRadius, 2.0f);
gravity += glm::normalize(vector) * environmentData.getGravity() * gravityStrength;
}
}
@ -261,7 +261,7 @@ void Environment::renderAtmosphere(Camera& camera, const EnvironmentData& data)
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
Application::getInstance()->getGeometryCache()->renderSphere(1.f, 100, 50); //Draw a unit sphere
Application::getInstance()->getGeometryCache()->renderSphere(1.0f, 100, 50); //Draw a unit sphere
glDepthMask(GL_TRUE);
program->release();

View file

@ -78,7 +78,7 @@ Hair::Hair(int strands,
}
_hairOriginalPosition[vertexIndex] = _hairLastPosition[vertexIndex] = _hairPosition[vertexIndex] = thisVertex;
_hairQuadDelta[vertexIndex] = glm::vec3(cos(strandAngle) * _hairThickness, 0.f, sin(strandAngle) * _hairThickness);
_hairQuadDelta[vertexIndex] = glm::vec3(cos(strandAngle) * _hairThickness, 0.0f, sin(strandAngle) * _hairThickness);
_hairQuadDelta[vertexIndex] *= ((float)link / _links);
_hairNormals[vertexIndex] = glm::normalize(randVector());
if (randFloat() < elevation / PI_OVER_TWO) {
@ -155,7 +155,7 @@ void Hair::simulate(float deltaTime) {
// Add stiffness to return to original position
_hairPosition[vertexIndex] += (_hairOriginalPosition[vertexIndex] - _hairPosition[vertexIndex])
* powf(1.f - (float)link / _links, 2.f) * HAIR_STIFFNESS;
* powf(1.0f - (float)link / _links, 2.0f) * HAIR_STIFFNESS;
// Add angular acceleration
const float ANGULAR_VELOCITY_MIN = 0.001f;
@ -163,30 +163,30 @@ void Hair::simulate(float deltaTime) {
glm::vec3 yawVector = _hairPosition[vertexIndex];
glm::vec3 angularVelocity = _angularVelocity * HAIR_ANGULAR_VELOCITY_COUPLING;
glm::vec3 angularAcceleration = _angularAcceleration * HAIR_ANGULAR_ACCELERATION_COUPLING;
yawVector.y = 0.f;
yawVector.y = 0.0f;
if (glm::length(yawVector) > EPSILON) {
float radius = glm::length(yawVector);
yawVector = glm::normalize(yawVector);
float angle = atan2f(yawVector.x, -yawVector.z) + PI;
glm::vec3 delta = glm::vec3(-1.f, 0.f, 0.f) * glm::angleAxis(angle, glm::vec3(0, 1, 0));
glm::vec3 delta = glm::vec3(-1.0f, 0.0f, 0.0f) * glm::angleAxis(angle, glm::vec3(0, 1, 0));
_hairPosition[vertexIndex] -= delta * radius * (angularVelocity.y - angularAcceleration.y) * deltaTime;
}
glm::vec3 pitchVector = _hairPosition[vertexIndex];
pitchVector.x = 0.f;
pitchVector.x = 0.0f;
if (glm::length(pitchVector) > EPSILON) {
float radius = glm::length(pitchVector);
pitchVector = glm::normalize(pitchVector);
float angle = atan2f(pitchVector.y, -pitchVector.z) + PI;
glm::vec3 delta = glm::vec3(0.0f, 1.0f, 0.f) * glm::angleAxis(angle, glm::vec3(1, 0, 0));
glm::vec3 delta = glm::vec3(0.0f, 1.0f, 0.0f) * glm::angleAxis(angle, glm::vec3(1, 0, 0));
_hairPosition[vertexIndex] -= delta * radius * (angularVelocity.x - angularAcceleration.x) * deltaTime;
}
glm::vec3 rollVector = _hairPosition[vertexIndex];
rollVector.z = 0.f;
rollVector.z = 0.0f;
if (glm::length(rollVector) > EPSILON) {
float radius = glm::length(rollVector);
pitchVector = glm::normalize(rollVector);
float angle = atan2f(rollVector.x, rollVector.y) + PI;
glm::vec3 delta = glm::vec3(-1.0f, 0.0f, 0.f) * glm::angleAxis(angle, glm::vec3(0, 0, 1));
glm::vec3 delta = glm::vec3(-1.0f, 0.0f, 0.0f) * glm::angleAxis(angle, glm::vec3(0, 0, 1));
_hairPosition[vertexIndex] -= delta * radius * (angularVelocity.z - angularAcceleration.z) * deltaTime;
}
}
@ -216,16 +216,16 @@ void Hair::render() {
const float HAIR_SETBACK = 0.0f;
int sparkleIndex = (int) (randFloat() * SPARKLE_EVERY);
glPushMatrix();
glTranslatef(0.f, 0.f, HAIR_SETBACK);
glTranslatef(0.0f, 0.0f, HAIR_SETBACK);
glBegin(GL_QUADS);
for (int strand = 0; strand < _strands; strand++) {
for (int link = 0; link < _links - 1; link++) {
int vertexIndex = strand * _links + link;
glm::vec3 thisColor = _hairColors[vertexIndex];
if (sparkleIndex % SPARKLE_EVERY == 0) {
thisColor.x += (1.f - thisColor.x) * loudnessFactor;
thisColor.y += (1.f - thisColor.y) * loudnessFactor;
thisColor.z += (1.f - thisColor.z) * loudnessFactor;
thisColor.x += (1.0f - thisColor.x) * loudnessFactor;
thisColor.y += (1.0f - thisColor.y) * loudnessFactor;
thisColor.z += (1.0f - thisColor.z) * loudnessFactor;
}
glColor3fv(&thisColor.x);
glNormal3fv(&_hairNormals[vertexIndex].x);

View file

@ -23,7 +23,7 @@
void applyStaticFriction(float deltaTime, glm::vec3& velocity, float maxVelocity, float strength) {
float v = glm::length(velocity);
if (v < maxVelocity) {
velocity *= glm::clamp((1.0f - deltaTime * strength * (1.f - v / maxVelocity)), 0.0f, 1.0f);
velocity *= glm::clamp((1.0f - deltaTime * strength * (1.0f - v / maxVelocity)), 0.0f, 1.0f);
}
}
@ -32,10 +32,10 @@ void applyStaticFriction(float deltaTime, glm::vec3& velocity, float maxVelocity
//
void applyDamping(float deltaTime, glm::vec3& velocity, float linearStrength, float squaredStrength) {
if (squaredStrength == 0.f) {
velocity *= glm::clamp(1.f - deltaTime * linearStrength, 0.f, 1.f);
if (squaredStrength == 0.0f) {
velocity *= glm::clamp(1.0f - deltaTime * linearStrength, 0.0f, 1.0f);
} else {
velocity *= glm::clamp(1.f - deltaTime * (linearStrength + glm::length(velocity) * squaredStrength), 0.f, 1.f);
velocity *= glm::clamp(1.0f - deltaTime * (linearStrength + glm::length(velocity) * squaredStrength), 0.0f, 1.0f);
}
}

View file

@ -65,7 +65,7 @@ void renderWorldBox() {
glVertex3f(TREE_SCALE, 0, 0);
glEnd();
// Draw meter markers along the 3 axis to help with measuring things
const float MARKER_DISTANCE = 1.f;
const float MARKER_DISTANCE = 1.0f;
const float MARKER_RADIUS = 0.05f;
glEnable(GL_LIGHTING);
glPushMatrix();
@ -93,7 +93,7 @@ void renderWorldBox() {
// Return a random vector of average length 1
const glm::vec3 randVector() {
return glm::vec3(randFloat() - 0.5f, randFloat() - 0.5f, randFloat() - 0.5f) * 2.f;
return glm::vec3(randFloat() - 0.5f, randFloat() - 0.5f, randFloat() - 0.5f) * 2.0f;
}
static TextRenderer* textRenderer(int mono) {
@ -125,7 +125,7 @@ void drawText(int x, int y, float scale, float radians, int mono,
glTranslatef(static_cast<float>(x), static_cast<float>(y), 0.0f);
glColor3fv(color);
glRotated(double(radians * DEGREES_PER_RADIAN), 0.0, 0.0, 1.0);
glScalef(scale / 0.1f, scale / 0.1f, 1.f);
glScalef(scale / 0.1f, scale / 0.1f, 1.0f);
textRenderer(mono)->draw(0, 0, string);
glPopMatrix();
}

View file

@ -667,8 +667,9 @@ void Avatar::renderDisplayName() {
glTranslatef(textPosition.x, textPosition.y, textPosition.z);
// we need "always facing camera": we must remove the camera rotation from the stack
glm::vec3 frontAxis(0.f, 0.f, 1.f);
glm::vec3 frontAxis(0.0f, 0.0f, 1.0f);
if (inHMD) {
glm::vec3 camPosition = Application::getInstance()->getCamera()->getPosition();
frontAxis = camPosition - textPosition;
@ -677,8 +678,8 @@ void Avatar::renderDisplayName() {
frontAxis = glm::rotate(rotation, frontAxis);
}
frontAxis = glm::normalize(glm::vec3(frontAxis.z, 0.f, -frontAxis.x));
float angle = acos(frontAxis.x) * ((frontAxis.z < 0) ? 1.f : -1.f);
frontAxis = glm::normalize(glm::vec3(frontAxis.z, 0.0f, -frontAxis.x));
float angle = acos(frontAxis.x) * ((frontAxis.z < 0) ? 1.0f : -1.0f);
glRotatef(glm::degrees(angle), 0.0f, 1.0f, 0.0f);
// We need to compute the scale factor such as the text remains with fixed size respect to window coordinates

View file

@ -68,7 +68,7 @@ void Hand::collideAgainstAvatar(Avatar* avatar, bool isMyHand) {
skeletonModel.getHandShapes(jointIndex, shapes);
if (avatar->findCollisions(shapes, handCollisions)) {
glm::vec3 totalPenetration(0.f);
glm::vec3 totalPenetration(0.0f);
glm::vec3 averageContactPoint;
for (int j = 0; j < handCollisions.size(); ++j) {
CollisionInfo* collision = handCollisions.getCollision(j);
@ -151,7 +151,7 @@ void Hand::renderHandTargets(bool isMine) {
const float collisionRadius = 0.05f;
glColor4f(0.5f,0.5f,0.5f, alpha);
glutWireSphere(collisionRadius, 10.f, 10.f);
glutWireSphere(collisionRadius, 10.0f, 10.0f);
glPopMatrix();
}
}

