mirror of
https://github.com/lubosz/overte.git
synced 2025-04-14 03:06:20 +02:00
Vec3 API JSDoc
This commit is contained in:
parent
0a7cccc3f7
commit
b1e214de5a
1 changed files with 321 additions and 2 deletions
|
@ -22,7 +22,7 @@
|
|||
#include "GLMHelpers.h"
|
||||
|
||||
/**jsdoc
|
||||
* A 3-dimensional vector.
|
||||
* A 3-dimensional vector. See also the {@link Vec3(0)|Vec3} object.
|
||||
*
|
||||
* @typedef {object} Vec3
|
||||
* @property {number} x - X-coordinate of the vector.
|
||||
|
@ -31,7 +31,7 @@
|
|||
*/
|
||||
|
||||
/**jsdoc
|
||||
* A color vector.
|
||||
* A color vector. See also the {@link Vec3(0)|Vec3} object.
|
||||
*
|
||||
* @typedef {object} Vec3Color
|
||||
* @property {number} x - Red component value. Integer in the range <code>0</code> - <code>255</code>.
|
||||
|
@ -39,6 +39,51 @@
|
|||
* @property {number} z - Blue component value. Integer in the range <code>0</code> - <code>255</code>.
|
||||
*/
|
||||
|
||||
/**jsdoc
|
||||
* The Vec3 API facilities for generating and manipulating 3-dimensional vectors. High Fidelity uses a right-handed
|
||||
* Cartesian coordinate system where the y-axis is the "up" and the negative z-axis is the "front" direction.
|
||||
* <img alt="High Fidelity coordinate system"
|
||||
* src="https://docs.highfidelity.com/user/pages/06.api-reference/43.vec3/opengl-coord-system.jpg" />
|
||||
*
|
||||
* @namespace Vec3
|
||||
* @variation 0
|
||||
* @property {Vec3} UNIT_X - <code>{ x: 1, y: 0, z: 0 }</code> : Unit vector in the x-axis direction. <em>Read-only.</em>
|
||||
* @property {Vec3} UNIT_Y - <code>{ x: 0, y: 1, z: 0 }</code> : Unit vector in the y-axis direction. <em>Read-only.</em>
|
||||
* @property {Vec3} UNIT_Z - <code>{ x: 0, y: 0, z: 1 }</code> : Unit vector in the z-axis direction. <em>Read-only.</em>
|
||||
* @property {Vec3} UNIT_NEG_X - <code>{ x: -1, y: 0, z: 0 }</code> : Unit vector in the negative x-axis direction.
|
||||
* <em>Read-only.</em>
|
||||
* @property {Vec3} UNIT_NEG_Y - <code>{ x: 0, y: -1, z: 0 }</code> : Unit vector in the negative y-axis direction.
|
||||
* <em>Read-only.</em>
|
||||
* @property {Vec3} UNIT_NEG_Z - <code>{ x: 0, y: 0, z: -1 }</code> : Unit vector in the negative z-axis direction.
|
||||
* <em>Read-only.</em>
|
||||
* @property {Vec3} UNIT_XY - <code>{ x: 0.707107, y: 0.707107, z: 0 }</code> : Unit vector in the direction of the diagonal
|
||||
* between the x and y axes. <em>Read-only.</em>
|
||||
* @property {Vec3} UNIT_XZ - <code>{ x: 0.707107, y: 0, z: 0.707107 }</code> : Unit vector in the direction of the diagonal
|
||||
* between the x and z axes. <em>Read-only.</em>
|
||||
* @property {Vec3} UNIT_YZ - <code>{ x: 0, y: 0.707107, z: 0.707107 }</code> : Unit vector in the direction of the diagonal
|
||||
* between the y and z axes. <em>Read-only.</em>
|
||||
* @property {Vec3} UNIT_XYZ - <code>{ x: 0.577350, y: 0.577350, z: 0.577350 }</code> : Unit vector in the direction of the
|
||||
* diagonal between the x, y, and z axes. <em>Read-only.</em>
|
||||
* @property {Vec3} FLOAT_MAX - <code>{ x: 3.402823e+38, y: 3.402823e+38, z: 3.402823e+38 }</code> : Vector with all axis
|
||||
* values set to the maximum floating point value. <em>Read-only.</em>
|
||||
* @property {Vec3} FLOAT_MIN - <code>{ x: -3.402823e+38, y: -3.402823e+38, z: -3.402823e+38 }</code> : Vector with all axis
|
||||
* values set to the negative of the maximum floating point value. <em>Read-only.</em>
|
||||
* @property {Vec3} ZERO - <code>{ x: 0, y: 0, z: 0 }</code> : Vector with all axis values set to <code>0</code>.
