mirror of
https://github.com/lubosz/overte.git
synced 2025-04-23 16:14:01 +02:00
Initial progressgit add -A!
This commit is contained in:
parent
c81b0fc018
commit
704476c197
6 changed files with 869 additions and 9 deletions
|
@ -149,6 +149,7 @@
|
|||
#include "ui/AddressBarDialog.h"
|
||||
#include "ui/AvatarInputs.h"
|
||||
#include "ui/DialogsManager.h"
|
||||
#include "ui/Gif.h"
|
||||
#include "ui/LoginDialog.h"
|
||||
#include "ui/overlays/Cube3DOverlay.h"
|
||||
#include "ui/Snapshot.h"
|
||||
|
@ -2511,7 +2512,7 @@ void Application::keyPressEvent(QKeyEvent* event) {
|
|||
} else if (isOption && !isShifted && !isMeta) {
|
||||
Menu::getInstance()->triggerOption(MenuOption::ScriptEditor);
|
||||
} else if (!isOption && !isShifted && isMeta) {
|
||||
takeSnapshot(true);
|
||||
takeSnapshot(true, "still");
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -5428,14 +5429,43 @@ void Application::toggleLogDialog() {
|
|||
}
|
||||
}
|
||||
|
||||
void Application::takeSnapshot(bool notify, float aspectRatio) {
|
||||
postLambdaEvent([notify, aspectRatio, this] {
|
||||
void Application::takeSnapshot(bool notify, const QString& format, float aspectRatio) {
|
||||
postLambdaEvent([notify, format, aspectRatio, this] {
|
||||
QMediaPlayer* player = new QMediaPlayer();
|
||||
QFileInfo inf = QFileInfo(PathUtils::resourcesPath() + "sounds/snap.wav");
|
||||
player->setMedia(QUrl::fromLocalFile(inf.absoluteFilePath()));
|
||||
player->play();
|
||||
|
||||
QString path = Snapshot::saveSnapshot(getActiveDisplayPlugin()->getScreenshot(aspectRatio));
|
||||
//QString path = Snapshot::saveSnapshot(getActiveDisplayPlugin()->getScreenshot(aspectRatio));
|
||||
|
||||
//if (!format.compare("animated"))
|
||||
//{
|
||||
QImage frame;
|
||||
GifWriter myGifWriter;
|
||||
char* cstr;
|
||||
|
||||
QString path = QStandardPaths::writableLocation(QStandardPaths::DesktopLocation);
|
||||
path.append(QDir::separator());
|
||||
path.append("test.gif");
|
||||
|
||||
string fname = path.toStdString();
|
||||
cstr = new char[fname.size() + 1];
|
||||
strcpy(cstr, fname.c_str());
|
||||
|
||||
GifBegin(&myGifWriter, cstr, 1, 1, 0);
|
||||
|
||||
uint8_t test[4] = { 0xFF, 0x00, 0x00, 0x00 };
|
||||
|
||||
for (uint8_t itr = 0; itr < 30; itr++)
|
||||
{
|
||||
test[0] = 0xFF / (itr + 1);
|
||||
//frame = (getActiveDisplayPlugin()->getScreenshot(aspectRatio)).scaledToWidth(500);
|
||||
|
||||
GifWriteFrame(&myGifWriter, test, 1, 1, 0);
|
||||
}
|
||||
|
||||
GifEnd(&myGifWriter);
|
||||
//}
|
||||
|
||||
emit DependencyManager::get<WindowScriptingInterface>()->snapshotTaken(path, notify);
|
||||
});
|
||||
|
|
|
@ -266,7 +266,7 @@ public:
|
|||
float getAvatarSimrate() const { return _avatarSimCounter.rate(); }
|
||||
float getAverageSimsPerSecond() const { return _simCounter.rate(); }
|
||||
|
||||
void takeSnapshot(bool notify, float aspectRatio = 0.0f);
|
||||
void takeSnapshot(bool notify, const QString& format = "still", float aspectRatio = 0.0f);
|
||||
void shareSnapshot(const QString& filename);
|
||||
|
||||
model::SkyboxPointer getDefaultSkybox() const { return _defaultSkybox; }
|
||||
|
|
|