View file

@ -45,11 +45,11 @@ Head::Head(Avatar* owningAvatar) :
_leftEyeBlinkVelocity(0.0f),
_rightEyeBlinkVelocity(0.0f),
_timeWithoutTalking(0.0f),
_deltaPitch(0.f),
_deltaYaw(0.f),
_deltaRoll(0.f),
_deltaLeanSideways(0.f),
_deltaLeanForward(0.f),
_deltaPitch(0.0f),
_deltaYaw(0.0f),
_deltaRoll(0.0f),
_deltaLeanSideways(0.0f),
_deltaLeanForward(0.0f),
_isCameraMoving(false),
_isLookingAtMe(false),
_faceModel(this)
@ -86,7 +86,7 @@ void Head::simulate(float deltaTime, bool isMine, bool billboard) {
}
// Update audio trailing average for rendering facial animations
const float AUDIO_AVERAGING_SECS = 0.05f;
const float AUDIO_LONG_TERM_AVERAGING_SECS = 30.f;
const float AUDIO_LONG_TERM_AVERAGING_SECS = 30.0f;
_averageLoudness = glm::mix(_averageLoudness, _audioLoudness, glm::min(deltaTime / AUDIO_AVERAGING_SECS, 1.0f));
if (_longTermAverageLoudness == -1.0) {
@ -225,7 +225,7 @@ void Head::simulate(float deltaTime, bool isMine, bool billboard) {
void Head::relaxLean(float deltaTime) {
// restore rotation, lean to neutral positions
const float LEAN_RELAXATION_PERIOD = 0.25f; // seconds
float relaxationFactor = 1.f - glm::min(deltaTime / LEAN_RELAXATION_PERIOD, 1.f);
float relaxationFactor = 1.0f - glm::min(deltaTime / LEAN_RELAXATION_PERIOD, 1.0f);
_deltaYaw *= relaxationFactor;
_deltaPitch *= relaxationFactor;
_deltaRoll *= relaxationFactor;
@ -278,7 +278,7 @@ glm::quat Head::getCameraOrientation () const {
return getOrientation();
}
Avatar* owningAvatar = static_cast<Avatar*>(_owningAvatar);
return owningAvatar->getWorldAlignedOrientation() * glm::quat(glm::radians(glm::vec3(_basePitch, 0.f, 0.0f)));
return owningAvatar->getWorldAlignedOrientation() * glm::quat(glm::radians(glm::vec3(_basePitch, 0.0f, 0.0f)));
}
glm::quat Head::getEyeRotation(const glm::vec3& eyePosition) const {
@ -325,13 +325,13 @@ void Head::renderLookatVectors(glm::vec3 leftEyePosition, glm::vec3 rightEyePosi
glLineWidth(2.0);
glBegin(GL_LINES);
glColor4f(0.2f, 0.2f, 0.2f, 1.f);
glColor4f(0.2f, 0.2f, 0.2f, 1.0f);
glVertex3f(leftEyePosition.x, leftEyePosition.y, leftEyePosition.z);
glColor4f(1.0f, 1.0f, 1.0f, 0.f);
glColor4f(1.0f, 1.0f, 1.0f, 0.0f);
glVertex3f(lookatPosition.x, lookatPosition.y, lookatPosition.z);
glColor4f(0.2f, 0.2f, 0.2f, 1.f);
glColor4f(0.2f, 0.2f, 0.2f, 1.0f);
glVertex3f(rightEyePosition.x, rightEyePosition.y, rightEyePosition.z);
glColor4f(1.0f, 1.0f, 1.0f, 0.f);
glColor4f(1.0f, 1.0f, 1.0f, 0.0f);
glVertex3f(lookatPosition.x, lookatPosition.y, lookatPosition.z);
glEnd();

View file

@ -133,8 +133,8 @@ void MyAvatar::reset() {
setThrust(glm::vec3(0.0f));
// Reset the pitch and roll components of the avatar's orientation, preserve yaw direction
glm::vec3 eulers = safeEulerAngles(getOrientation());
eulers.x = 0.f;
eulers.z = 0.f;
eulers.x = 0.0f;
eulers.z = 0.0f;
setOrientation(glm::quat(eulers));
}
@ -929,7 +929,8 @@ void MyAvatar::updateLookAtTargetAvatar() {
}
glm::vec3 lookForward = faceRotation * IDENTITY_FRONT;
glm::vec3 cameraPosition = Application::getInstance()->getCamera()->getPosition();
float smallestAngleTo = glm::radians(Application::getInstance()->getCamera()->getFieldOfView()) / 2.f;
float smallestAngleTo = glm::radians(Application::getInstance()->getCamera()->getFieldOfView()) / 2.0f;
const float KEEP_LOOKING_AT_CURRENT_ANGLE_FACTOR = 1.3f;
int howManyLookingAtMe = 0;

View file

@ -101,7 +101,7 @@ public:
// Set what driving keys are being pressed to control thrust levels
void clearDriveKeys();
void setDriveKeys(int key, float val) { _driveKeys[key] = val; };
bool getDriveKeys(int key) { return _driveKeys[key] != 0.f; };
bool getDriveKeys(int key) { return _driveKeys[key] != 0.0f; };
void jump() { _shouldJump = true; };
bool isMyAvatar() { return true; }

View file

@ -34,7 +34,7 @@ SkeletonModel::SkeletonModel(Avatar* owningAvatar, QObject* parent) :
_boundingShape(),
_boundingShapeLocalOffset(0.0f),
_ragdoll(NULL),
_defaultEyeModelPosition(glm::vec3(0.f, 0.f, 0.f)),
_defaultEyeModelPosition(glm::vec3(0.0f, 0.0f, 0.0f)),
_standingFoot(NO_FOOT),
_standingOffset(0.0f),
_clampedFootPosition(0.0f) {
@ -54,7 +54,7 @@ void SkeletonModel::setJointStates(QVector<JointState> states) {
glm::vec3 leftEyePosition, rightEyePosition;
getEyeModelPositions(leftEyePosition, rightEyePosition);
glm::vec3 midEyePosition = (leftEyePosition + rightEyePosition) / 2.f;
glm::vec3 midEyePosition = (leftEyePosition + rightEyePosition) / 2.0f;
int rootJointIndex = _geometry->getFBXGeometry().rootJointIndex;
glm::vec3 rootModelPosition;
@ -618,6 +618,9 @@ void SkeletonModel::updateVisibleJointStates() {
/// \return offset of hips after foot animation
void SkeletonModel::updateStandingFoot() {
if (_geometry == NULL) {
return;
}
glm::vec3 offset(0.0f);
int leftFootIndex = _geometry->getFBXGeometry().leftToeJointIndex;
int rightFootIndex = _geometry->getFBXGeometry().rightToeJointIndex;

View file

@ -191,7 +191,7 @@ void resetCoefficient(float * coefficient, float currentValue) {
float updateAndGetCoefficient(float * coefficient, float currentValue, bool scaleToRange = false) {
coefficient[MIN] = (currentValue < coefficient[MIN]) ? currentValue : coefficient[MIN];
coefficient[MAX] = (currentValue > coefficient[MAX]) ? currentValue : coefficient[MAX];
coefficient[AVG] = LONG_TERM_AVERAGE * coefficient[AVG] + (1.f - LONG_TERM_AVERAGE) * currentValue;
coefficient[AVG] = LONG_TERM_AVERAGE * coefficient[AVG] + (1.0f - LONG_TERM_AVERAGE) * currentValue;
if (coefficient[MAX] > coefficient[MIN]) {
if (scaleToRange) {
return glm::clamp((currentValue - coefficient[AVG]) / (coefficient[MAX] - coefficient[MIN]), 0.0f, 1.0f);

View file

@ -109,8 +109,10 @@ void Faceshift::update() {
_longTermAverageEyePitch = glm::mix(eulers.x, _longTermAverageEyePitch, LONG_TERM_AVERAGE_SMOOTHING);
_longTermAverageEyeYaw = glm::mix(eulers.y, _longTermAverageEyeYaw, LONG_TERM_AVERAGE_SMOOTHING);
}
_estimatedEyePitch = eulers.x - _longTermAverageEyePitch;
_estimatedEyeYaw = eulers.y - _longTermAverageEyeYaw;
//_estimatedEyePitch = eulers.x - _longTermAverageEyePitch;
//_estimatedEyeYaw = eulers.y - _longTermAverageEyeYaw;
_estimatedEyePitch = 0.0; // eulers.x;
_estimatedEyeYaw = 0.0; // eulers.y;
}
void Faceshift::reset() {

View file

@ -156,7 +156,7 @@ void Leapmotion::update() {
if (lastFrameID >= newFrameID)
return;
glm::vec3 delta(0.f);
glm::vec3 delta(0.0f);
glm::quat handOri;
if (!frame.hands().isEmpty()) {
for (int handNum = 0; handNum < frame.hands().count(); handNum++) {

View file

@ -167,9 +167,9 @@ MotionTracker::Frame::Frame() :
void MotionTracker::Frame::setRotation(const glm::quat& rotation) {
glm::mat3x3 rot = glm::mat3_cast(rotation);
_transform[0] = glm::vec4(rot[0], 0.f);
_transform[1] = glm::vec4(rot[1], 0.f);
_transform[2] = glm::vec4(rot[2], 0.f);
_transform[0] = glm::vec4(rot[0], 0.0f);
_transform[1] = glm::vec4(rot[1], 0.0f);
_transform[2] = glm::vec4(rot[2], 0.0f);
}
void MotionTracker::Frame::getRotation(glm::quat& rotation) const {
@ -177,7 +177,7 @@ void MotionTracker::Frame::getRotation(glm::quat& rotation) const {
}
void MotionTracker::Frame::setTranslation(const glm::vec3& translation) {
_transform[3] = glm::vec4(translation, 1.f);
_transform[3] = glm::vec4(translation, 1.0f);
}
void MotionTracker::Frame::getTranslation(glm::vec3& translation) const {

View file

@ -56,7 +56,7 @@ Camera* OculusManager::_camera = NULL;
int OculusManager::_activeEyeIndex = -1;
float OculusManager::CALIBRATION_DELTA_MINIMUM_LENGTH = 0.02f;
float OculusManager::CALIBRATION_DELTA_MINIMUM_ANGLE = 5.f * RADIANS_PER_DEGREE;
float OculusManager::CALIBRATION_DELTA_MINIMUM_ANGLE = 5.0f * RADIANS_PER_DEGREE;
float OculusManager::CALIBRATION_ZERO_MAXIMUM_LENGTH = 0.01f;
float OculusManager::CALIBRATION_ZERO_MAXIMUM_ANGLE = 2.0f * RADIANS_PER_DEGREE;
quint64 OculusManager::CALIBRATION_ZERO_HOLD_TIME = 3000000; // usec
@ -196,7 +196,7 @@ void OculusManager::positionCalibrationBillboard(Text3DOverlay* billboard) {
headOrientation.z = 0;
glm::normalize(headOrientation);
billboard->setPosition(Application::getInstance()->getAvatar()->getHeadPosition()
+ headOrientation * glm::vec3(0.f, 0.f, -CALIBRATION_MESSAGE_DISTANCE));
+ headOrientation * glm::vec3(0.0f, 0.0f, -CALIBRATION_MESSAGE_DISTANCE));
billboard->setRotation(headOrientation);
}
#endif

View file

@ -106,7 +106,7 @@ static void setPalm(float deltaTime, int index) {
// Compute current velocity from position change
glm::vec3 rawVelocity;
if (deltaTime > 0.f) {
if (deltaTime > 0.0f) {
rawVelocity = (position - palm->getRawPosition()) / deltaTime;
} else {
rawVelocity = glm::vec3(0.0f);
@ -119,10 +119,10 @@ static void setPalm(float deltaTime, int index) {
const glm::vec3 FINGER_VECTOR(0.0f, 0.0f, FINGER_LENGTH);
const glm::vec3 newTipPosition = position + rotation * FINGER_VECTOR;
glm::vec3 oldTipPosition = palm->getTipRawPosition();
if (deltaTime > 0.f) {
if (deltaTime > 0.0f) {
palm->setTipVelocity((newTipPosition - oldTipPosition) / deltaTime);
} else {
palm->setTipVelocity(glm::vec3(0.f));
palm->setTipVelocity(glm::vec3(0.0f));
}
palm->setTipPosition(newTipPosition);
}