|
||||
* <em>Read-only.</em>
|
||||
* @property {Vec3} ONE - <code>{ x: 1, y: 1, z: 1 }</code> : Vector with all axis values set to <code>1</code>.
|
||||
* <em>Read-only.</em>
|
||||
* @property {Vec3} TWO - <code>{ x: 2, y: 2, z: 2 }</code> : Vector with all axis values set to <code>2</code>.
|
||||
* <em>Read-only.</em>
|
||||
* @property {Vec3} HALF - <code>{ x: 0.5, y: 0.5, z: 0.5 }</code> : Vector with all axis values set to <code>0.5</code>.
|
||||
* <em>Read-only.</em>
|
||||
* @property {Vec3} RIGHT - <code>{ x: 1, y: 0, z: 0 }</code> : Unit vector in the "right" direction. Synonym for
|
||||
* <code>UNIT_X</code>. <em>Read-only.</em>
|
||||
* @property {Vec3} UP - <code>{ x: 0, y: 1, z: 0 }</code> : Unit vector in the "up" direction. Synonym for
|
||||
* <code>UNIT_Y</code>. <em>Read-only.</em>
|
||||
* @property {Vec3} FRONT - <code>{ x: 0, y: 0, z: -1 }</code> : Unit vector in the "front" direction. Synonym for
|
||||
* <code>UNIT_NEG_Z</code>. <em>Read-only.</em>
|
||||
*/
|
||||
|
||||
/// Scriptable interface a Vec3ernion helper class object. Used exclusively in the JavaScript API
|
||||
class Vec3 : public QObject, protected QScriptable {
|
||||
Q_OBJECT
|
||||
|
@ -63,27 +108,301 @@ class Vec3 : public QObject, protected QScriptable {
|
|||
Q_PROPERTY(glm::vec3 FRONT READ FRONT CONSTANT)
|
||||
|
||||
public slots:
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the reflection of a vector in a plane.
|
||||
* @function Vec3(0).reflect
|
||||
* @param {Vec3} v - The vector to reflect.
|
||||
* @param {Vec3} normal - The normal of the plane.
|
||||
* @returns {Vec3} The vector reflected in the plane given by the normal.
|
||||
* @example <caption>Reflect a vector in the x-z plane.</caption>
|
||||
* var v = { x: 1, y: 2, z: 3 };
|
||||
* var normal = Vec3.UNIT_Y;
|
||||
* var reflected = Vec3.reflect(v, normal);
|
||||
* print(JSON.stringify(reflected)); // {"x":1,"y":-2,"z":3}
|
||||
*/
|
||||
glm::vec3 reflect(const glm::vec3& v1, const glm::vec3& v2) { return glm::reflect(v1, v2); }
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the cross product of two vectors.
|
||||
* @function Vec3(0).cross
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @returns {Vec3} The cross product of <code>v1</code> and <code>v2</code>.
|
||||
* @example <caption>The cross product of x and y unit vectors is the z unit vector.</caption>
|
||||
* var v1 = { x: 1, y: 0, z: 0 };
|
||||
* var v2 = { x: 0, y: 1, z: 0 };
|
||||
* var crossProduct = Vec3.cross(v1, v2);
|
||||
* print(JSON.stringify(crossProduct)); // {"x":0,"y":0,"z":1}
|
||||
*/
|
||||
glm::vec3 cross(const glm::vec3& v1, const glm::vec3& v2) { return glm::cross(v1, v2); }
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the dot product of two vectors.