@ -199,8 +199,12 @@ void WindowScriptingInterface::copyToClipboard(const QString& text) {
|
|||
QApplication::clipboard()->setText(text);
|
||||
}
|
||||
|
||||
void WindowScriptingInterface::takeSnapshot(bool notify, float aspectRatio) {
|
||||
qApp->takeSnapshot(notify, aspectRatio);
|
||||
void WindowScriptingInterface::takeSnapshotStill(bool notify, float aspectRatio) {
|
||||
qApp->takeSnapshot(notify, "still", aspectRatio);
|
||||
}
|
||||
|
||||
void WindowScriptingInterface::takeSnapshotAnimated(bool notify, float aspectRatio) {
|
||||
qApp->takeSnapshot(notify, "animated", aspectRatio);
|
||||
}
|
||||
|
||||
void WindowScriptingInterface::shareSnapshot(const QString& path) {
|
||||
|
|
|
@ -52,7 +52,8 @@ public slots:
|
|||
QScriptValue save(const QString& title = "", const QString& directory = "", const QString& nameFilter = "");
|
||||
void showAssetServer(const QString& upload = "");
|
||||
void copyToClipboard(const QString& text);
|
||||
void takeSnapshot(bool notify = true, float aspectRatio = 0.0f);
|
||||
void takeSnapshotStill(bool notify = true, float aspectRatio = 0.0f);
|
||||
void takeSnapshotAnimated(bool notify = true, float aspectRatio = 0.0f);
|
||||
void shareSnapshot(const QString& path);
|
||||
bool isPhysicsEnabled();
|
||||
|
||||
|
|
825
interface/src/ui/Gif.h
Normal file
825
interface/src/ui/Gif.h
Normal file
|
@ -0,0 +1,825 @@
|
|||
//
|
||||
// gif.h
|
||||
// by Charlie Tangora
|
||||
// Public domain.
|
||||
// Email me : ctangora -at- gmail -dot- com
|
||||
//
|
||||
// This file offers a simple, very limited way to create animated GIFs directly in code.
|
||||
//
|
||||
// Those looking for particular cleverness are likely to be disappointed; it's pretty
|
||||
// much a straight-ahead implementation of the GIF format with optional Floyd-Steinberg
|
||||
// dithering. (It does at least use delta encoding - only the changed portions of each
|
||||
// frame are saved.)
|
||||
//
|
||||
// So resulting files are often quite large. The hope is that it will be handy nonetheless
|
||||
// as a quick and easily-integrated way for programs to spit out animations.
|
||||
//
|
||||
// Only RGBA8 is currently supported as an input format. (The alpha is ignored.)
|
||||
//
|
||||
// USAGE:
|
||||
// Create a GifWriter struct. Pass it to GifBegin() to initialize and write the header.
|
||||
// Pass subsequent frames to GifWriteFrame().
|
||||
// Finally, call GifEnd() to close the file handle and free memory.
|
||||
//
|
||||
|
||||
#ifndef gif_h
|
||||
#define gif_h
|
||||
|
||||
#include <stdio.h> // for FILE*
|
||||
#include <string.h> // for memcpy and bzero
|
||||
#include <stdint.h> // for integer typedefs
|
||||
|
||||
// Define these macros to hook into a custom memory allocator.
|
||||
// TEMP_MALLOC and TEMP_FREE will only be called in stack fashion - frees in the reverse order of mallocs
|
||||
// and any temp memory allocated by a function will be freed before it exits.
|
||||
// MALLOC and FREE are used only by GifBegin and GifEnd respectively (to allocate a buffer the size of the image, which
|
||||
// is used to find changed pixels for delta-encoding.)