View file

@ -241,16 +241,16 @@ void SixenseManager::update(float deltaTime) {
// Transform the measured position into body frame.
glm::vec3 neck = _neckBase;
// Zeroing y component of the "neck" effectively raises the measured position a little bit.
neck.y = 0.f;
neck.y = 0.0f;
position = _orbRotation * (position - neck);
// Rotation of Palm
glm::quat rotation(data->rot_quat[3], -data->rot_quat[0], data->rot_quat[1], -data->rot_quat[2]);
rotation = glm::angleAxis(PI, glm::vec3(0.f, 1.f, 0.f)) * _orbRotation * rotation;
rotation = glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f)) * _orbRotation * rotation;
// Compute current velocity from position change
glm::vec3 rawVelocity;
if (deltaTime > 0.f) {
if (deltaTime > 0.0f) {
rawVelocity = (position - palm->getRawPosition()) / deltaTime;
} else {
rawVelocity = glm::vec3(0.0f);
@ -287,10 +287,10 @@ void SixenseManager::update(float deltaTime) {
const glm::vec3 FINGER_VECTOR(0.0f, 0.0f, FINGER_LENGTH);
const glm::vec3 newTipPosition = position + rotation * FINGER_VECTOR;
glm::vec3 oldTipPosition = palm->getTipRawPosition();
if (deltaTime > 0.f) {
if (deltaTime > 0.0f) {
palm->setTipVelocity((newTipPosition - oldTipPosition) / deltaTime);
} else {
palm->setTipVelocity(glm::vec3(0.f));
palm->setTipVelocity(glm::vec3(0.0f));
}
palm->setTipPosition(newTipPosition);
}
@ -348,7 +348,7 @@ void SixenseManager::updateCalibration(const sixenseControllerData* controllers)
// to also handle the case where left and right controllers have been reversed.
_neckBase = 0.5f * (_reachLeft + _reachRight); // neck is midway between right and left reaches
glm::vec3 xAxis = glm::normalize(_reachRight - _reachLeft);
glm::vec3 yAxis(0.f, 1.f, 0.f);
glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
glm::vec3 zAxis = glm::normalize(glm::cross(xAxis, yAxis));
xAxis = glm::normalize(glm::cross(yAxis, zAxis));
_orbRotation = glm::inverse(glm::quat_cast(glm::mat3(xAxis, yAxis, zAxis)));
@ -405,7 +405,7 @@ void SixenseManager::updateCalibration(const sixenseControllerData* controllers)
} else if (now > _lockExpiry) {
// lock has expired so clamp the data and move on
_lockExpiry = now + LOCK_DURATION;
_lastDistance = 0.f;
_lastDistance = 0.0f;
_reachUp = 0.5f * (_reachLeft + _reachRight);
_calibrationState = CALIBRATION_STATE_Y;
qDebug("success: sixense calibration: left");
@ -424,7 +424,7 @@ void SixenseManager::updateCalibration(const sixenseControllerData* controllers)
if (_lastDistance > MINIMUM_ARM_REACH) {
// lock has expired so clamp the data and move on
_reachForward = _reachUp;
_lastDistance = 0.f;
_lastDistance = 0.0f;
_lockExpiry = now + LOCK_DURATION;
_calibrationState = CALIBRATION_STATE_Z;
qDebug("success: sixense calibration: up");
@ -435,7 +435,7 @@ void SixenseManager::updateCalibration(const sixenseControllerData* controllers)
glm::vec3 xAxis = glm::normalize(_reachRight - _reachLeft);
glm::vec3 torso = 0.5f * (_reachLeft + _reachRight);
//glm::vec3 yAxis = glm::normalize(_reachUp - torso);
glm::vec3 yAxis(0.f, 1.f, 0.f);
glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
glm::vec3 zAxis = glm::normalize(glm::cross(xAxis, yAxis));
glm::vec3 averagePosition = 0.5f * (_averageLeft + _averageRight);

View file

@ -82,7 +82,7 @@ void EntityTreeRenderer::init() {
// make sure our "last avatar position" is something other than our current position, so that on our
// first chance, we'll check for enter/leave entity events.
glm::vec3 avatarPosition = Application::getInstance()->getAvatar()->getPosition();
_lastAvatarPosition = avatarPosition + glm::vec3(1.f, 1.f, 1.f);
_lastAvatarPosition = avatarPosition + glm::vec3(1.0f, 1.0f, 1.0f);
connect(entityTree, &EntityTree::deletingEntity, this, &EntityTreeRenderer::deletingEntity);
connect(entityTree, &EntityTree::addingEntity, this, &EntityTreeRenderer::checkAndCallPreload);

View file

@ -248,9 +248,9 @@ void DeferredLightingEffect::render() {
glLightfv(GL_LIGHT1, GL_DIFFUSE, (const GLfloat*)&light.diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, (const GLfloat*)&light.specular);
glLightfv(GL_LIGHT1, GL_POSITION, (const GLfloat*)&light.position);
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, (light.constantAttenuation > 0.f ? light.constantAttenuation : 0.f));
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, (light.linearAttenuation > 0.f ? light.linearAttenuation : 0.f));
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, (light.quadraticAttenuation > 0.f ? light.quadraticAttenuation : 0.f));
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, (light.constantAttenuation > 0.0f ? light.constantAttenuation : 0.0f));
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, (light.linearAttenuation > 0.0f ? light.linearAttenuation : 0.0f));
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, (light.quadraticAttenuation > 0.0f ? light.quadraticAttenuation : 0.0f));
glPushMatrix();
@ -293,9 +293,9 @@ void DeferredLightingEffect::render() {
glLightfv(GL_LIGHT1, GL_DIFFUSE, (const GLfloat*)&light.diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, (const GLfloat*)&light.specular);
glLightfv(GL_LIGHT1, GL_POSITION, (const GLfloat*)&light.position);
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, (light.constantAttenuation > 0.f ? light.constantAttenuation : 0.f));
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, (light.linearAttenuation > 0.f ? light.linearAttenuation : 0.f));
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, (light.quadraticAttenuation > 0.f ? light.quadraticAttenuation : 0.f));
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, (light.constantAttenuation > 0.0f ? light.constantAttenuation : 0.0f));
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, (light.linearAttenuation > 0.0f ? light.linearAttenuation : 0.0f));
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, (light.quadraticAttenuation > 0.0f ? light.quadraticAttenuation : 0.0f));
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, (const GLfloat*)&light.direction);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, light.exponent);
glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, glm::degrees(light.cutoff));

View file

@ -296,7 +296,7 @@ void GeometryCache::renderHalfCylinder(int slices, int stacks) {
float y = (float)i / (stacks - 1);
for (int j = 0; j <= slices; j++) {
float theta = 3.f * PI_OVER_TWO + PI * (float)j / (float)slices;
float theta = 3.0f * PI_OVER_TWO + PI * (float)j / (float)slices;
//normals
*(vertex++) = sinf(theta);

View file

@ -1330,7 +1330,7 @@ void Model::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm:
centerOfMass += _jointStates[massIndex].getPosition() - pivot;
}
// the gravitational effect is a rotation that tends to align the two cross products
const glm::vec3 worldAlignment = glm::vec3(0.0f, -1.f, 0.0f);
const glm::vec3 worldAlignment = glm::vec3(0.0f, -1.0f, 0.0f);
glm::quat gravityDelta = rotationBetween(glm::cross(centerOfMass, leverArm),
glm::cross(worldAlignment, leverArm));
@ -2173,7 +2173,7 @@ int Model::renderMeshesFromList(QVector<int>& list, gpu::Batch& batch, RenderMod
GLBATCH(glMaterialfv)(GL_FRONT, GL_AMBIENT, (const float*)&diffuse);
GLBATCH(glMaterialfv)(GL_FRONT, GL_DIFFUSE, (const float*)&diffuse);
GLBATCH(glMaterialfv)(GL_FRONT, GL_SPECULAR, (const float*)&specular);
GLBATCH(glMaterialf)(GL_FRONT, GL_SHININESS, (part.shininess > 128.f ? 128.f: part.shininess));
GLBATCH(glMaterialf)(GL_FRONT, GL_SHININESS, (part.shininess > 128.0f ? 128.0f: part.shininess));
Texture* diffuseMap = networkPart.diffuseTexture.data();
if (mesh.isEye && diffuseMap) {

View file

@ -16,7 +16,7 @@
using namespace starfield;
const float Generator::STAR_COLORIZATION = 0.1f;
const float PI_OVER_180 = 3.14159265358979f / 180.f;
const float PI_OVER_180 = 3.14159265358979f / 180.0f;
void Generator::computeStarPositions(InputVertices& destination, unsigned limit, unsigned seed) {
InputVertices* vertices = & destination;
@ -44,9 +44,9 @@ void Generator::computeStarPositions(InputVertices& destination, unsigned limit,
for(int star = 0; star < ceil(limit * MILKY_WAY_RATIO); ++star) {
float azimuth = ((float)rand() / (float) RAND_MAX) * NUM_DEGREES;
float altitude = powf(randFloat()*0.5f, 2.f)/0.25f * MILKY_WAY_WIDTH;
float altitude = powf(randFloat()*0.5f, 2.0f)/0.25f * MILKY_WAY_WIDTH;
if (randFloat() > 0.5f) {
altitude *= -1.f;
altitude *= -1.0f;
}
// we need to rotate the Milky Way band to the correct orientation in the sky

View file

@ -999,26 +999,26 @@ void ApplicationOverlay::renderAudioMeter() {
const float AUDIO_RED_START = 0.80 * AUDIO_METER_SCALE_WIDTH;
const float CLIPPING_INDICATOR_TIME = 1.0f;
const float AUDIO_METER_AVERAGING = 0.5;
const float LOG2 = log(2.f);
const float METER_LOUDNESS_SCALE = 2.8f / 5.f;
const float LOG2_LOUDNESS_FLOOR = 11.f;
float audioLevel = 0.f;
float loudness = audio->getLastInputLoudness() + 1.f;
const float LOG2 = log(2.0f);
const float METER_LOUDNESS_SCALE = 2.8f / 5.0f;
const float LOG2_LOUDNESS_FLOOR = 11.0f;
float audioLevel = 0.0f;
float loudness = audio->getLastInputLoudness() + 1.0f;
_trailingAudioLoudness = AUDIO_METER_AVERAGING * _trailingAudioLoudness + (1.f - AUDIO_METER_AVERAGING) * loudness;
_trailingAudioLoudness = AUDIO_METER_AVERAGING * _trailingAudioLoudness + (1.0f - AUDIO_METER_AVERAGING) * loudness;
float log2loudness = log(_trailingAudioLoudness) / LOG2;
if (log2loudness <= LOG2_LOUDNESS_FLOOR) {
audioLevel = (log2loudness / LOG2_LOUDNESS_FLOOR) * METER_LOUDNESS_SCALE * AUDIO_METER_SCALE_WIDTH;
} else {
audioLevel = (log2loudness - (LOG2_LOUDNESS_FLOOR - 1.f)) * METER_LOUDNESS_SCALE * AUDIO_METER_SCALE_WIDTH;
audioLevel = (log2loudness - (LOG2_LOUDNESS_FLOOR - 1.0f)) * METER_LOUDNESS_SCALE * AUDIO_METER_SCALE_WIDTH;
}
if (audioLevel > AUDIO_METER_SCALE_WIDTH) {
audioLevel = AUDIO_METER_SCALE_WIDTH;
}
bool isClipping = ((audio->getTimeSinceLastClip() > 0.f) && (audio->getTimeSinceLastClip() < CLIPPING_INDICATOR_TIME));
bool isClipping = ((audio->getTimeSinceLastClip() > 0.0f) && (audio->getTimeSinceLastClip() < CLIPPING_INDICATOR_TIME));
if ((audio->getTimeSinceLastClip() > 0.f) && (audio->getTimeSinceLastClip() < CLIPPING_INDICATOR_TIME)) {
if ((audio->getTimeSinceLastClip() > 0.0f) && (audio->getTimeSinceLastClip() < CLIPPING_INDICATOR_TIME)) {
const float MAX_MAGNITUDE = 0.7f;
float magnitude = MAX_MAGNITUDE * (1 - audio->getTimeSinceLastClip() / CLIPPING_INDICATOR_TIME);
renderCollisionOverlay(glWidget->width(), glWidget->height(), magnitude, 1.0f);

