fix particle spread properties

This commit is contained in:
SamGondelman 2018-06-15 17:35:49 -07:00
parent 9ea65950d5
commit 7771661948
9 changed files with 329 additions and 300 deletions

View file

@ -186,7 +186,7 @@ ParticleEffectEntityRenderer::CpuParticle ParticleEffectEntityRenderer::createPa
if (polarStart == 0.0f && polarFinish == 0.0f && emitDimensions.z == 0.0f) {
// Emit along z-axis from position
particle.velocity = (emitSpeed + 0.2f * speedSpread) * (emitOrientation * Vectors::UNIT_Z);
particle.velocity = (emitSpeed + randFloatInRange(-1.0f, 1.0f) * speedSpread) * (emitOrientation * Vectors::UNIT_Z);
particle.acceleration = emitAcceleration + randFloatInRange(-1.0f, 1.0f) * accelerationSpread;
} else {
@ -197,8 +197,7 @@ ParticleEffectEntityRenderer::CpuParticle ParticleEffectEntityRenderer::createPa
float elevationMinZ = sin(PI_OVER_TWO - polarFinish);
float elevationMaxZ = sin(PI_OVER_TWO - polarStart);
// float elevation = asin(elevationMinZ + (elevationMaxZ - elevationMinZ) * randFloat());
float elevation = asin(elevationMinZ + (elevationMaxZ - elevationMinZ) *randFloat());
float elevation = asin(elevationMinZ + (elevationMaxZ - elevationMinZ) * randFloat());
float azimuth;
if (azimuthFinish >= azimuthStart) {

View file

@ -46,7 +46,7 @@ private:
// CPU particles
// FIXME either switch to GPU compute particles or switch to simd updating of the particles
struct CpuParticle {
float seed{ 0.0f };
float seed { 0.0f };
uint64_t expiration { 0 };
float lifetime { 0.0f };
glm::vec3 position;

View file

@ -11,6 +11,7 @@
//
<@include gpu/Transform.slh@>
<@include gpu/Noise.slh@>
<$declareStandardTransform()$>
@ -119,9 +120,15 @@ void main(void) {
// Offset for corrected vertex ordering.
varTexcoord = vec2((UNIT_QUAD[twoTriID].xy -1.0) * vec2(0.5, -0.5));
varColor = interpolate3Vec4(particle.color.start, particle.color.middle, particle.color.finish, age);
vec3 colorSpread = 2.0 * vec3(hifi_hash(seed), hifi_hash(seed * 2.0), hifi_hash(seed * 3.0)) - 1.0;
varColor.rgb = clamp(varColor.rgb + colorSpread * particle.color.spread.rgb, vec3(0), vec3(1));
float alphaSpread = 2.0 * hifi_hash(seed * 4.0) - 1.0;
varColor.a = clamp(varColor.a + alphaSpread * particle.color.spread.a, 0.0, 1.0);
// anchor point in eye space
float radius = interpolate3Points(particle.radius.start, particle.radius.middle, particle.radius.finish, age);
float radiusSpread = 2.0 * hifi_hash(seed * 5.0) - 1.0;
radius = max(radius + radiusSpread * particle.radius.spread, 0.0);
vec4 quadPos = radius * UNIT_QUAD[twoTriID];
vec4 anchorPoint;

View file

@ -2937,6 +2937,7 @@ void EntityItemProperties::markAllChanged() {
_shapeTypeChanged = true;
_isEmittingChanged = true;
_emitterShouldTrail = true;
_maxParticlesChanged = true;
_lifespanChanged = true;
_emitRateChanged = true;