|
||||
|
||||
#ifndef GIF_TEMP_MALLOC
|
||||
#include <stdlib.h>
|
||||
#define GIF_TEMP_MALLOC malloc
|
||||
#endif
|
||||
|
||||
#ifndef GIF_TEMP_FREE
|
||||
#include <stdlib.h>
|
||||
#define GIF_TEMP_FREE free
|
||||
#endif
|
||||
|
||||
#ifndef GIF_MALLOC
|
||||
#include <stdlib.h>
|
||||
#define GIF_MALLOC malloc
|
||||
#endif
|
||||
|
||||
#ifndef GIF_FREE
|
||||
#include <stdlib.h>
|
||||
#define GIF_FREE free
|
||||
#endif
|
||||
|
||||
const int kGifTransIndex = 0;
|
||||
|
||||
struct GifPalette
|
||||
{
|
||||
uint8_t bitDepth;
|
||||
|
||||
uint8_t r[256];
|
||||
uint8_t g[256];
|
||||
uint8_t b[256];
|
||||
|
||||
// k-d tree over RGB space, organized in heap fashion
|
||||
// i.e. left child of node i is node i*2, right child is node i*2+1
|
||||
// nodes 256-511 are implicitly the leaves, containing a color
|
||||
uint8_t treeSplitElt[255];
|
||||
uint8_t treeSplit[255];
|
||||
};
|
||||
|
||||
// max, min, and abs functions
|
||||
int GifIMax(int l, int r) { return l>r ? l : r; }
|
||||
int GifIMin(int l, int r) { return l<r ? l : r; }
|
||||
int GifIAbs(int i) { return i<0 ? -i : i; }
|
||||
|
||||
// walks the k-d tree to pick the palette entry for a desired color.
|
||||
// Takes as in/out parameters the current best color and its error -
|
||||
// only changes them if it finds a better color in its subtree.
|
||||
// this is the major hotspot in the code at the moment.
|
||||
void GifGetClosestPaletteColor(GifPalette* pPal, int r, int g, int b, int& bestInd, int& bestDiff, int treeRoot = 1)
|
||||
{
|
||||
// base case, reached the bottom of the tree
|
||||
if (treeRoot >(1 << pPal->bitDepth) - 1)
|
||||
{
|
||||
int ind = treeRoot - (1 << pPal->bitDepth);
|
||||
if (ind == kGifTransIndex) return;
|
||||
|
||||
// check whether this color is better than the current winner
|
||||
int r_err = r - ((int32_t)pPal->r[ind]);
|
||||
int g_err = g - ((int32_t)pPal->g[ind]);
|
||||
int b_err = b - ((int32_t)pPal->b[ind]);
|
||||
int diff = GifIAbs(r_err) + GifIAbs(g_err) + GifIAbs(b_err);
|
||||
|
||||
if (diff < bestDiff)
|
||||
{
|
||||
bestInd = ind;
|
||||
bestDiff = diff;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// take the appropriate color (r, g, or b) for this node of the k-d tree
|
||||
int comps[3]; comps[0] = r; comps[1] = g; comps[2] = b;
|
||||
int splitComp = comps[pPal->treeSplitElt[treeRoot]];
|
||||
|
||||
int splitPos = pPal->treeSplit[treeRoot];
|
||||
if (splitPos > splitComp)
|
||||
{
|
||||
// check the left subtree
|
||||
GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot * 2);
|
||||
if (bestDiff > splitPos - splitComp)
|
||||
{
|
||||
// cannot prove there's not a better value in the right subtree, check that too
|
||||
GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot * 2 + 1);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot * 2 + 1);
|
||||
if (bestDiff > splitComp - splitPos)
|
||||
{
|
||||
GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot * 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void GifSwapPixels(uint8_t* image, int pixA, int pixB)
|
||||
{
|
||||
uint8_t rA = image[pixA * 4];
|
||||
uint8_t gA = image[pixA * 4 + 1];
|
||||
uint8_t bA = image[pixA * 4 + 2];
|
||||
uint8_t aA = image[pixA * 4 + 3];
|
||||
|
||||
uint8_t rB = image[pixB * 4];
|
||||