View file

@ -130,22 +130,22 @@ void OctreeStatsDialog::paintEvent(QPaintEvent* event) {
// Voxels Rendered
label = _labels[_voxelsRendered];
statsValue << "Max: " << voxels->getMaxVoxels() / 1000.f << "K " <<
"Drawn: " << voxels->getVoxelsWritten() / 1000.f << "K " <<
"Abandoned: " << voxels->getAbandonedVoxels() / 1000.f << "K " <<
"ReadBuffer: " << voxels->getVoxelsRendered() / 1000.f << "K " <<
"Changed: " << voxels->getVoxelsUpdated() / 1000.f << "K ";
statsValue << "Max: " << voxels->getMaxVoxels() / 1000.0f << "K " <<
"Drawn: " << voxels->getVoxelsWritten() / 1000.0f << "K " <<
"Abandoned: " << voxels->getAbandonedVoxels() / 1000.0f << "K " <<
"ReadBuffer: " << voxels->getVoxelsRendered() / 1000.0f << "K " <<
"Changed: " << voxels->getVoxelsUpdated() / 1000.0f << "K ";
label->setText(statsValue.str().c_str());
// Voxels Memory Usage
label = _labels[_localVoxelsMemory];
statsValue.str("");
statsValue <<
"Elements RAM: " << OctreeElement::getTotalMemoryUsage() / 1000000.f << "MB "
"Geometry RAM: " << voxels->getVoxelMemoryUsageRAM() / 1000000.f << "MB " <<
"VBO: " << voxels->getVoxelMemoryUsageVBO() / 1000000.f << "MB ";
"Elements RAM: " << OctreeElement::getTotalMemoryUsage() / 1000000.0f << "MB "
"Geometry RAM: " << voxels->getVoxelMemoryUsageRAM() / 1000000.0f << "MB " <<
"VBO: " << voxels->getVoxelMemoryUsageVBO() / 1000000.0f << "MB ";
if (voxels->hasVoxelMemoryUsageGPU()) {
statsValue << "GPU: " << voxels->getVoxelMemoryUsageGPU() / 1000000.f << "MB ";
statsValue << "GPU: " << voxels->getVoxelMemoryUsageGPU() / 1000000.0f << "MB ";
}
label->setText(statsValue.str().c_str());

View file

@ -264,7 +264,7 @@ void Stats::display(
char packetsPerSecondString[30];
sprintf(packetsPerSecondString, "Pkts/sec: %d", packetsPerSecond);
char averageMegabitsPerSecond[30];
sprintf(averageMegabitsPerSecond, "Mbps: %3.2f", (float)bytesPerSecond * 8.f / 1000000.f);
sprintf(averageMegabitsPerSecond, "Mbps: %3.2f", (float)bytesPerSecond * 8.0f / 1000000.0f);
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, packetsPerSecondString, color);
@ -501,24 +501,24 @@ void Stats::display(
voxelStats.str("");
voxelStats.precision(4);
voxelStats << "Voxels Drawn: " << voxels->getVoxelsWritten() / 1000.f << "K " <<
"Abandoned: " << voxels->getAbandonedVoxels() / 1000.f << "K ";
voxelStats << "Voxels Drawn: " << voxels->getVoxelsWritten() / 1000.0f << "K " <<
"Abandoned: " << voxels->getAbandonedVoxels() / 1000.0f << "K ";
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, (char*)voxelStats.str().c_str(), color);
if (_expanded) {
// Local Voxel Memory Usage
voxelStats.str("");
voxelStats << " Voxels Memory Nodes: " << VoxelTreeElement::getTotalMemoryUsage() / 1000000.f << "MB";
voxelStats << " Voxels Memory Nodes: " << VoxelTreeElement::getTotalMemoryUsage() / 1000000.0f << "MB";
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, (char*)voxelStats.str().c_str(), color);
voxelStats.str("");
voxelStats <<
" Geometry RAM: " << voxels->getVoxelMemoryUsageRAM() / 1000000.f << "MB / " <<
"VBO: " << voxels->getVoxelMemoryUsageVBO() / 1000000.f << "MB";
" Geometry RAM: " << voxels->getVoxelMemoryUsageRAM() / 1000000.0f << "MB / " <<
"VBO: " << voxels->getVoxelMemoryUsageVBO() / 1000000.0f << "MB";
if (voxels->hasVoxelMemoryUsageGPU()) {
voxelStats << " / GPU: " << voxels->getVoxelMemoryUsageGPU() / 1000000.f << "MB";
voxelStats << " / GPU: " << voxels->getVoxelMemoryUsageGPU() / 1000000.0f << "MB";
}
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, (char*)voxelStats.str().c_str(), color);
@ -526,7 +526,7 @@ void Stats::display(
// Voxel Rendering
voxelStats.str("");
voxelStats.precision(4);
voxelStats << " Voxel Rendering Slots Max: " << voxels->getMaxVoxels() / 1000.f << "K";
voxelStats << " Voxel Rendering Slots Max: " << voxels->getMaxVoxels() / 1000.0f << "K";
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, (char*)voxelStats.str().c_str(), color);
}
@ -746,7 +746,7 @@ void Stats::display(
audioReflector->getEchoesAttenuation());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, 0.10f, 0.f, 2.f, reflectionsStatus, color);
drawText(horizontalOffset, verticalOffset, 0.10f, 0.0f, 2.0f, reflectionsStatus, color);
}
}

View file

@ -73,12 +73,12 @@ int TextRenderer::draw(int x, int y, const char* str, float alpha) {
// Grab the current color
float currentColor[4];
glGetFloatv(GL_CURRENT_COLOR, currentColor);
alpha = std::max(0.f, std::min(alpha, 1.f));
alpha = std::max(0.0f, std::min(alpha, 1.0f));
currentColor[3] *= alpha;
int compactColor = ((int(currentColor[0] * 255.f) & 0xFF)) |
((int(currentColor[1] * 255.f) & 0xFF) << 8) |
((int(currentColor[2] * 255.f) & 0xFF) << 16) |
((int(currentColor[3] * 255.f) & 0xFF) << 24);
int compactColor = ((int(currentColor[0] * 255.0f) & 0xFF)) |
((int(currentColor[1] * 255.0f) & 0xFF) << 8) |
((int(currentColor[2] * 255.0f) & 0xFF) << 16) |
((int(currentColor[3] * 255.0f) & 0xFF) << 24);
// TODO: Remove that code once we test for performance improvments
//glEnable(GL_TEXTURE_2D);

View file

@ -63,7 +63,7 @@ public:
int calculateHeight(const char* str);
// also returns the height of the tallest character
int draw(int x, int y, const char* str, float alpha = 1.f);
int draw(int x, int y, const char* str, float alpha = 1.0f);
int computeWidth(char ch);
int computeWidth(const char* str);

View file

@ -38,7 +38,7 @@ AvatarData::AvatarData() :
_position(0.0f),
_handPosition(0.0f),
_referential(NULL),
_bodyYaw(-90.f),
_bodyYaw(-90.0f),
_bodyPitch(0.0f),
_bodyRoll(0.0f),
_targetScale(1.0f),

View file

@ -83,7 +83,7 @@ const int IS_FACESHIFT_CONNECTED = 4; // 5th bit
const int IS_CHAT_CIRCLING_ENABLED = 5; // 6th bit
const int HAS_REFERENTIAL = 6; // 7th bit
static const float MAX_AVATAR_SCALE = 1000.f;
static const float MAX_AVATAR_SCALE = 1000.0f;
static const float MIN_AVATAR_SCALE = .005f;
const float MAX_AUDIO_LOUDNESS = 1000.0; // close enough for mouth animation
@ -281,7 +281,7 @@ public:
QElapsedTimer& getLastUpdateTimer() { return _lastUpdateTimer; }
virtual float getBoundingRadius() const { return 1.f; }
virtual float getBoundingRadius() const { return 1.0f; }
const Referential* getReferential() const { return _referential; }

View file

@ -64,11 +64,11 @@ void HandData::getLeftRightPalmIndices(int& leftPalmIndex, int& rightPalmIndex)
}
PalmData::PalmData(HandData* owningHandData) :
_rawRotation(0.f, 0.f, 0.f, 1.f),
_rawPosition(0.f),
_rawVelocity(0.f),
_rotationalVelocity(0.f),
_totalPenetration(0.f),
_rawRotation(0.0f, 0.0f, 0.0f, 1.0f),
_rawPosition(0.0f),
_rawVelocity(0.0f),
_rotationalVelocity(0.0f),
_totalPenetration(0.0f),
_controllerButtons(0),
_isActive(false),
_sixenseID(SIXENSEID_INVALID),

View file

@ -100,7 +100,7 @@ public:
void addToPosition(const glm::vec3& delta);
void addToPenetration(const glm::vec3& penetration) { _totalPenetration += penetration; }
void resolvePenetrations() { addToPosition(-_totalPenetration); _totalPenetration = glm::vec3(0.f); }
void resolvePenetrations() { addToPosition(-_totalPenetration); _totalPenetration = glm::vec3(0.0f); }
void setTipPosition(const glm::vec3& position) { _tipPosition = position; }
const glm::vec3 getTipPosition() const { return _owningHandData->localToWorldPosition(_tipPosition); }

View file

@ -20,12 +20,12 @@
#include <glm/gtc/quaternion.hpp>
// degrees
const float MIN_HEAD_YAW = -180.f;
const float MAX_HEAD_YAW = 180.f;
const float MIN_HEAD_PITCH = -60.f;
const float MAX_HEAD_PITCH = 60.f;
const float MIN_HEAD_ROLL = -50.f;
const float MAX_HEAD_ROLL = 50.f;
const float MIN_HEAD_YAW = -180.0f;
const float MAX_HEAD_YAW = 180.0f;
const float MIN_HEAD_PITCH = -60.0f;
const float MAX_HEAD_PITCH = 60.0f;
const float MIN_HEAD_ROLL = -50.0f;
const float MAX_HEAD_ROLL = 50.0f;
class AvatarData;

View file

@ -265,7 +265,7 @@ void EntityCollisionSystem::updateCollisionWithAvatars(EntityItem* entity) {
collision->_addedVelocity /= (float)(TREE_SCALE);
glm::vec3 relativeVelocity = collision->_addedVelocity - entity->getVelocity();
if (glm::dot(relativeVelocity, collision->_penetration) <= 0.f) {
if (glm::dot(relativeVelocity, collision->_penetration) <= 0.0f) {
// only collide when Entity and collision point are moving toward each other
// (doing this prevents some "collision snagging" when Entity penetrates the object)
collision->_penetration /= (float)(TREE_SCALE);

View file

@ -44,20 +44,6 @@ EntityItemID EntityScriptingInterface::addEntity(const EntityItemProperties& pro
return id;
}
EntityItemID EntityScriptingInterface::getEntityItemID(const QString& uuid) {
EntityItemID entityID = EntityItemID(QUuid(uuid), UNKNOWN_ENTITY_TOKEN, false);
_entityTree->lockForRead();
EntityItem* entity = const_cast<EntityItem*>(_entityTree->findEntityByEntityItemID(entityID));
_entityTree->unlock();
if (entity) {
return entity->getEntityItemID();
}
return entityID;
}
EntityItemID EntityScriptingInterface::identifyEntity(EntityItemID entityID) {
EntityItemID actualID = entityID;

View file

@ -64,9 +64,6 @@ public slots:
/// adds a model with the specific properties
Q_INVOKABLE EntityItemID addEntity(const EntityItemProperties& properties);
// Get EntityItemID from uuid string
Q_INVOKABLE EntityItemID getEntityItemID(const QString& entityID);
/// identify a recently created model to determine its true ID
Q_INVOKABLE EntityItemID identifyEntity(EntityItemID entityID);

View file

@ -621,7 +621,7 @@ void EntityTreeElement::getEntities(const AACube& box, QVector<EntityItem*>& fou
// NOTE: we actually do cube-cube collision queries here, which is sloppy but good enough for now
// TODO: decide whether to replace entityCube-cube query with sphere-cube (requires a square root
// but will be slightly more accurate).
entityCube.setBox(entity->getPosition() - glm::vec3(radius), 2.f * radius);
entityCube.setBox(entity->getPosition() - glm::vec3(radius), 2.0f * radius);
if (entityCube.touches(box)) {
foundEntities.push_back(entity);
}