View file

@ -168,13 +168,13 @@ void ParticleEffectEntityItem::setAlpha(float alpha) {
void ParticleEffectEntityItem::setAlphaStart(float alphaStart) {
withWriteLock([&] {
_particleProperties.alpha.range.start = isnan(alphaStart) ? alphaStart : glm::clamp(alphaStart, MINIMUM_ALPHA, MAXIMUM_ALPHA);
_particleProperties.alpha.range.start = glm::isnan(alphaStart) ? alphaStart : glm::clamp(alphaStart, MINIMUM_ALPHA, MAXIMUM_ALPHA);
});
}
void ParticleEffectEntityItem::setAlphaFinish(float alphaFinish) {
withWriteLock([&] {
_particleProperties.alpha.range.finish = isnan(alphaFinish) ? alphaFinish : glm::clamp(alphaFinish, MINIMUM_ALPHA, MAXIMUM_ALPHA);
_particleProperties.alpha.range.finish = glm::isnan(alphaFinish) ? alphaFinish : glm::clamp(alphaFinish, MINIMUM_ALPHA, MAXIMUM_ALPHA);
});
}
@ -292,13 +292,13 @@ void ParticleEffectEntityItem::setParticleRadius(float particleRadius) {
void ParticleEffectEntityItem::setRadiusStart(float radiusStart) {
withWriteLock([&] {
_particleProperties.radius.range.start = isnan(radiusStart) ? radiusStart : glm::clamp(radiusStart, MINIMUM_PARTICLE_RADIUS, MAXIMUM_PARTICLE_RADIUS);
_particleProperties.radius.range.start = glm::isnan(radiusStart) ? radiusStart : glm::clamp(radiusStart, MINIMUM_PARTICLE_RADIUS, MAXIMUM_PARTICLE_RADIUS);
});
}
void ParticleEffectEntityItem::setRadiusFinish(float radiusFinish) {
withWriteLock([&] {
_particleProperties.radius.range.finish = isnan(radiusFinish) ? radiusFinish : glm::clamp(radiusFinish, MINIMUM_PARTICLE_RADIUS, MAXIMUM_PARTICLE_RADIUS);
_particleProperties.radius.range.finish = glm::isnan(radiusFinish) ? radiusFinish : glm::clamp(radiusFinish, MINIMUM_PARTICLE_RADIUS, MAXIMUM_PARTICLE_RADIUS);
});
}

View file

@ -21,10 +21,10 @@ namespace particle {
static const float SCRIPT_MAXIMUM_PI = 3.1416f; // Round up so that reasonable property values work
static const float UNINITIALIZED = NAN;
static const vec3 DEFAULT_COLOR = { 255, 255, 255 };
static const xColor DEFAULT_XCOLOR = { DEFAULT_COLOR.r, DEFAULT_COLOR.g, DEFAULT_COLOR.b };
static const xColor DEFAULT_XCOLOR = { (unsigned int)DEFAULT_COLOR.r, (unsigned int)DEFAULT_COLOR.g, (unsigned int)DEFAULT_COLOR.b };
static const vec3 DEFAULT_COLOR_UNINITIALIZED = { UNINITIALIZED, UNINITIALIZED, UNINITIALIZED };
static const vec3 DEFAULT_COLOR_SPREAD = { 0, 0, 0 };
static const xColor DEFAULT_XCOLOR_SPREAD = { DEFAULT_COLOR_SPREAD.r, DEFAULT_COLOR_SPREAD.g, DEFAULT_COLOR_SPREAD.b };
static const xColor DEFAULT_XCOLOR_SPREAD = { (unsigned int)DEFAULT_COLOR_SPREAD.r, (unsigned int)DEFAULT_COLOR_SPREAD.g, (unsigned int)DEFAULT_COLOR_SPREAD.b };
static const float DEFAULT_ALPHA = 1.0f;
static const float DEFAULT_ALPHA_SPREAD = 0.0f;
static const float DEFAULT_ALPHA_START = UNINITIALIZED;
@ -226,10 +226,10 @@ public:
void setColor(const xColor& value);
void setColorStart(const vec3& colorStart);
vec3 getColorStart() const { return any(isnan(_particleProperties.color.range.start)) ? getColor() : _particleProperties.color.range.start; }