|
||||
* @function Vec3(0).dot
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @returns {number} The dot product of <code>v1</code> and <code>v2</code>.
|
||||
* @example <caption>The dot product of vectors at right angles is <code>0</code>.</caption>
|
||||
* var v1 = { x: 1, y: 0, z: 0 };
|
||||
* var v2 = { x: 0, y: 1, z: 0 };
|
||||
* var dotProduct = Vec3.dot(v1, v2);
|
||||
* print(dotProduct); // 0
|
||||
*/
|
||||
float dot(const glm::vec3& v1, const glm::vec3& v2) { return glm::dot(v1, v2); }
|
||||
|
||||
/**jsdoc
|
||||
* Multiply a vector by a scale factor.
|
||||
* @function Vec3(0).multiply
|
||||
* @param {Vec3} v - The vector.
|
||||
* @param {number} scale - The scale factor.
|
||||
* @returns {Vec3} The vector with each ordinate value multiplied by the <code>scale</code>.
|
||||
*/
|
||||
glm::vec3 multiply(const glm::vec3& v1, float f) { return v1 * f; }
|
||||
|
||||
/**jsdoc
|
||||
* Multiply a vector by a scale factor.
|
||||
* @function Vec3(0).multiply
|
||||
* @param {number} scale - The scale factor.
|
||||
* @param {Vec3} v - The vector.
|
||||
* @returns {Vec3} The vector with each ordinate value multiplied by the <code>scale</code>.
|
||||
*/
|
||||
glm::vec3 multiply(float f, const glm::vec3& v1) { return v1 * f; }
|
||||
|
||||
/**jsdoc
|
||||
* Multiply two vectors.
|
||||
* @function Vec3(0).multiplyVbyV
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @returns {Vec3} A vector formed by multiplying the ordinates of two vectors: <code>{ x: v1.x * v2.x, y: v1.y * v2.y,
|
||||
* z: v1.z * v2.z }</code>.
|
||||
* @example <caption>Multiply two vectors.</caption>
|
||||
* var v1 = { x: 1, y: 2, z: 3 };
|
||||
* var v2 = { x: 1, y: 2, z: 3 };
|
||||
* var multiplied = Vec3.multiplyVbyV(v1, v2);
|
||||
* print(JSON.stringify(multiplied)); // {"x":1,"y":4,"z":9}
|
||||
*/
|
||||
glm::vec3 multiplyVbyV(const glm::vec3& v1, const glm::vec3& v2) { return v1 * v2; }
|
||||
|
||||
/**jsdoc
|
||||
* Rotate a vector.
|
||||
* @function Vec3(0).multiplyQbyV
|
||||
* @param {Quat} q - The rotation to apply.
|
||||
* @param {Vec3} v - The vector to rotate.
|
||||
* @returns {Vec3} <code>v</code> rotated by <code>q</code>.
|
||||
* @example <caption>Rotate the negative z-axis by 90 degrees about the x-axis.</caption>
|
||||
* var v = Vec3.UNIT_NEG_Z;
|
||||
* var q = Quat.fromPitchYawRollDegrees(90, 0, 0);
|
||||
* var result = Vec3.multiplyQbyV(q, v);
|
||||
* print(JSON.stringify(result)); // {"x":0,"y":1.000,"z":1.19e-7}
|
||||
*/
|
||||
glm::vec3 multiplyQbyV(const glm::quat& q, const glm::vec3& v) { return q * v; }
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the sum of two vectors.
|
||||
* @function Vec3(0).sum
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @returns {Vec3} The sum of the two vectors.
|
||||
*/
|
||||
glm::vec3 sum(const glm::vec3& v1, const glm::vec3& v2) { return v1 + v2; }
|
||||
|
||||
/**jsdoc
|
||||
* Calculate one vector subtracted from another.