View file

@ -984,7 +984,7 @@ class JointShapeInfo {
public:
JointShapeInfo() : numVertices(0),
sumVertexWeights(0.0f), sumWeightedRadii(0.0f), numVertexWeights(0),
averageVertex(0.f), boneBegin(0.f), averageRadius(0.f) {
averageVertex(0.0f), boneBegin(0.0f), averageRadius(0.0f) {
}
// NOTE: the points here are in the "joint frame" which has the "jointEnd" at the origin
@ -1564,7 +1564,7 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
joint.boneRadius = 0.0f;
joint.inverseBindRotation = joint.inverseDefaultRotation;
joint.name = model.name;
joint.shapePosition = glm::vec3(0.f);
joint.shapePosition = glm::vec3(0.0f);
joint.shapeType = SHAPE_TYPE_UNKNOWN;
foreach (const QString& childID, childMap.values(modelID)) {
@ -1890,7 +1890,7 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
}
float radiusScale = extractUniformScale(joint.transform * firstFBXCluster.inverseBindMatrix);
glm::vec3 averageVertex(0.f);
glm::vec3 averageVertex(0.0f);
foreach (const glm::vec3& vertex, extracted.mesh.vertices) {
float proj = glm::dot(boneDirection, boneEnd - vertex);
float radiusWeight = (proj < 0.0f || proj > boneLength) ? 0.5f : 1.0f;
@ -1906,7 +1906,7 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
jointShapeInfo.numVertices = numVertices;
if (numVertices > 0) {
averageVertex /= (float)jointShapeInfo.numVertices;
float averageRadius = 0.f;
float averageRadius = 0.0f;
foreach (const glm::vec3& vertex, extracted.mesh.vertices) {
averageRadius += glm::distance(vertex, averageVertex);
}
@ -1922,7 +1922,7 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
}
// now that all joints have been scanned, compute a collision shape for each joint
glm::vec3 defaultCapsuleAxis(0.f, 1.f, 0.f);
glm::vec3 defaultCapsuleAxis(0.0f, 1.0f, 0.0f);
for (int i = 0; i < geometry.joints.size(); ++i) {
FBXJoint& joint = geometry.joints[i];
JointShapeInfo& jointShapeInfo = jointShapeInfos[i];
@ -1955,7 +1955,7 @@ FBXGeometry extractFBXGeometry(const FBXNode& node, const QVariantHash& mapping)
jointShapeInfo.averageVertex /= (float)jointShapeInfo.numVertices;
joint.shapePosition = jointShapeInfo.averageVertex;
} else {
joint.shapePosition = glm::vec3(0.f);
joint.shapePosition = glm::vec3(0.0f);
}
if (jointShapeInfo.numVertexWeights == 0
&& jointShapeInfo.numVertices > 0) {

View file

@ -131,7 +131,7 @@ bool AddressManager::handleUrl(const QUrl& lookupUrl) {
void AddressManager::handleLookupString(const QString& lookupString) {
if (!lookupString.isEmpty()) {
// make this a valid hifi URL and handle it off to handleUrl
QString sanitizedString = lookupString;
QString sanitizedString = lookupString.trimmed();
QUrl lookupURL;
if (!lookupString.startsWith('/')) {

View file

@ -24,7 +24,7 @@ bool CoverageMap::wantDebugging = false;
const int MAX_POLYGONS_PER_REGION = 50;
const BoundingBox CoverageMap::ROOT_BOUNDING_BOX = BoundingBox(glm::vec2(-1.f,-1.f), glm::vec2(2.f,2.f));
const BoundingBox CoverageMap::ROOT_BOUNDING_BOX = BoundingBox(glm::vec2(-1.0f,-1.0f), glm::vec2(2.0f,2.0f));
// Coverage Map's polygon coordinates are from -1 to 1 in the following mapping to screen space.
//

View file

@ -23,7 +23,7 @@ int CoverageMapV2::_checkMapRootCalls = 0;
int CoverageMapV2::_notAllInView = 0;
bool CoverageMapV2::wantDebugging = false;
const BoundingBox CoverageMapV2::ROOT_BOUNDING_BOX = BoundingBox(glm::vec2(-1.f,-1.f), glm::vec2(2.f,2.f));
const BoundingBox CoverageMapV2::ROOT_BOUNDING_BOX = BoundingBox(glm::vec2(-1.0f,-1.0f), glm::vec2(2.0f,2.0f));
// Coverage Map's polygon coordinates are from -1 to 1 in the following mapping to screen space.
//

View file

@ -27,8 +27,8 @@
const float DEFAULT_KEYHOLE_RADIUS = 3.0f;
const float DEFAULT_FIELD_OF_VIEW_DEGREES = 45.0f;
const float DEFAULT_REAL_WORLD_FIELD_OF_VIEW_DEGREES = 30.f;
const float DEFAULT_ASPECT_RATIO = 16.f/9.f;
const float DEFAULT_REAL_WORLD_FIELD_OF_VIEW_DEGREES = 30.0f;
const float DEFAULT_ASPECT_RATIO = 16.0f/9.0f;
const float DEFAULT_NEAR_CLIP = 0.08f;
const float DEFAULT_FAR_CLIP = TREE_SCALE;

View file

@ -20,11 +20,11 @@ CollisionInfo::CollisionInfo() :
_intData(0),
_shapeA(NULL),
_shapeB(NULL),
_damping(0.f),
_elasticity(1.f),
_contactPoint(0.f),
_penetration(0.f),
_addedVelocity(0.f) {
_damping(0.0f),
_elasticity(1.0f),
_contactPoint(0.0f),
_penetration(0.0f),
_addedVelocity(0.0f) {
}
quint64 CollisionInfo::getShapePairKey() const {

View file

@ -73,11 +73,11 @@ void ListShape::clear() {
delete _subShapeEntries[i]._shape;
}
_subShapeEntries.clear();
setBoundingRadius(0.f);
setBoundingRadius(0.0f);
}
void ListShape::computeBoundingRadius() {
float maxRadius = 0.f;
float maxRadius = 0.0f;
for (int i = 0; i < _subShapeEntries.size(); ++i) {
ListShapeEntry& entry = _subShapeEntries[i];
float radius = glm::length(entry._localPosition) + entry._shape->getBoundingRadius();

View file

@ -39,8 +39,8 @@ public:
static quint32 getNextID() { static quint32 nextID = 0; return ++nextID; }
Shape() : _type(UNKNOWN_SHAPE), _owningEntity(NULL), _boundingRadius(0.f),
_translation(0.f), _rotation(), _mass(MAX_SHAPE_MASS) {
Shape() : _type(UNKNOWN_SHAPE), _owningEntity(NULL), _boundingRadius(0.0f),
_translation(0.0f), _rotation(), _mass(MAX_SHAPE_MASS) {
_id = getNextID();
}
virtual ~Shape() { }
@ -87,20 +87,20 @@ public:
protected:
// these ctors are protected (used by derived classes only)
Shape(Type type) : _type(type), _owningEntity(NULL),
_boundingRadius(0.f), _translation(0.f),
_boundingRadius(0.0f), _translation(0.0f),
_rotation(), _mass(MAX_SHAPE_MASS) {
_id = getNextID();
}
Shape(Type type, const glm::vec3& position) :
_type(type), _owningEntity(NULL),
_boundingRadius(0.f), _translation(position),
_boundingRadius(0.0f), _translation(position),
_rotation(), _mass(MAX_SHAPE_MASS) {
_id = getNextID();
}
Shape(Type type, const glm::vec3& position, const glm::quat& rotation) : _type(type), _owningEntity(NULL),
_boundingRadius(0.f), _translation(position),
_boundingRadius(0.0f), _translation(position),
_rotation(rotation), _mass(MAX_SHAPE_MASS) {
_id = getNextID();
}

View file

@ -1139,7 +1139,7 @@ bool sphereAACube_StarkAngles(const glm::vec3& sphereCenter, float sphereRadius,
glm::vec3 surfaceB = cubeCenter - (0.5f * cubeSide / maxBA) * BA;
// collision happens when "vector to surfaceA from surfaceB" dots with BA to produce a positive value
glm::vec3 surfaceAB = surfaceA - surfaceB;
if (glm::dot(surfaceAB, BA) > 0.f) {
if (glm::dot(surfaceAB, BA) > 0.0f) {
CollisionInfo* collision = collisions.getNewCollision();
if (collision) {
// penetration is parallel to box side direction

View file

@ -72,27 +72,27 @@ int unpackFloatVec3FromSignedTwoByteFixed(const unsigned char* sourceBuffer, glm
int packFloatAngleToTwoByte(unsigned char* buffer, float degrees) {
const float ANGLE_CONVERSION_RATIO = (std::numeric_limits<uint16_t>::max() / 360.f);
const float ANGLE_CONVERSION_RATIO = (std::numeric_limits<uint16_t>::max() / 360.0f);
uint16_t angleHolder = floorf((degrees + 180.f) * ANGLE_CONVERSION_RATIO);
uint16_t angleHolder = floorf((degrees + 180.0f) * ANGLE_CONVERSION_RATIO);
memcpy(buffer, &angleHolder, sizeof(uint16_t));
return sizeof(uint16_t);
}
int unpackFloatAngleFromTwoByte(const uint16_t* byteAnglePointer, float* destinationPointer) {
*destinationPointer = (*byteAnglePointer / (float) std::numeric_limits<uint16_t>::max()) * 360.f - 180.f;
*destinationPointer = (*byteAnglePointer / (float) std::numeric_limits<uint16_t>::max()) * 360.0f - 180.0f;
return sizeof(uint16_t);
}
int packOrientationQuatToBytes(unsigned char* buffer, const glm::quat& quatInput) {
glm::quat quatNormalized = glm::normalize(quatInput);
const float QUAT_PART_CONVERSION_RATIO = (std::numeric_limits<uint16_t>::max() / 2.f);
const float QUAT_PART_CONVERSION_RATIO = (std::numeric_limits<uint16_t>::max() / 2.0f);
uint16_t quatParts[4];
quatParts[0] = floorf((quatNormalized.x + 1.f) * QUAT_PART_CONVERSION_RATIO);
quatParts[1] = floorf((quatNormalized.y + 1.f) * QUAT_PART_CONVERSION_RATIO);
quatParts[2] = floorf((quatNormalized.z + 1.f) * QUAT_PART_CONVERSION_RATIO);
quatParts[3] = floorf((quatNormalized.w + 1.f) * QUAT_PART_CONVERSION_RATIO);
quatParts[0] = floorf((quatNormalized.x + 1.0f) * QUAT_PART_CONVERSION_RATIO);
quatParts[1] = floorf((quatNormalized.y + 1.0f) * QUAT_PART_CONVERSION_RATIO);
quatParts[2] = floorf((quatNormalized.z + 1.0f) * QUAT_PART_CONVERSION_RATIO);
quatParts[3] = floorf((quatNormalized.w + 1.0f) * QUAT_PART_CONVERSION_RATIO);
memcpy(buffer, &quatParts, sizeof(quatParts));
return sizeof(quatParts);
@ -102,10 +102,10 @@ int unpackOrientationQuatFromBytes(const unsigned char* buffer, glm::quat& quatO
uint16_t quatParts[4];
memcpy(&quatParts, buffer, sizeof(quatParts));
quatOutput.x = ((quatParts[0] / (float) std::numeric_limits<uint16_t>::max()) * 2.f) - 1.f;
quatOutput.y = ((quatParts[1] / (float) std::numeric_limits<uint16_t>::max()) * 2.f) - 1.f;
quatOutput.z = ((quatParts[2] / (float) std::numeric_limits<uint16_t>::max()) * 2.f) - 1.f;
quatOutput.w = ((quatParts[3] / (float) std::numeric_limits<uint16_t>::max()) * 2.f) - 1.f;
quatOutput.x = ((quatParts[0] / (float) std::numeric_limits<uint16_t>::max()) * 2.0f) - 1.0f;
quatOutput.y = ((quatParts[1] / (float) std::numeric_limits<uint16_t>::max()) * 2.0f) - 1.0f;
quatOutput.z = ((quatParts[2] / (float) std::numeric_limits<uint16_t>::max()) * 2.0f) - 1.0f;
quatOutput.w = ((quatParts[3] / (float) std::numeric_limits<uint16_t>::max()) * 2.0f) - 1.0f;
return sizeof(quatParts);
}