vec3 getColorStart() const { return glm::any(glm::isnan(_particleProperties.color.range.start)) ? getColor() : _particleProperties.color.range.start; }
void setColorFinish(const vec3& colorFinish);
vec3 getColorFinish() const { return any(isnan(_particleProperties.color.range.finish)) ? getColor() : _particleProperties.color.range.finish; }
vec3 getColorFinish() const { return glm::any(glm::isnan(_particleProperties.color.range.finish)) ? getColor() : _particleProperties.color.range.finish; }
void setColorSpread(const xColor& colorSpread);
xColor getColorSpread() const;
@ -238,10 +238,10 @@ public:
float getAlpha() const { return _particleProperties.alpha.gradient.target; }
void setAlphaStart(float alphaStart);
float getAlphaStart() const { return isnan(_particleProperties.alpha.range.start) ? _particleProperties.alpha.gradient.target : _particleProperties.alpha.range.start; }
float getAlphaStart() const { return glm::isnan(_particleProperties.alpha.range.start) ? _particleProperties.alpha.gradient.target : _particleProperties.alpha.range.start; }
void setAlphaFinish(float alphaFinish);
float getAlphaFinish() const { return isnan(_particleProperties.alpha.range.finish) ? _particleProperties.alpha.gradient.target : _particleProperties.alpha.range.finish; }
float getAlphaFinish() const { return glm::isnan(_particleProperties.alpha.range.finish) ? _particleProperties.alpha.gradient.target : _particleProperties.alpha.range.finish; }
void setAlphaSpread(float alphaSpread);
float getAlphaSpread() const { return _particleProperties.alpha.gradient.spread; }
@ -300,10 +300,10 @@ public:
float getParticleRadius() const { return _particleProperties.radius.gradient.target; }
void setRadiusStart(float radiusStart);
float getRadiusStart() const { return isnan(_particleProperties.radius.range.start) ? _particleProperties.radius.gradient.target : _particleProperties.radius.range.start; }
float getRadiusStart() const { return glm::isnan(_particleProperties.radius.range.start) ? _particleProperties.radius.gradient.target : _particleProperties.radius.range.start; }
void setRadiusFinish(float radiusFinish);
float getRadiusFinish() const { return isnan(_particleProperties.radius.range.finish) ? _particleProperties.radius.gradient.target : _particleProperties.radius.range.finish; }
float getRadiusFinish() const { return glm::isnan(_particleProperties.radius.range.finish) ? _particleProperties.radius.gradient.target : _particleProperties.radius.range.finish; }
void setRadiusSpread(float radiusSpread);
float getRadiusSpread() const { return _particleProperties.radius.gradient.spread; }
@ -311,7 +311,7 @@ public:
void computeAndUpdateDimensions();
void setTextures(const QString& textures);
QString ParticleEffectEntityItem::getTextures() const { return _particleProperties.textures; }
QString getTextures() const { return _particleProperties.textures; }
bool getEmitterShouldTrail() const { return _particleProperties.emission.shouldTrail; }
void setEmitterShouldTrail(bool emitterShouldTrail);