uint8_t gB = image[pixB * 4 + 1];
|
||||
uint8_t bB = image[pixB * 4 + 2];
|
||||
uint8_t aB = image[pixA * 4 + 3];
|
||||
|
||||
image[pixA * 4] = rB;
|
||||
image[pixA * 4 + 1] = gB;
|
||||
image[pixA * 4 + 2] = bB;
|
||||
image[pixA * 4 + 3] = aB;
|
||||
|
||||
image[pixB * 4] = rA;
|
||||
image[pixB * 4 + 1] = gA;
|
||||
image[pixB * 4 + 2] = bA;
|
||||
image[pixB * 4 + 3] = aA;
|
||||
}
|
||||
|
||||
// just the partition operation from quicksort
|
||||
int GifPartition(uint8_t* image, const int left, const int right, const int elt, int pivotIndex)
|
||||
{
|
||||
const int pivotValue = image[(pivotIndex)* 4 + elt];
|
||||
GifSwapPixels(image, pivotIndex, right - 1);
|
||||
int storeIndex = left;
|
||||
bool split = 0;
|
||||
for (int ii = left; ii<right - 1; ++ii)
|
||||
{
|
||||
int arrayVal = image[ii * 4 + elt];
|
||||
if (arrayVal < pivotValue)
|
||||
{
|
||||
GifSwapPixels(image, ii, storeIndex);
|
||||
++storeIndex;
|
||||
}
|
||||
else if (arrayVal == pivotValue)
|
||||
{
|
||||
if (split)
|
||||
{
|
||||
GifSwapPixels(image, ii, storeIndex);
|
||||
++storeIndex;
|
||||
}
|
||||
split = !split;
|
||||
}
|
||||
}
|
||||
GifSwapPixels(image, storeIndex, right - 1);
|
||||
return storeIndex;
|
||||
}
|
||||
|
||||
// Perform an incomplete sort, finding all elements above and below the desired median
|
||||
void GifPartitionByMedian(uint8_t* image, int left, int right, int com, int neededCenter)
|
||||
{
|
||||
if (left < right - 1)
|
||||
{
|
||||
int pivotIndex = left + (right - left) / 2;
|
||||
|
||||
pivotIndex = GifPartition(image, left, right, com, pivotIndex);
|
||||
|
||||
// Only "sort" the section of the array that contains the median
|
||||
if (pivotIndex > neededCenter)
|
||||
GifPartitionByMedian(image, left, pivotIndex, com, neededCenter);
|
||||
|
||||
if (pivotIndex < neededCenter)
|
||||
GifPartitionByMedian(image, pivotIndex + 1, right, com, neededCenter);
|
||||
}
|
||||
}
|
||||
|
||||
// Builds a palette by creating a balanced k-d tree of all pixels in the image
|
||||
void GifSplitPalette(uint8_t* image, int numPixels, int firstElt, int lastElt, int splitElt, int splitDist, int treeNode, bool buildForDither, GifPalette* pal)
|
||||
{
|
||||
if (lastElt <= firstElt || numPixels == 0)
|
||||
return;
|
||||
|
||||
// base case, bottom of the tree
|
||||
if (lastElt == firstElt + 1)
|
||||
{
|
||||
if (buildForDither)
|
||||
{
|
||||
// Dithering needs at least one color as dark as anything
|
||||
// in the image and at least one brightest color -
|
||||
// otherwise it builds up error and produces strange artifacts
|
||||
if (firstElt == 1)
|
||||
{
|
||||
// special case: the darkest color in the image
|
||||
uint32_t r = 255, g = 255, b = 255;
|
||||
for (int ii = 0; ii<numPixels; ++ii)
|
||||
{
|
||||
r = GifIMin(r, image[ii * 4 + 0]);
|
||||
g = GifIMin(g, image[ii * 4 + 1]);
|
||||
b = GifIMin(b, image[ii * 4 + 2]);
|
||||
}
|
||||
|
||||
pal->r[firstElt] = r;
|
||||
pal->g[firstElt] = g;
|
||||
pal->b[firstElt] = b;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if (firstElt == (1 << pal->bitDepth) - 1)
|
||||
{
|
||||
// special case: the lightest color in the image
|
||||
uint32_t r = 0, g = 0, b = 0;
|
||||
for (int ii = 0; ii<numPixels; ++ii)
|
||||
{
|
||||
r = GifIMax(r, image[ii * 4 + 0]);
|
||||