View file

@ -131,9 +131,9 @@ bool findSphereDiskPenetration(const glm::vec3& sphereCenter, float sphereRadius
if (glm::length(localCenter - axialOffset) < diskRadius) {
// yes, hit the disk
penetration = (std::fabs(axialDistance) - (sphereRadius + 0.5f * diskThickness) ) * diskNormal;
if (axialDistance < 0.f) {
if (axialDistance < 0.0f) {
// hit the backside of the disk, so negate penetration vector
penetration *= -1.f;
penetration *= -1.0f;
}
return true;
}

View file

@ -98,7 +98,7 @@ quint64 usecTimestampNow(bool wantDebug) {
}
float randFloat() {
return (rand() % 10000)/10000.f;
return (rand() % 10000)/10000.0f;
}
int randIntInRange (int min, int max) {
@ -106,7 +106,7 @@ int randIntInRange (int min, int max) {
}
float randFloatInRange (float min,float max) {
return min + ((rand() % 10000)/10000.f * (max-min));
return min + ((rand() % 10000)/10000.0f * (max-min));
}
float randomSign() {
@ -501,8 +501,8 @@ int removeFromSortedArrays(void* value, void** valueArray, float* keyArray, int*
return -1; // error case
}
float SMALL_LIMIT = 10.f;
float LARGE_LIMIT = 1000.f;
float SMALL_LIMIT = 10.0f;
float LARGE_LIMIT = 1000.0f;
int packFloatRatioToTwoByte(unsigned char* buffer, float ratio) {
// if the ratio is less than 10, then encode it as a positive number scaled from 0 to int16::max()

View file

@ -49,14 +49,14 @@ static const float ONE_HALF = 0.5f;
static const float ONE_THIRD = 0.333333f;
static const float PI = 3.14159265358979f;
static const float TWO_PI = 2.f * PI;
static const float TWO_PI = 2.0f * PI;
static const float PI_OVER_TWO = ONE_HALF * PI;
static const float RADIANS_PER_DEGREE = PI / 180.0f;
static const float DEGREES_PER_RADIAN = 180.0f / PI;
static const float EPSILON = 0.000001f; //smallish positive number - used as margin of error for some computations
static const float SQUARE_ROOT_OF_2 = (float)sqrt(2.f);
static const float SQUARE_ROOT_OF_3 = (float)sqrt(3.f);
static const float SQUARE_ROOT_OF_2 = (float)sqrt(2.0f);
static const float SQUARE_ROOT_OF_3 = (float)sqrt(3.0f);
static const float METERS_PER_DECIMETER = 0.1f;
static const float METERS_PER_CENTIMETER = 0.01f;
static const float METERS_PER_MILLIMETER = 0.001f;

View file

@ -86,7 +86,7 @@ std::ostream& operator<<(std::ostream& s, const SphereShape& sphere) {
std::ostream& operator<<(std::ostream& s, const CapsuleShape& capsule) {
s << "{type='capsule', center=" << capsule.getPosition()
<< ", radius=" << capsule.getRadius()
<< ", length=" << (2.f * capsule.getHalfHeight())
<< ", length=" << (2.0f * capsule.getHalfHeight())
<< ", begin=" << capsule.getStartPoint()
<< ", end=" << capsule.getEndPoint()
<< "}";

View file

@ -15,28 +15,28 @@
void Transform::evalRotationScale(Quat& rotation, Vec3& scale, const Mat3& rotationScaleMatrix) {
const float ACCURACY_THREASHOLD = 0.00001f;
// Following technique taken from:
// http://callumhay.blogspot.com/2010/10/decomposing-affine-transforms.html
// Extract the rotation component - this is done using polar decompostion, where
// we successively average the matrix with its inverse transpose until there is
// no/a very small difference between successive averages
float norm;
int count = 0;
Mat3 rotationMat = rotationScaleMatrix;
do {
Mat3 currInvTranspose = glm::inverse(glm::transpose(rotationMat));
Mat3 nextRotation = 0.5f * (rotationMat + currInvTranspose);
norm = 0.0;
for (int i = 0; i < 3; i++) {
float n = static_cast<float>(
fabs(rotationMat[0][i] - nextRotation[0][i]) +
fabs(rotationMat[1][i] - nextRotation[1][i]) +
fabs(rotationMat[2][i] - nextRotation[2][i]));
norm = (norm > n ? norm : n);
}
rotationMat = nextRotation;
// Following technique taken from:
// http://callumhay.blogspot.com/2010/10/decomposing-affine-transforms.html
// Extract the rotation component - this is done using polar decompostion, where
// we successively average the matrix with its inverse transpose until there is
// no/a very small difference between successive averages
float norm;
int count = 0;
Mat3 rotationMat = rotationScaleMatrix;
do {
Mat3 currInvTranspose = glm::inverse(glm::transpose(rotationMat));
Mat3 nextRotation = 0.5f * (rotationMat + currInvTranspose);
norm = 0.0;
for (int i = 0; i < 3; i++) {
float n = static_cast<float>(
fabs(rotationMat[0][i] - nextRotation[0][i]) +
fabs(rotationMat[1][i] - nextRotation[1][i]) +
fabs(rotationMat[2][i] - nextRotation[2][i]));
norm = (norm > n ? norm : n);
}
rotationMat = nextRotation;
} while (count < 100 && norm > ACCURACY_THREASHOLD);
@ -49,14 +49,14 @@ void Transform::evalRotationScale(Quat& rotation, Vec3& scale, const Mat3& rotat
Mat3 matRot(
rotationScaleMatrix[0] / scale.x,
rotationScaleMatrix[1] / scale.y,
rotationScaleMatrix[2] / scale.z);
// Beware!!! needs to detect for the case there is a negative scale
// Based on the determinant sign we just can flip the scale sign of one component: we choose X axis
float determinant = glm::determinant(matRot);
if (determinant < 0.f) {
scale.x = -scale.x;
matRot[0] *= -1.f;
rotationScaleMatrix[2] / scale.z);
// Beware!!! needs to detect for the case there is a negative scale
// Based on the determinant sign we just can flip the scale sign of one component: we choose X axis
float determinant = glm::determinant(matRot);
if (determinant < 0.0f) {
scale.x = -scale.x;
matRot[0] *= -1.0f;
}
// Beware: even though the matRot is supposed to be normalized at that point,

View file

@ -292,13 +292,13 @@ inline Transform::Mat4& Transform::getMatrix(Transform::Mat4& result) const {
rot[2] *= _scale.z;
}
result[0] = Vec4(rot[0], 0.f);
result[1] = Vec4(rot[1], 0.f);
result[2] = Vec4(rot[2], 0.f);
result[0] = Vec4(rot[0], 0.0f);
result[1] = Vec4(rot[1], 0.0f);
result[2] = Vec4(rot[2], 0.0f);
} else {
result[0] = Vec4(_scale.x, 0.f, 0.f, 0.f);
result[1] = Vec4(0.f, _scale.y, 0.f, 0.f);
result[2] = Vec4(0.f, 0.f, _scale.z, 0.f);
result[0] = Vec4(_scale.x, 0.0f, 0.0f, 0.0f);
result[1] = Vec4(0.0f, _scale.y, 0.0f, 0.0f);
result[2] = Vec4(0.0f, 0.0f, _scale.z, 0.0f);
}
result[3] = Vec4(_translation, 1.0f);
@ -313,7 +313,7 @@ inline Transform::Mat4& Transform::getInverseMatrix(Transform::Mat4& result) con
inline void Transform::evalFromRawMatrix(const Mat4& matrix) {
// for now works only in the case of TRS transformation
if ((matrix[0][3] == 0) && (matrix[1][3] == 0) && (matrix[2][3] == 0) && (matrix[3][3] == 1.f)) {
if ((matrix[0][3] == 0) && (matrix[1][3] == 0) && (matrix[2][3] == 0) && (matrix[3][3] == 1.0f)) {
setTranslation(Vec3(matrix[3]));
evalFromRawMatrix(Mat3(matrix));
}

View file

@ -23,9 +23,9 @@
/*
static glm::vec3 xAxis(1.f, 0.f, 0.f);
static glm::vec3 xZxis(0.f, 1.f, 0.f);
static glm::vec3 xYxis(0.f, 0.f, 1.f);
static glm::vec3 xAxis(1.0f, 0.0f, 0.0f);
static glm::vec3 xZxis(0.0f, 1.0f, 0.0f);
static glm::vec3 xYxis(0.0f, 0.0f, 1.0f);
void CollisionInfoTests::rotateThenTranslate() {
CollisionInfo collision;
@ -34,7 +34,7 @@ void CollisionInfoTests::rotateThenTranslate() {
collision._addedVelocity = xAxis + yAxis + zAxis;
glm::quat rotation = glm::angleAxis(PI_OVER_TWO, zAxis);
float distance = 3.f;
float distance = 3.0f;
glm::vec3 translation = distance * yAxis;
collision.rotateThenTranslate(rotation, translation);
@ -73,7 +73,7 @@ void CollisionInfoTests::translateThenRotate() {
collision._addedVelocity = xAxis + yAxis + zAxis;
glm::quat rotation = glm::angleAxis( -PI_OVER_TWO, zAxis);
float distance = 3.f;
float distance = 3.0f;
glm::vec3 translation = distance * yAxis;
collision.translateThenRotate(translation, rotation);
@ -86,7 +86,7 @@ void CollisionInfoTests::translateThenRotate() {
<< std::endl;
}
glm::vec3 expectedContactPoint = (1.f + distance) * xAxis;
glm::vec3 expectedContactPoint = (1.0f + distance) * xAxis;
error = glm::distance(collision._contactPoint, expectedContactPoint);
if (error > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__

View file

@ -17,9 +17,9 @@
#include <CollisionInfo.h>
const glm::vec3 xAxis(1.f, 0.f, 0.f);
const glm::vec3 yAxis(0.f, 1.f, 0.f);
const glm::vec3 zAxis(0.f, 0.f, 1.f);
const glm::vec3 xAxis(1.0f, 0.0f, 0.0f);
const glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
const glm::vec3 zAxis(0.0f, 0.0f, 1.0f);
std::ostream& operator<<(std::ostream& s, const CollisionInfo& c);

View file

@ -2342,7 +2342,7 @@ void ShapeColliderTests::rayMissesAACube() {
//glm::vec3 cubeCenter(1.23f, 4.56f, 7.89f);
//float cubeSide = 2.127f;
glm::vec3 cubeCenter(0.0f);
float cubeSide = 2.f;
float cubeSide = 2.0f;
AACubeShape cube(cubeSide, cubeCenter);
float rayOffset = 3.796f;

View file

@ -37,7 +37,7 @@ void VerletShapeTests::setSpherePosition() {
VerletPoint point;
VerletSphereShape sphere(radius, &point);
point._position = glm::vec3(0.f);
point._position = glm::vec3(0.0f);
float d = glm::distance(glm::vec3(0.0f), sphere.getTranslation());
if (d != 0.0f) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should be at origin" << std::endl;