View file

@ -0,0 +1,297 @@
<!
// gpu/Noise.slh
//
// Created by Sam Gondelman on 6/15/18.
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
!>
// Shader includes portions of webgl-noise:
// Description : Array and textureless GLSL 2D/3D/4D simplex
// noise functions.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
<@if not NOISE_SLH@>
<@def NOISE_SLH@>
float mod289(float x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec2 mod289(vec2 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
float permute(float x) {
return mod289(((x*34.0)+1.0)*x);
}
vec3 permute(vec3 x) {
return mod289(((x*34.0)+1.0)*x);
}
vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
}
float taylorInvSqrt(float r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
vec4 taylorInvSqrt(vec4 r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
vec4 grad4(float j, vec4 ip) {
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p, s;
p.xyz = floor(fract(vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz * 2.0 - 1.0) * s.www;
return p;
}
// (sqrt(5) - 1)/4 = F4, used once below
#define F4 0.309016994374947451
float snoise(vec4 v) {
const vec4 C = vec4(0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958); // -1 + 4 * G4
// First corner
vec4 i = floor(v + dot(v, vec4(F4)));
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step(x0.yzw, x0.xxx);
vec3 isYZ = step(x0.zww, x0.yyz);
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp(i0, 0.0, 1.0);
vec4 i2 = clamp(i0 - 1.0, 0.0, 1.0);
vec4 i1 = clamp(i0 - 2.0, 0.0, 1.0);
vec4 x1 = x0 - i1 + C.xxxx;
vec4 x2 = x0 - i2 + C.yyyy;
vec4 x3 = x0 - i3 + C.zzzz;
vec4 x4 = x0 + C.wwww;
// Permutations
i = mod289(i);
float j0 = permute(permute(permute(permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute(
permute(
permute(
permute(i.w + vec4(i1.w, i2.w, i3.w, 1.0)) + i.z
+ vec4(i1.z, i2.z, i3.z, 1.0)) + i.y
+ vec4(i1.y, i2.y, i3.y, 1.0)) + i.x
+ vec4(i1.x, i2.x, i3.x, 1.0));
// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0 / 294.0, 1.0 / 49.0, 1.0 / 7.0, 0.0);
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(
vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4, p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0, x0), dot(x1, x1), dot(x2, x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3, x3), dot(x4, x4)), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0
* (dot(m0 * m0, vec3(dot(p0, x0), dot(p1, x1), dot(p2, x2)))
+ dot(m1 * m1, vec2(dot(p3, x3), dot(p4, x4))));
}
float snoise(vec3 v) {
const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0);
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy));
vec3 x0 = v - i + dot(i, C.xxx);
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min(g.xyz, l.zxy);
vec3 i2 = max(g.xyz, l.zxy);
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute(
permute(
permute(i.z + vec4(0.0, i1.z, i2.z, 1.0)) + i.y
+ vec4(0.0, i1.y, i2.y, 1.0)) + i.x
+ vec4(0.0, i1.x, i2.x, 1.0));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_); // mod(j,N)
vec4 x = x_ * ns.x + ns.yyyy;
vec4 y = y_ * ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4(x.xy, y.xy);
vec4 b1 = vec4(x.zw, y.zw);
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0) * 2.0 + 1.0;
vec4 s1 = floor(b1) * 2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;
vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;
vec3 p0 = vec3(a0.xy, h.x);
vec3 p1 = vec3(a0.zw, h.y);
vec3 p2 = vec3(a1.xy, h.z);
vec3 p3 = vec3(a1.zw, h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(
vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)),
0.0);
m = m * m;
return 42.0
* dot(m * m, vec4(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3)));
}
float snoise(vec2 v) {
const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0
0.366025403784439, // 0.5*(sqrt(3.0)-1.0)
-0.577350269189626, // -1.0 + 2.0 * C.x
0.024390243902439); // 1.0 / 41.0
// First corner
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);
// Other corners
vec2 i1;
i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
vec4 x12 = x0.xyxy + C.xxzz;
x12.xy -= i1;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec3 p = permute(
permute(i.y + vec3(0.0, i1.y, 1.0)) + i.x + vec3(0.0, i1.x, 1.0));
vec3 m = max(0.5 - vec3(dot(x0, x0), dot(x12.xy, x12.xy), dot(x12.zw, x12.zw)),
0.0);
m = m * m;
m = m * m;
// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;
vec3 ox = floor(x + 0.5);
vec3 a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt( a0*a0 + h*h );
m *= 1.79284291400159 - 0.85373472095314 * (a0 * a0 + h * h);
// Compute final noise value at P
vec3 g;
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * x12.xz + h.yz * x12.yw;
return 130.0 * dot(m, g);
}
// https://www.shadertoy.com/view/lsfGRr
float hifi_hash(float n) {
return fract(sin(n) * 43758.5453);
}
float hifi_noise(in vec2 x) {
vec2 p = floor(x);
vec2 f = fract(x);
f = f * f * (3.0 - 2.0 * f);
float n = p.x + p.y * 57.0;
return mix(mix(hifi_hash(n + 0.0), hifi_hash(n + 1.0), f.x),
mix(hifi_hash(n + 57.0), hifi_hash(n + 58.0), f.x), f.y);
}
// https://www.shadertoy.com/view/MdX3Rr
// https://en.wikipedia.org/wiki/Fractional_Brownian_motion
float hifi_fbm(in vec2 p) {
const mat2 m2 = mat2(0.8, -0.6, 0.6, 0.8);
float f = 0.0;
f += 0.5000 * hifi_noise(p); p = m2 * p * 2.02;
f += 0.2500 * hifi_noise(p); p = m2 * p * 2.03;
f += 0.1250 * hifi_noise(p); p = m2 * p * 2.01;
f += 0.0625 * hifi_noise(p);
return f / 0.9375;
}
<@endif@>