g = GifIMax(g, image[ii * 4 + 1]);
|
||||
b = GifIMax(b, image[ii * 4 + 2]);
|
||||
}
|
||||
|
||||
pal->r[firstElt] = r;
|
||||
pal->g[firstElt] = g;
|
||||
pal->b[firstElt] = b;
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// otherwise, take the average of all colors in this subcube
|
||||
uint64_t r = 0, g = 0, b = 0;
|
||||
for (int ii = 0; ii<numPixels; ++ii)
|
||||
{
|
||||
r += image[ii * 4 + 0];
|
||||
g += image[ii * 4 + 1];
|
||||
b += image[ii * 4 + 2];
|
||||
}
|
||||
|
||||
r += numPixels / 2; // round to nearest
|
||||
g += numPixels / 2;
|
||||
b += numPixels / 2;
|
||||
|
||||
r /= numPixels;
|
||||
g /= numPixels;
|
||||
b /= numPixels;
|
||||
|
||||
pal->r[firstElt] = (uint8_t)r;
|
||||
pal->g[firstElt] = (uint8_t)g;
|
||||
pal->b[firstElt] = (uint8_t)b;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Find the axis with the largest range
|
||||
int minR = 255, maxR = 0;
|
||||
int minG = 255, maxG = 0;
|
||||
int minB = 255, maxB = 0;
|
||||
for (int ii = 0; ii<numPixels; ++ii)
|
||||
{
|
||||
int r = image[ii * 4 + 0];
|
||||
int g = image[ii * 4 + 1];
|
||||
int b = image[ii * 4 + 2];
|
||||
|
||||
if (r > maxR) maxR = r;
|
||||
if (r < minR) minR = r;
|
||||
|
||||
if (g > maxG) maxG = g;
|
||||
if (g < minG) minG = g;
|
||||
|
||||
if (b > maxB) maxB = b;
|
||||
if (b < minB) minB = b;
|
||||
}
|
||||
|
||||
int rRange = maxR - minR;
|
||||
int gRange = maxG - minG;
|
||||
int bRange = maxB - minB;
|
||||
|
||||
// and split along that axis. (incidentally, this means this isn't a "proper" k-d tree but I don't know what else to call it)
|
||||
int splitCom = 1;
|
||||
if (bRange > gRange) splitCom = 2;
|
||||
if (rRange > bRange && rRange > gRange) splitCom = 0;
|
||||
|
||||
int subPixelsA = numPixels * (splitElt - firstElt) / (lastElt - firstElt);
|
||||
int subPixelsB = numPixels - subPixelsA;
|
||||
|
||||
GifPartitionByMedian(image, 0, numPixels, splitCom, subPixelsA);
|
||||
|
||||
pal->treeSplitElt[treeNode] = splitCom;
|
||||
pal->treeSplit[treeNode] = image[subPixelsA * 4 + splitCom];
|
||||
|
||||
GifSplitPalette(image, subPixelsA, firstElt, splitElt, splitElt - splitDist, splitDist / 2, treeNode * 2, buildForDither, pal);
|
||||
GifSplitPalette(image + subPixelsA * 4, subPixelsB, splitElt, lastElt, splitElt + splitDist, splitDist / 2, treeNode * 2 + 1, buildForDither, pal);
|
||||
}
|
||||
|
||||
// Finds all pixels that have changed from the previous image and
|
||||
// moves them to the fromt of th buffer.
|
||||
// This allows us to build a palette optimized for the colors of the
|
||||
// changed pixels only.
|
||||
int GifPickChangedPixels(const uint8_t* lastFrame, uint8_t* frame, int numPixels)
|
||||
{
|
||||
int numChanged = 0;
|
||||
uint8_t* writeIter = frame;
|
||||
|
||||
for (int ii = 0; ii<numPixels; ++ii)
|
||||
{
|
||||
if (lastFrame[0] != frame[0] ||
|
||||
lastFrame[1] != frame[1] ||
|
||||
lastFrame[2] != frame[2])
|
||||
{
|
||||
writeIter[0] = frame[0];
|
||||
writeIter[1] = frame[1];
|
||||
writeIter[2] = frame[2];
|
||||
++numChanged;
|
||||
writeIter += 4;
|
||||
}
|
||||
lastFrame += 4;
|
||||
frame += 4;
|
||||
}
|
||||
|
||||
return numChanged;
|
||||
}
|
||||
|
||||
// Creates a palette by placing all the image pixels in a k-d tree and then averaging the blocks at the bottom.