View file

@ -47,7 +47,7 @@ void AngularConstraintTests::testHingeConstraint() {
}
}
{ // test just inside min edge of constraint
float angle = minAngle + 10.f * EPSILON;
float angle = minAngle + 10.0f * EPSILON;
glm::quat rotation = glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;
@ -62,7 +62,7 @@ void AngularConstraintTests::testHingeConstraint() {
}
}
{ // test just inside max edge of constraint
float angle = maxAngle - 10.f * EPSILON;
float angle = maxAngle - 10.0f * EPSILON;
glm::quat rotation = glm::angleAxis(angle, yAxis);
glm::quat newRotation = rotation;

View file

@ -1,9 +0,0 @@
set(TARGET_NAME voxel-edit)
setup_hifi_project()
include_glm()
link_hifi_libraries(networking octree shared voxels)
link_shared_dependencies()

View file

@ -1,61 +0,0 @@
//
// SceneUtils.cpp
// voxel-edit/src
//
// Created by Brad Hefta-Gaub on 5/7/2013.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <algorithm>
#include <glm/gtc/noise.hpp>
#include "SceneUtils.h"
void addCornersAndAxisLines(VoxelTree* tree) {
// We want our corner voxels to be about 1/2 meter high, and our TREE_SCALE is in meters, so...
float voxelSize = 0.5f / TREE_SCALE;
// Now some more examples... a little more complex
qDebug("creating corner points...");
tree->createVoxel(0 , 0 , 0 , voxelSize, 255, 255 ,255);
tree->createVoxel(1.0 - voxelSize, 0 , 0 , voxelSize, 255, 0 ,0 );
tree->createVoxel(0 , 1.0 - voxelSize, 0 , voxelSize, 0 , 255 ,0 );
tree->createVoxel(0 , 0 , 1.0 - voxelSize, voxelSize, 0 , 0 ,255);
tree->createVoxel(1.0 - voxelSize, 0 , 1.0 - voxelSize, voxelSize, 255, 0 ,255);
tree->createVoxel(0 , 1.0 - voxelSize, 1.0 - voxelSize, voxelSize, 0 , 255 ,255);
tree->createVoxel(1.0 - voxelSize, 1.0 - voxelSize, 0 , voxelSize, 255, 255 ,0 );
tree->createVoxel(1.0 - voxelSize, 1.0 - voxelSize, 1.0 - voxelSize, voxelSize, 255, 255 ,255);
qDebug("DONE creating corner points...");
}
void addSurfaceScene(VoxelTree * tree) {
qDebug("adding surface scene...");
float voxelSize = 1.f / (8 * TREE_SCALE);
// color 1= blue, color 2=green
unsigned char r1, g1, b1, r2, g2, b2, red, green, blue;
r1 = r2 = b2 = g1 = 0;
b1 = g2 = 255;
for (float x = 0.0; x < 1.0; x += voxelSize) {
for (float z = 0.0; z < 1.0; z += voxelSize) {
glm::vec2 position = glm::vec2(x, z);
float perlin = glm::perlin(position) + .25f * glm::perlin(position * 4.f) + .125f * glm::perlin(position * 16.f);
float gradient = (1.0f + perlin)/ 2.0f;
red = (unsigned char)std::min(255, std::max(0, (int)(r1 + ((r2 - r1) * gradient))));
green = (unsigned char)std::min(255, std::max(0, (int)(g1 + ((g2 - g1) * gradient))));
blue = (unsigned char)std::min(255, std::max(0, (int)(b1 + ((b2 - b1) * gradient))));
int height = (4 * gradient)+1; // make it at least 4 thick, so we get some averaging
for (int i = 0; i < height; i++) {
tree->createVoxel(x, ((i+1) * voxelSize) , z, voxelSize, red, green, blue);
}
}
}
qDebug("DONE adding surface scene...");
}

View file

@ -1,22 +0,0 @@
//
// SceneUtils.h
// voxel-edit/src
//
// Created by Brad Hefta-Gaub on 5/7/2013.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_SceneUtils_h
#define hifi_SceneUtils_h
#include "VoxelTree.h"
#include <SharedUtil.h>
void addCornersAndAxisLines(VoxelTree* tree);
void addSurfaceScene(VoxelTree * tree);
#endif // hifi_SceneUtils_h