|
||||
* @function Vec3(0).subtract
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @returns {Vec3} The second vector subtracted from the first.
|
||||
*/
|
||||
glm::vec3 subtract(const glm::vec3& v1, const glm::vec3& v2) { return v1 - v2; }
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the length of a vector
|
||||
* @function Vec3(0).length
|
||||
* @param {Vec3} v - The vector.
|
||||
* @returns {number} The length of the vector.
|
||||
*/
|
||||
float length(const glm::vec3& v) { return glm::length(v); }
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the distance between two points.
|
||||
* @function Vec3(0).distance
|
||||
* @param {Vec3} p1 - The first point.
|
||||
* @param {Vec3} p2 - The second point.
|
||||
* @returns {number} The distance between the two points.
|
||||
* @example <caption>The distance between two points is aways positive.</caption>
|
||||
* var p1 = { x: 0, y: 0, z: 0 };
|
||||
* var p2 = { x: 0, y: 0, z: 10 };
|
||||
* var distance = Vec3.distance(p1, p2);
|
||||
* print(distance); // 10
|
||||
*
|
||||
* p2 = { x: 0, y: 0, z: -10 };
|
||||
* distance = Vec3.distance(p1, p2);
|
||||
* print(distance); // 10
|
||||
*/
|
||||
float distance(const glm::vec3& v1, const glm::vec3& v2) { return glm::distance(v1, v2); }
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the angle of rotation from one vector onto another, with the sign depending on a reference vector.
|
||||
* @function Vec3(0).orientedAngle
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @param {Vec3} ref - Reference vector.
|
||||
* @returns {number} The angle of rotation from the first vector to the second, in degrees, with a positive sign if the
|
||||
* rotation axis aligns with the reference vector (has a positive dot product) otherwise a negative sign.
|
||||
* @example <caption>Compare <code>Vec3.angle()</code> and <code>Vec3.orientedAngle()</code>.</caption>
|
||||
* var v1 = { x: 5, y: 0, z: 0 };
|
||||
* var v2 = { x: 5, y: 0, z: 5 };
|
||||
* var angle = Vec3.getAngle(v1, v2);
|
||||
* print(angle * 180 / Math.PI); // 45
|
||||
*
|
||||
* print(Vec3.orientedAngle(v1, v2, Vec3.UNIT_Y)); // -45
|
||||
* print(Vec3.orientedAngle(v1, v2, Vec3.UNIT_NEG_Y)); // 45
|
||||
* print(Vec3.orientedAngle(v1, v2, { x: 1, y: 2, z: -1 })); // -45
|
||||
* print(Vec3.orientedAngle(v1, v2, { x: 1, y: -2, z: -1 })); // 45
|
||||
*/
|
||||
float orientedAngle(const glm::vec3& v1, const glm::vec3& v2, const glm::vec3& v3);
|
||||
|
||||
/**jsdoc
|
||||
* Normalize a vector so that its length is <code>1</code>.
|
||||
* @function Vec3(0).normalize
|
||||
* @param {Vec3} v - The vector to normalize.
|
||||
* @returns {Vec3} The vector normalized to have a length of <code>1</code>.
|
||||
* @example <caption>Normalize a vector.</caption>
|
||||
* var v = { x: 10, y: 10, z: 0 };
|
||||
* var normalized = Vec3.normalize(v);
|
||||
* print(JSON.stringify(normalized)); // {"x":0.7071,"y":0.7071,"z":0}
|
||||
* print(Vec3.length(normalized)); // 1
|
||||
*/
|
||||
glm::vec3 normalize(const glm::vec3& v) { return glm::normalize(v); };
|
||||
|
||||
/**jsdoc
|
||||
* Calculate a linear interpolation between two vectors.
|
||||
* @function Vec3(0).mix
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @param {number} factor - The interpolation factor in the range <code>0.0</code> to <code>1.0</code>.