|
||||
// This is known as the "modified median split" technique
|
||||
void GifMakePalette(const uint8_t* lastFrame, const uint8_t* nextFrame, uint32_t width, uint32_t height, uint8_t bitDepth, bool buildForDither, GifPalette* pPal)
|
||||
{
|
||||
pPal->bitDepth = bitDepth;
|
||||
|
||||
// SplitPalette is destructive (it sorts the pixels by color) so
|
||||
// we must create a copy of the image for it to destroy
|
||||
int imageSize = width*height * 4 * sizeof(uint8_t);
|
||||
uint8_t* destroyableImage = (uint8_t*)GIF_TEMP_MALLOC(imageSize);
|
||||
memcpy(destroyableImage, nextFrame, imageSize);
|
||||
|
||||
int numPixels = width*height;
|
||||
if (lastFrame)
|
||||
numPixels = GifPickChangedPixels(lastFrame, destroyableImage, numPixels);
|
||||
|
||||
const int lastElt = 1 << bitDepth;
|
||||
const int splitElt = lastElt / 2;
|
||||
const int splitDist = splitElt / 2;
|
||||
|
||||
GifSplitPalette(destroyableImage, numPixels, 1, lastElt, splitElt, splitDist, 1, buildForDither, pPal);
|
||||
|
||||
GIF_TEMP_FREE(destroyableImage);
|
||||
|
||||
// add the bottom node for the transparency index
|
||||
pPal->treeSplit[1 << (bitDepth - 1)] = 0;
|
||||
pPal->treeSplitElt[1 << (bitDepth - 1)] = 0;
|
||||
|
||||
pPal->r[0] = pPal->g[0] = pPal->b[0] = 0;
|
||||
}
|
||||
|
||||
// Implements Floyd-Steinberg dithering, writes palette value to alpha
|
||||
void GifDitherImage(const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal)
|
||||
{
|
||||
int numPixels = width*height;
|
||||
|
||||
// quantPixels initially holds color*256 for all pixels
|
||||
// The extra 8 bits of precision allow for sub-single-color error values
|
||||
// to be propagated
|
||||
int32_t* quantPixels = (int32_t*)GIF_TEMP_MALLOC(sizeof(int32_t)*numPixels * 4);
|
||||
|
||||
for (int ii = 0; ii<numPixels * 4; ++ii)
|
||||
{
|
||||
uint8_t pix = nextFrame[ii];
|
||||
int32_t pix16 = int32_t(pix) * 256;
|
||||
quantPixels[ii] = pix16;
|
||||
}
|
||||
|
||||
for (uint32_t yy = 0; yy<height; ++yy)
|
||||
{
|
||||
for (uint32_t xx = 0; xx<width; ++xx)
|
||||
{
|
||||
int32_t* nextPix = quantPixels + 4 * (yy*width + xx);
|
||||
const uint8_t* lastPix = lastFrame ? lastFrame + 4 * (yy*width + xx) : NULL;
|
||||
|
||||
// Compute the colors we want (rounding to nearest)
|
||||
int32_t rr = (nextPix[0] + 127) / 256;
|
||||
int32_t gg = (nextPix[1] + 127) / 256;
|
||||
int32_t bb = (nextPix[2] + 127) / 256;
|
||||
|
||||
// if it happens that we want the color from last frame, then just write out
|
||||
// a transparent pixel
|
||||
if (lastFrame &&
|
||||
lastPix[0] == rr &&
|
||||
lastPix[1] == gg &&
|
||||
lastPix[2] == bb)
|
||||
{
|
||||
nextPix[0] = rr;
|
||||
nextPix[1] = gg;
|
||||
nextPix[2] = bb;
|
||||
nextPix[3] = kGifTransIndex;
|
||||
continue;
|
||||
}
|
||||
|
||||
int32_t bestDiff = 1000000;
|
||||
int32_t bestInd = kGifTransIndex;
|
||||
|
||||
// Search the palete
|
||||
GifGetClosestPaletteColor(pPal, rr, gg, bb, bestInd, bestDiff);
|
||||
|
||||
// Write the result to the temp buffer
|
||||
int32_t r_err = nextPix[0] - int32_t(pPal->r[bestInd]) * 256;