View file

@ -8,292 +8,11 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
// Shader includes portions of webgl-noise:
// Description : Array and textureless GLSL 2D/3D/4D simplex
// noise functions.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
<@include gpu/Transform.slh@>
<@include gpu/Noise.slh@>
<$declareStandardCameraTransform()$>
float mod289(float x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec2 mod289(vec2 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
float permute(float x) {
return mod289(((x*34.0)+1.0)*x);
}
vec3 permute(vec3 x) {
return mod289(((x*34.0)+1.0)*x);
}
vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
}
float taylorInvSqrt(float r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
vec4 taylorInvSqrt(vec4 r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
vec4 grad4(float j, vec4 ip) {
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p, s;
p.xyz = floor(fract(vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz * 2.0 - 1.0) * s.www;
return p;
}
// (sqrt(5) - 1)/4 = F4, used once below
#define F4 0.309016994374947451
float snoise(vec4 v) {
const vec4 C = vec4(0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958); // -1 + 4 * G4
// First corner
vec4 i = floor(v + dot(v, vec4(F4)));
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step(x0.yzw, x0.xxx);
vec3 isYZ = step(x0.zww, x0.yyz);
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp(i0, 0.0, 1.0);
vec4 i2 = clamp(i0 - 1.0, 0.0, 1.0);
vec4 i1 = clamp(i0 - 2.0, 0.0, 1.0);
vec4 x1 = x0 - i1 + C.xxxx;
vec4 x2 = x0 - i2 + C.yyyy;
vec4 x3 = x0 - i3 + C.zzzz;
vec4 x4 = x0 + C.wwww;
// Permutations
i = mod289(i);
float j0 = permute(permute(permute(permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute(
permute(
permute(
permute(i.w + vec4(i1.w, i2.w, i3.w, 1.0)) + i.z
+ vec4(i1.z, i2.z, i3.z, 1.0)) + i.y
+ vec4(i1.y, i2.y, i3.y, 1.0)) + i.x
+ vec4(i1.x, i2.x, i3.x, 1.0));
// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0 / 294.0, 1.0 / 49.0, 1.0 / 7.0, 0.0);
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(
vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4, p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0, x0), dot(x1, x1), dot(x2, x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3, x3), dot(x4, x4)), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0
* (dot(m0 * m0, vec3(dot(p0, x0), dot(p1, x1), dot(p2, x2)))
+ dot(m1 * m1, vec2(dot(p3, x3), dot(p4, x4))));
}
float snoise(vec3 v) {
const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0);
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy));
vec3 x0 = v - i + dot(i, C.xxx);
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min(g.xyz, l.zxy);
vec3 i2 = max(g.xyz, l.zxy);
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute(
permute(
permute(i.z + vec4(0.0, i1.z, i2.z, 1.0)) + i.y
+ vec4(0.0, i1.y, i2.y, 1.0)) + i.x
+ vec4(0.0, i1.x, i2.x, 1.0));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_); // mod(j,N)
vec4 x = x_ * ns.x + ns.yyyy;
vec4 y = y_ * ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4(x.xy, y.xy);
vec4 b1 = vec4(x.zw, y.zw);
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0) * 2.0 + 1.0;
vec4 s1 = floor(b1) * 2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;
vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;
vec3 p0 = vec3(a0.xy, h.x);
vec3 p1 = vec3(a0.zw, h.y);
vec3 p2 = vec3(a1.xy, h.z);
vec3 p3 = vec3(a1.zw, h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(
vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)),
0.0);
m = m * m;
return 42.0
* dot(m * m, vec4(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3)));
}
float snoise(vec2 v) {
const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0
0.366025403784439, // 0.5*(sqrt(3.0)-1.0)
-0.577350269189626, // -1.0 + 2.0 * C.x
0.024390243902439); // 1.0 / 41.0
// First corner
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);
// Other corners
vec2 i1;
i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
vec4 x12 = x0.xyxy + C.xxzz;
x12.xy -= i1;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec3 p = permute(
permute(i.y + vec3(0.0, i1.y, 1.0)) + i.x + vec3(0.0, i1.x, 1.0));
vec3 m = max(0.5 - vec3(dot(x0, x0), dot(x12.xy, x12.xy), dot(x12.zw, x12.zw)),
0.0);
m = m * m;
m = m * m;
// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;
vec3 ox = floor(x + 0.5);
vec3 a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt( a0*a0 + h*h );
m *= 1.79284291400159 - 0.85373472095314 * (a0 * a0 + h * h);
// Compute final noise value at P
vec3 g;
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * x12.xz + h.yz * x12.yw;
return 130.0 * dot(m, g);
}
// https://www.shadertoy.com/view/lsfGRr
float hifi_hash(float n) {
return fract(sin(n) * 43758.5453);
}
float hifi_noise(in vec2 x) {
vec2 p = floor(x);
vec2 f = fract(x);
f = f * f * (3.0 - 2.0 * f);
float n = p.x + p.y * 57.0;
return mix(mix(hifi_hash(n + 0.0), hifi_hash(n + 1.0), f.x),
mix(hifi_hash(n + 57.0), hifi_hash(n + 58.0), f.x), f.y);
}
// https://www.shadertoy.com/view/MdX3Rr
// https://en.wikipedia.org/wiki/Fractional_Brownian_motion
float hifi_fbm(in vec2 p) {
const mat2 m2 = mat2(0.8, -0.6, 0.6, 0.8);
float f = 0.0;
f += 0.5000 * hifi_noise(p); p = m2 * p * 2.02;
f += 0.2500 * hifi_noise(p); p = m2 * p * 2.03;
f += 0.1250 * hifi_noise(p); p = m2 * p * 2.01;
f += 0.0625 * hifi_noise(p);
return f / 0.9375;
}
#define PROCEDURAL 1
//PROCEDURAL_VERSION

View file

@ -152,6 +152,12 @@
type: "SliderFloat",
max: 5
},
{
id: "speedSpread",
name: "Speed Spread",
type: "SliderFloat",
max: 5
},
{
type: "Row"
},