|
||||
* @returns {Vec3} The linear interpolation between the two vectors: <code>(1 - factor) * v1 + factor * v2</code>.
|
||||
* @example <caption>Linear interpolation between two vectors.</caption>
|
||||
* var v1 = { x: 10, y: 0, z: 0 };
|
||||
* var v2 = { x: 0, y: 10, z: 0 };
|
||||
* var interpolated = Vec3.mix(v1, v2, 0.75); // 1/4 of v1 and 3/4 of v2.
|
||||
* print(JSON.stringify(interpolated)); // {"x":2.5,"y":7.5","z":0}
|
||||
*/
|
||||
glm::vec3 mix(const glm::vec3& v1, const glm::vec3& v2, float m) { return glm::mix(v1, v2, m); }
|
||||
|
||||
/**jsdoc
|
||||
* Print to the program log a text label followed by a vector value.
|
||||
* @function Vec3(0).print
|
||||
* @param {string} label - The label to print.
|
||||
* @param {Vec3} v - The vector value to print.
|
||||
* @example <caption>Two ways of printing a label and vector value.</caption>
|
||||
* var v = { x: 1, y: 2, z: 3 };
|
||||
* Vec3.print("Vector: ", v); // dvec3(1.000000, 2.000000, 3.000000)
|
||||
* print("Vector: " + JSON.stringify(v)); // {"x":1,"y":2,"z":3}
|
||||
*/
|
||||
void print(const QString& label, const glm::vec3& v);
|
||||
|
||||
/**jsdoc
|
||||
* Test whether two vectors are equal. <strong>Note:</strong> The vectors must be exactly equal in order for
|
||||
* <code>true</code> to be returned; it is often better to use {@link Vec3(0).withinEpsilon|withinEpsilon}.
|
||||
* @function Vec3(0).equal
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @returns {boolean} <code>true</code> if the two vectors are exactly equal, otherwise <code>false</code>.
|
||||
* @example <caption> Vectors are only equal if exactly the same.</caption>
|
||||
* var v1 = { x: 10, y: 10, z: 10 };
|
||||
* var v2 = { x: 10, y: 10, z: 10 };
|
||||
* var equal = Vec3.equal(v1, v2);
|
||||
* print(equal); // true
|
||||
*
|
||||
* v2 = { x: 10, y: 10, z: 10.0005 };
|
||||
* equal = Vec3.equal(v1, v2);
|
||||
* print(equal); // false
|
||||
*/
|
||||
bool equal(const glm::vec3& v1, const glm::vec3& v2) { return v1 == v2; }
|
||||
|
||||
/**jsdoc
|
||||
* Test whether two vectors are equal within a tolerance. <strong>Note:</strong> It is often better to use this function
|
||||
* than {@link Vec3(0).equal|equal}.
|
||||
* @function Vec3(0).withinEpsilon
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @param {number} epsilon - The maximum distance between the two vectors.
|
||||
* @returns {boolean} <code>true</code> if the distance between the points represented by the vectors is less than or equal
|
||||
* to the <code>epsilon</code>, otherwise <code>false</code>.
|
||||
* @example <caption>Testing vectors for near equality.</caption>
|
||||
* var v1 = { x: 10, y: 10, z: 10 };
|
||||
* var v2 = { x: 10, y: 10, z: 10.0005 };
|
||||
* var equal = Vec3.equal(v1, v2);
|
||||
* print(equal); // false
|
||||
*
|
||||
* equal = Vec3.withinEpsilon(v1, v2, 0.001);
|
||||
* print(equal); // true
|
||||
*/
|
||||
bool withinEpsilon(const glm::vec3& v1, const glm::vec3& v2, float epsilon);
|
||||
|
||||
/**jsdoc
|
||||
* Calculate polar coordinates (elevation, azimuth, radius) that transform the unit z-axis vector onto a point.
|
||||
* @function Vec3(0).toPolar
|
||||
* @param {Vec3} p - The point to calculate the polar coordinates for.