|
||||
int32_t g_err = nextPix[1] - int32_t(pPal->g[bestInd]) * 256;
|
||||
int32_t b_err = nextPix[2] - int32_t(pPal->b[bestInd]) * 256;
|
||||
|
||||
nextPix[0] = pPal->r[bestInd];
|
||||
nextPix[1] = pPal->g[bestInd];
|
||||
nextPix[2] = pPal->b[bestInd];
|
||||
nextPix[3] = bestInd;
|
||||
|
||||
// Propagate the error to the four adjacent locations
|
||||
// that we haven't touched yet
|
||||
int quantloc_7 = (yy*width + xx + 1);
|
||||
int quantloc_3 = (yy*width + width + xx - 1);
|
||||
int quantloc_5 = (yy*width + width + xx);
|
||||
int quantloc_1 = (yy*width + width + xx + 1);
|
||||
|
||||
if (quantloc_7 < numPixels)
|
||||
{
|
||||
int32_t* pix7 = quantPixels + 4 * quantloc_7;
|
||||
pix7[0] += GifIMax(-pix7[0], r_err * 7 / 16);
|
||||
pix7[1] += GifIMax(-pix7[1], g_err * 7 / 16);
|
||||
pix7[2] += GifIMax(-pix7[2], b_err * 7 / 16);
|
||||
}
|
||||
|
||||
if (quantloc_3 < numPixels)
|
||||
{
|
||||
int32_t* pix3 = quantPixels + 4 * quantloc_3;
|
||||
pix3[0] += GifIMax(-pix3[0], r_err * 3 / 16);
|
||||
pix3[1] += GifIMax(-pix3[1], g_err * 3 / 16);
|
||||
pix3[2] += GifIMax(-pix3[2], b_err * 3 / 16);
|
||||
}
|
||||
|
||||
if (quantloc_5 < numPixels)
|
||||
{
|
||||
int32_t* pix5 = quantPixels + 4 * quantloc_5;
|
||||
pix5[0] += GifIMax(-pix5[0], r_err * 5 / 16);
|
||||
pix5[1] += GifIMax(-pix5[1], g_err * 5 / 16);
|
||||
pix5[2] += GifIMax(-pix5[2], b_err * 5 / 16);
|
||||
}
|
||||
|
||||
if (quantloc_1 < numPixels)
|
||||
{
|
||||
int32_t* pix1 = quantPixels + 4 * quantloc_1;
|
||||
pix1[0] += GifIMax(-pix1[0], r_err / 16);
|
||||
pix1[1] += GifIMax(-pix1[1], g_err / 16);
|
||||
pix1[2] += GifIMax(-pix1[2], b_err / 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy the palettized result to the output buffer
|
||||
for (int ii = 0; ii<numPixels * 4; ++ii)
|
||||
{
|
||||
outFrame[ii] = quantPixels[ii];
|
||||
}
|
||||
|
||||
GIF_TEMP_FREE(quantPixels);
|
||||
}
|
||||
|
||||
// Picks palette colors for the image using simple thresholding, no dithering
|
||||
void GifThresholdImage(const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal)
|
||||
{
|
||||
uint32_t numPixels = width*height;
|
||||
for (uint32_t ii = 0; ii<numPixels; ++ii)
|
||||
{
|
||||
// if a previous color is available, and it matches the current color,
|
||||
// set the pixel to transparent
|
||||
if (lastFrame &&
|
||||
lastFrame[0] == nextFrame[0] &&
|
||||
lastFrame[1] == nextFrame[1] &&
|
||||
lastFrame[2] == nextFrame[2])
|
||||
{
|
||||
outFrame[0] = lastFrame[0];
|
||||
outFrame[1] = lastFrame[1];
|
||||
outFrame[2] = lastFrame[2];
|
||||
outFrame[3] = kGifTransIndex;
|
||||
}
|
||||
else
|
||||
{
|
||||
// palettize the pixel
|
||||
int32_t bestDiff = 1000000;
|
||||
int32_t bestInd = 1;
|
||||
GifGetClosestPaletteColor(pPal, nextFrame[0], nextFrame[1], nextFrame[2], bestInd, bestDiff);
|
||||
|
||||
// Write the resulting color to the output buffer
|
||||
outFrame[0] = pPal->r[bestInd];
|
||||
outFrame[1] = pPal->g[bestInd];
|
||||
outFrame[2] = pPal->b[bestInd];
|
||||
outFrame[3] = bestInd;