View file

@ -1,482 +0,0 @@
//
// main.cpp
// voxel-edit/src
//
// Created by Brad Hefta-Gaub on 05/03/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <VoxelTree.h>
#include <SharedUtil.h>
#include "SceneUtils.h"
#include <JurisdictionMap.h>
#include <QString>
#include <QStringList>
int _nodeCount=0;
bool countVoxelsOperation(VoxelTreeElement* node, void* extraData) {
if (node->isColored()){
_nodeCount++;
}
return true; // keep going
}
void addLandscape(VoxelTree * tree) {
qDebug("Adding Landscape...");
}
void voxelTutorial(VoxelTree * tree) {
qDebug("adding scene...");
// We want our corner voxels to be about 1/2 meter high, and our TREE_SCALE is in meters, so...
float voxelSize = 0.5f / TREE_SCALE;
// Here's an example of how to create a voxel.
qDebug("creating corner points...");
tree->createVoxel(0, 0, 0, voxelSize, 255, 255 ,255);
// Here's an example of how to test if a voxel exists
VoxelTreeElement* node = tree->getVoxelAt(0, 0, 0, voxelSize);
if (node) {
// and how to access it's color
qDebug("corner point 0,0,0 exists... color is (%d,%d,%d)",
node->getColor()[0], node->getColor()[1], node->getColor()[2]);
}
// here's an example of how to delete a voxel
qDebug("attempting to delete corner point 0,0,0");
tree->deleteVoxelAt(0, 0, 0, voxelSize);
// Test to see that the delete worked... it should be FALSE...
if (tree->getVoxelAt(0, 0, 0, voxelSize)) {
qDebug("corner point 0,0,0 exists...");
} else {
qDebug("corner point 0,0,0 does not exists...");
}
}
void processSplitSVOFile(const char* splitSVOFile,const char* splitJurisdictionRoot,const char* splitJurisdictionEndNodes) {
char outputFileName[512];
qDebug("splitSVOFile: %s Jurisdictions Root: %s EndNodes: %s",
splitSVOFile, splitJurisdictionRoot, splitJurisdictionEndNodes);
VoxelTree rootSVO;
rootSVO.readFromSVOFile(splitSVOFile);
JurisdictionMap jurisdiction(splitJurisdictionRoot, splitJurisdictionEndNodes);
qDebug("Jurisdiction Root Octcode: ");
printOctalCode(jurisdiction.getRootOctalCode());
qDebug("Jurisdiction End Nodes: %d ", jurisdiction.getEndNodeCount());
for (int i = 0; i < jurisdiction.getEndNodeCount(); i++) {
unsigned char* endNodeCode = jurisdiction.getEndNodeOctalCode(i);
qDebug("End Node: %d ", i);
printOctalCode(endNodeCode);
// get the endNode details
VoxelPositionSize endNodeDetails;
voxelDetailsForCode(endNodeCode, endNodeDetails);
// Now, create a split SVO for the EndNode.
// copy the EndNode into a temporary tree
VoxelTree endNodeTree;
// create a small voxels at corners of the endNode Tree, this will is a hack
// to work around a bug in voxel server that will send Voxel not exists
// for regions that don't contain anything even if they're not in the
// jurisdiction of the server
// This hack assumes the end nodes for demo dinner since it only guarantees
// nodes in the 8 child voxels of the main root voxel
const float verySmall = 0.015625;
endNodeTree.createVoxel(0.0, 0.0, 0.0, verySmall, 1, 1, 1, true);
endNodeTree.createVoxel(1.0, 0.0, 0.0, verySmall, 1, 1, 1, true);
endNodeTree.createVoxel(0.0, 1.0, 0.0, verySmall, 1, 1, 1, true);
endNodeTree.createVoxel(0.0, 0.0, 1.0, verySmall, 1, 1, 1, true);
endNodeTree.createVoxel(1.0, 1.0, 1.0, verySmall, 1, 1, 1, true);
endNodeTree.createVoxel(1.0, 1.0, 0.0, verySmall, 1, 1, 1, true);
endNodeTree.createVoxel(0.0, 1.0, 1.0, verySmall, 1, 1, 1, true);
endNodeTree.createVoxel(1.0, 0.0, 1.0, verySmall, 1, 1, 1, true);
// Delete the voxel for the EndNode from the temporary tree, so we can
// import our endNode content into it...
endNodeTree.deleteOctalCodeFromTree(endNodeCode, COLLAPSE_EMPTY_TREE);
VoxelTreeElement* endNode = rootSVO.getVoxelAt(endNodeDetails.x,
endNodeDetails.y,
endNodeDetails.z,
endNodeDetails.s);
rootSVO.copySubTreeIntoNewTree(endNode, &endNodeTree, false);
sprintf(outputFileName, "splitENDNODE%d%s", i, splitSVOFile);
qDebug("outputFile: %s", outputFileName);
endNodeTree.writeToSVOFile(outputFileName);
// Delete the voxel for the EndNode from the root tree...
rootSVO.deleteOctalCodeFromTree(endNodeCode, COLLAPSE_EMPTY_TREE);
// create a small voxel in center of each EndNode, this will is a hack
// to work around a bug in voxel server that will send Voxel not exists
// for regions that don't contain anything even if they're not in the
// jurisdiction of the server
float x = endNodeDetails.x + endNodeDetails.s * 0.5;
float y = endNodeDetails.y + endNodeDetails.s * 0.5;
float z = endNodeDetails.z + endNodeDetails.s * 0.5;
float s = endNodeDetails.s * verySmall;
rootSVO.createVoxel(x, y, z, s, 1, 1, 1, true);
}
sprintf(outputFileName, "splitROOT%s", splitSVOFile);
qDebug("outputFile: %s", outputFileName);
rootSVO.writeToSVOFile(outputFileName);
qDebug("exiting now");
}
class copyAndFillArgs {
public:
VoxelTree* destinationTree;
unsigned long outCount;
unsigned long inCount;
unsigned long originalCount;
};
bool copyAndFillOperation(OctreeElement* element, void* extraData) {
VoxelTreeElement* voxel = (VoxelTreeElement*)element;
copyAndFillArgs* args = (copyAndFillArgs*)extraData;
char outputMessage[128];
args->inCount++;
int percentDone = (100*args->inCount/args->originalCount);
// For each leaf node...
if (voxel->isLeaf()) {
// create a copy of the leaf in the copy destination
float x = voxel->getCorner().x;
float y = voxel->getCorner().y;
float z = voxel->getCorner().z;
float s = voxel->getScale();
unsigned char red = voxel->getColor()[RED_INDEX];
unsigned char green = voxel->getColor()[GREEN_INDEX];
unsigned char blue = voxel->getColor()[BLUE_INDEX];
bool destructive = true;
args->destinationTree->createVoxel(x, y, z, s, red, green, blue, destructive);
args->outCount++;
sprintf(outputMessage,"Completed: %d%% (%lu of %lu) - Creating voxel %lu at [%f,%f,%f,%f]",
percentDone,args->inCount,args->originalCount,args->outCount,x,y,z,s);
printf("%s",outputMessage);
for (unsigned int b = 0; b < strlen(outputMessage); b++) {
printf("\b");
}
// and create same sized leafs from this leaf voxel down to zero in the destination tree
for (float yFill = y-s; yFill >= 0.0f; yFill -= s) {
args->destinationTree->createVoxel(x, yFill, z, s, red, green, blue, destructive);
args->outCount++;
sprintf(outputMessage,"Completed: %d%% (%lu of %lu) - Creating fill voxel %lu at [%f,%f,%f,%f]",
percentDone,args->inCount,args->originalCount,args->outCount,x,y,z,s);
printf("%s",outputMessage);
for (unsigned int b = 0; b < strlen(outputMessage); b++) {
printf("\b");
}
}
}
return true;
}
void processFillSVOFile(const char* fillSVOFile) {
char outputFileName[512];
qDebug("fillSVOFile: %s", fillSVOFile);
VoxelTree originalSVO(true); // reaveraging
VoxelTree filledSVO(true); // reaveraging
originalSVO.readFromSVOFile(fillSVOFile);
qDebug("Nodes after loading %lu nodes", originalSVO.getOctreeElementsCount());
originalSVO.reaverageOctreeElements();
qDebug("Original Voxels reAveraged");
qDebug("Nodes after reaveraging %lu nodes", originalSVO.getOctreeElementsCount());
copyAndFillArgs args;
args.destinationTree = &filledSVO;
args.inCount = 0;
args.outCount = 0;
args.originalCount = originalSVO.getOctreeElementsCount();
qDebug("Begin processing...");
originalSVO.recurseTreeWithOperation(copyAndFillOperation, &args);
qDebug("DONE processing...");
qDebug("Original input nodes used for filling %lu nodes", args.originalCount);
qDebug("Input nodes traversed during filling %lu nodes", args.inCount);
qDebug("Nodes created during filling %lu nodes", args.outCount);
qDebug("Nodes after filling %lu nodes", filledSVO.getOctreeElementsCount());
filledSVO.reaverageOctreeElements();
qDebug("Nodes after reaveraging %lu nodes", filledSVO.getOctreeElementsCount());
sprintf(outputFileName, "filled%s", fillSVOFile);
qDebug("outputFile: %s", outputFileName);
filledSVO.writeToSVOFile(outputFileName);
qDebug("exiting now");
}
void unitTest(VoxelTree * tree);
int main(int argc, const char * argv[])
{
VoxelTree myTree;
qInstallMessageHandler(sharedMessageHandler);
unitTest(&myTree);
const char* GET_OCTCODE = "--getOctCode";
const char* octcodeParams = getCmdOption(argc, argv, GET_OCTCODE);
if (octcodeParams) {
QString octcodeParamsString(octcodeParams);
QStringList octcodeParamsList = octcodeParamsString.split(QString(","));
enum { X_AT, Y_AT, Z_AT, S_AT, EXPECTED_PARAMS };
if (octcodeParamsList.size() == EXPECTED_PARAMS) {
QString xStr = octcodeParamsList.at(X_AT);
QString yStr = octcodeParamsList.at(Y_AT);
QString zStr = octcodeParamsList.at(Z_AT);
QString sStr = octcodeParamsList.at(S_AT);
float x = xStr.toFloat()/TREE_SCALE; // 0.14745788574219;
float y = yStr.toFloat()/TREE_SCALE; // 0.01502178955078;
float z = zStr.toFloat()/TREE_SCALE; // 0.56540045166016;
float s = sStr.toFloat()/TREE_SCALE; // 0.015625;
qDebug() << "Get Octal Code for:";
qDebug() << " x:" << xStr << " [" << x << "]";
qDebug() << " y:" << yStr << " [" << y << "]";
qDebug() << " z:" << zStr << " [" << z << "]";
qDebug() << " s:" << sStr << " [" << s << "]";
unsigned char* octalCode = pointToVoxel(x, y, z, s);
QString octalCodeStr = octalCodeToHexString(octalCode);
qDebug() << "octal code: " << octalCodeStr;
} else {
qDebug() << "Unexpected number of parameters for getOctCode";
}
return 0;
}
const char* DECODE_OCTCODE = "--decodeOctCode";
const char* decodeParam = getCmdOption(argc, argv, DECODE_OCTCODE);
if (decodeParam) {
QString decodeParamsString(decodeParam);
unsigned char* octalCodeToDecode = hexStringToOctalCode(decodeParamsString);
VoxelPositionSize details;
voxelDetailsForCode(octalCodeToDecode, details);
delete[] octalCodeToDecode;
qDebug() << "octal code to decode: " << decodeParamsString;
qDebug() << "Details for Octal Code:";
qDebug() << " x:" << details.x << "[" << details.x * TREE_SCALE << "]";
qDebug() << " y:" << details.y << "[" << details.y * TREE_SCALE << "]";
qDebug() << " z:" << details.z << "[" << details.z * TREE_SCALE << "]";
qDebug() << " s:" << details.s << "[" << details.s * TREE_SCALE << "]";
return 0;
}
// Handles taking and SVO and splitting it into multiple SVOs based on
// jurisdiction details
const char* SPLIT_SVO = "--splitSVO";
const char* splitSVOFile = getCmdOption(argc, argv, SPLIT_SVO);
const char* SPLIT_JURISDICTION_ROOT = "--splitJurisdictionRoot";
const char* SPLIT_JURISDICTION_ENDNODES = "--splitJurisdictionEndNodes";
const char* splitJurisdictionRoot = getCmdOption(argc, argv, SPLIT_JURISDICTION_ROOT);
const char* splitJurisdictionEndNodes = getCmdOption(argc, argv, SPLIT_JURISDICTION_ENDNODES);
if (splitSVOFile && splitJurisdictionRoot && splitJurisdictionEndNodes) {
processSplitSVOFile(splitSVOFile, splitJurisdictionRoot, splitJurisdictionEndNodes);
return 0;
}
// Handles taking an SVO and filling in the empty space below the voxels to make it solid.
const char* FILL_SVO = "--fillSVO";
const char* fillSVOFile = getCmdOption(argc, argv, FILL_SVO);
if (fillSVOFile) {
processFillSVOFile(fillSVOFile);
return 0;
}
const char* DONT_CREATE_FILE = "--dontCreateSceneFile";
bool dontCreateFile = cmdOptionExists(argc, argv, DONT_CREATE_FILE);
if (dontCreateFile) {
qDebug("You asked us not to create a scene file, so we will not.");
} else {
qDebug("Creating Scene File...");
const char* RUN_TUTORIAL = "--runTutorial";
if (cmdOptionExists(argc, argv, RUN_TUTORIAL)) {
voxelTutorial(&myTree);
}
const char* ADD_CORNERS_AND_AXIS_LINES = "--addCornersAndAxisLines";
if (cmdOptionExists(argc, argv, ADD_CORNERS_AND_AXIS_LINES)) {
addCornersAndAxisLines(&myTree);
}
const char* ADD_SURFACE_SCENE = "--addSurfaceScene";
if (cmdOptionExists(argc, argv, ADD_SURFACE_SCENE)) {
addSurfaceScene(&myTree);
}
unsigned long nodeCount = myTree.getOctreeElementsCount();
qDebug("Nodes after adding scenes: %ld nodes", nodeCount);
myTree.writeToSVOFile("voxels.svo");
}
return 0;
}
void unitTest(VoxelTree * tree) {
VoxelTreeElement* node = NULL;
qDebug("unit tests...");
unsigned long nodeCount;
// We want our corner voxels to be about 1/2 meter high, and our TREE_SCALE is in meters, so...
float voxelSize = 0.5f / TREE_SCALE;
// Here's an example of how to create a voxel.
qDebug("creating corner points...");
tree->createVoxel(0, 0, 0, voxelSize, 255, 255 ,255);
qDebug("Nodes at line %d... %ld nodes", __LINE__, tree->getOctreeElementsCount());
// Here's an example of how to test if a voxel exists
node = tree->getVoxelAt(0, 0, 0, voxelSize);
if (node) {
// and how to access it's color
qDebug("CORRECT - corner point 0,0,0 exists... color is (%d,%d,%d) ",
node->getColor()[0], node->getColor()[1], node->getColor()[2]);
}
qDebug("Nodes at line %d... %ld nodes", __LINE__, tree->getOctreeElementsCount());
// here's an example of how to delete a voxel
qDebug("attempting to delete corner point 0,0,0");
tree->deleteVoxelAt(0, 0, 0, voxelSize);
qDebug("Nodes at line %d... %ld nodes", __LINE__, tree->getOctreeElementsCount());
// Test to see that the delete worked... it should be FALSE...
if ((node = tree->getVoxelAt(0, 0, 0, voxelSize))) {
qDebug("FAIL corner point 0,0,0 exists...");
} else {
qDebug("CORRECT corner point 0,0,0 does not exists...");
}
qDebug("Nodes at line %d... %ld nodes", __LINE__, tree->getOctreeElementsCount());
tree->createVoxel(0, 0, 0, voxelSize, 255, 255 ,255);
if ((node = tree->getVoxelAt(0, 0, 0, voxelSize))) {
qDebug("CORRECT - corner point 0,0,0 exists... color is (%d,%d,%d) ",
node->getColor()[0], node->getColor()[1], node->getColor()[2]);
} else {
qDebug("FAIL corner point 0,0,0 does not exists...");
}
qDebug("Nodes at line %d... %ld nodes", __LINE__, tree->getOctreeElementsCount());
tree->createVoxel(voxelSize, 0, 0, voxelSize, 255, 255 ,0);
if ((node = tree->getVoxelAt(voxelSize, 0, 0, voxelSize))) {
qDebug("CORRECT - corner point voxelSize,0,0 exists... color is (%d,%d,%d) ",
node->getColor()[0], node->getColor()[1], node->getColor()[2]);
} else {
qDebug("FAIL corner point voxelSize,0,0 does not exists...");
}
qDebug("Nodes at line %d... %ld nodes", __LINE__, tree->getOctreeElementsCount());
tree->createVoxel(0, 0, voxelSize, voxelSize, 255, 0 ,0);
if ((node = tree->getVoxelAt(0, 0, voxelSize, voxelSize))) {
qDebug("CORRECT - corner point 0, 0, voxelSize exists... color is (%d,%d,%d) ",
node->getColor()[0], node->getColor()[1], node->getColor()[2]);
} else {
qDebug("FAILED corner point 0, 0, voxelSize does not exists...");
}
qDebug("Nodes at line %d... %ld nodes", __LINE__, tree->getOctreeElementsCount());
tree->createVoxel(voxelSize, 0, voxelSize, voxelSize, 0, 0 ,255);
if ((node = tree->getVoxelAt(voxelSize, 0, voxelSize, voxelSize))) {
qDebug("CORRECT - corner point voxelSize, 0, voxelSize exists... color is (%d,%d,%d) ",
node->getColor()[0], node->getColor()[1], node->getColor()[2]);
} else {
qDebug("corner point voxelSize, 0, voxelSize does not exists...");
}
qDebug("Nodes at line %d... %ld nodes", __LINE__, tree->getOctreeElementsCount());
qDebug("check root voxel exists...");
if (tree->getVoxelAt(0,0,0,1.0)) {
qDebug("of course it does");
} else {
qDebug("WTH!?!");
}
nodeCount = tree->getOctreeElementsCount();
qDebug("Nodes before writing file: %ld nodes", nodeCount);
tree->writeToSVOFile("voxels.svo");
qDebug("erasing the tree...");
tree->eraseAllOctreeElements();
qDebug("check root voxel exists...");
if (tree->getVoxelAt(0,0,0,1.0)) {
qDebug("of course it does");
} else {
qDebug("WTH!?!");
}
// this should not exist... we just deleted it...
if (tree->getVoxelAt(voxelSize, 0, voxelSize, voxelSize)) {
qDebug("corner point voxelSize, 0, voxelSize exists...");
} else {
qDebug("corner point voxelSize, 0, voxelSize does not exists...");
}
tree->readFromSVOFile("voxels.svo");
// this should exist... we just loaded it...
if (tree->getVoxelAt(voxelSize, 0, voxelSize, voxelSize)) {
qDebug("corner point voxelSize, 0, voxelSize exists...");
} else {
qDebug("corner point voxelSize, 0, voxelSize does not exists...");
}
nodeCount = tree->getOctreeElementsCount();
qDebug("Nodes after loading file: %ld nodes", nodeCount);
}