|
||||
* @returns {Vec3} Vector of polar coordinates for the point: <code>x</code> elevation rotation about the x-axis in
|
||||
* radians, <code>y</code> azimuth rotation about the y-axis in radians, and <code>z</code> scale.
|
||||
* @example <caption>Polar coordinates for a point.</caption>
|
||||
* var v = { x: 5, y: 2.5, z: 5 };
|
||||
* var polar = Vec3.toPolar(v);
|
||||
* print("Elevation: " + polar.x * 180 / Math.PI); // -19.471
|
||||
* print("Azimuth: " + polar.y * 180 / Math.PI); // 45
|
||||
* print("Radius: " + polar.z); // 7.5
|
||||
*/
|
||||
// FIXME misnamed, should be 'spherical' or 'euler' depending on the implementation
|
||||
glm::vec3 toPolar(const glm::vec3& v);
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the coordinates of a point from polar coordinate transformation of the unit z-axis vector.
|
||||
* @function Vec3(0).fromPolar
|
||||
* @param {Vec3} polar - The polar coordinates of a point: <code>x</code> elevation rotation about the x-axis in radians,
|
||||
* <code>y</code> azimuth rotation about the y-axis in radians, and <code>z</code> scale.
|
||||
* @returns {Vec3} The coordinates of the point.
|
||||
* @example <caption>Polar coordinates to Cartesian.</caption>
|
||||
* var polar = { x: -19.471 * Math.PI / 180, y: 45 * Math.PI / 180, z: 7.5 };
|
||||
* var p = Vec3.fromPolar(polar);
|
||||
* print(JSON.stringify(p)); // {"x":5,"y":2.5,"z":5}
|
||||
*/
|
||||
// FIXME misnamed, should be 'spherical' or 'euler' depending on the implementation
|
||||
glm::vec3 fromPolar(const glm::vec3& polar);
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the unit vector corresponding to polar coordinates elevation and azimuth transformation of the unit z-axis
|
||||
* vector.
|
||||
* @function Vec3(0).fromPolar
|
||||
* @param {number} elevation - Rotation about the x-axis, in radians.
|
||||
* @param {number} azimuth - Rotation about the y-axis, in radians.
|
||||
* @returns {Vec3} Unit vector for the direction specified by <code>elevation</code> and <code>azimuth</code>.
|
||||
* @example <caption>Polar coordinates to Cartesian.</caption>
|
||||
* var elevation = -19.471 * Math.PI / 180;
|
||||
* var rotation = 45 * Math.PI / 180;
|
||||
* var p = Vec3.fromPolar(elevation, rotation);
|
||||
* print(JSON.stringify(p)); // {"x":0.667,"y":0.333,"z":0.667}
|
||||
*
|
||||
* p = Vec3.multiply(7.5, p);
|
||||
* print(JSON.stringify(p)); // {"x":5,"y":2.5,"z":5}
|
||||
*/
|
||||
// FIXME misnamed, should be 'spherical' or 'euler' depending on the implementation
|
||||
glm::vec3 fromPolar(float elevation, float azimuth);
|
||||
|
||||
/**jsdoc
|
||||
* Calculate the angle between two vectors.
|
||||
* @function Vec3(0).getAngle
|
||||
* @param {Vec3} v1 - The first vector.
|
||||
* @param {Vec3} v2 - The second vector.
|
||||
* @returns {number} The angle between the two vectors, in radians.
|
||||
* @example <caption>Calculate the angle between two vectors.</caption>
|
||||
* var v1 = { x: 10, y: 0, z: 0 };
|
||||
* var v2 = { x: 0, y: 0, z: 10 };
|
||||
* var angle = Vec3.getAngle(v1, v2);
|
||||
* print(angle * 180 / Math.PI); // 90
|
||||
*/
|
||||
float getAngle(const glm::vec3& v1, const glm::vec3& v2);
|
||||
|
||||
private:
|
||||
|
|
Loading…
Reference in a new issue