|
||||
}
|
||||
|
||||
if (lastFrame) lastFrame += 4;
|
||||
outFrame += 4;
|
||||
nextFrame += 4;
|
||||
}
|
||||
}
|
||||
|
||||
// Simple structure to write out the LZW-compressed portion of the image
|
||||
// one bit at a time
|
||||
struct GifBitStatus
|
||||
{
|
||||
uint8_t bitIndex; // how many bits in the partial byte written so far
|
||||
uint8_t byte; // current partial byte
|
||||
|
||||
uint32_t chunkIndex;
|
||||
uint8_t chunk[256]; // bytes are written in here until we have 256 of them, then written to the file
|
||||
};
|
||||
|
||||
// insert a single bit
|
||||
void GifWriteBit(GifBitStatus& stat, uint32_t bit)
|
||||
{
|
||||
bit = bit & 1;
|
||||
bit = bit << stat.bitIndex;
|
||||
stat.byte |= bit;
|
||||
|
||||
++stat.bitIndex;
|
||||
if (stat.bitIndex > 7)
|
||||
{
|
||||
// move the newly-finished byte to the chunk buffer
|
||||
stat.chunk[stat.chunkIndex++] = stat.byte;
|
||||
// and start a new byte
|
||||
stat.bitIndex = 0;
|
||||
stat.byte = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// write all bytes so far to the file
|
||||
void GifWriteChunk(FILE* f, GifBitStatus& stat)
|
||||
{
|
||||
fputc(stat.chunkIndex, f);
|
||||
fwrite(stat.chunk, 1, stat.chunkIndex, f);
|
||||
|
||||
stat.bitIndex = 0;
|
||||
stat.byte = 0;
|
||||
stat.chunkIndex = 0;
|
||||
}
|
||||
|
||||
void GifWriteCode(FILE* f, GifBitStatus& stat, uint32_t code, uint32_t length)
|
||||
{
|
||||
for (uint32_t ii = 0; ii<length; ++ii)
|
||||
{
|
||||
GifWriteBit(stat, code);
|
||||
code = code >> 1;
|
||||
|
||||
if (stat.chunkIndex == 255)
|
||||
{
|
||||
GifWriteChunk(f, stat);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The LZW dictionary is a 256-ary tree constructed as the file is encoded,
|
||||
// this is one node
|
||||
struct GifLzwNode
|
||||
{
|
||||
uint16_t m_next[256];
|
||||
};
|
||||
|
||||
// write a 256-color (8-bit) image palette to the file
|
||||
void GifWritePalette(const GifPalette* pPal, FILE* f)
|
||||
{
|
||||
fputc(0, f); // first color: transparency
|
||||
fputc(0, f);
|
||||
fputc(0, f);
|
||||
|
||||
for (int ii = 1; ii<(1 << pPal->bitDepth); ++ii)
|
||||
{
|
||||
uint32_t r = pPal->r[ii];
|
||||
uint32_t g = pPal->g[ii];
|
||||
uint32_t b = pPal->b[ii];
|
||||
|
||||
fputc(r, f);
|
||||
fputc(g, f);
|
||||
fputc(b, f);
|
||||
}
|
||||
}
|
||||
|
||||
// write the image header, LZW-compress and write out the image
|
||||
void GifWriteLzwImage(FILE* f, uint8_t* image, uint32_t left, uint32_t top, uint32_t width, uint32_t height, uint32_t delay, GifPalette* pPal)
|
||||
{
|
||||
// graphics control extension
|
||||
fputc(0x21, f);
|
||||
fputc(0xf9, f);
|
||||
fputc(0x04, f);
|
||||
fputc(0x05, f); // leave prev frame in place, this frame has transparency
|
||||
fputc(delay & 0xff, f);
|
||||
fputc((delay >> 8) & 0xff, f);
|
||||
fputc(kGifTransIndex, f); // transparent color index
|
||||
fputc(0, f);
|
||||
|
||||
fputc(0x2c, f); // image descriptor block
|
||||
|
||||
fputc(left & 0xff, f); // corner of image in canvas space
|
||||
fputc((left >> 8) & 0xff, f);
|
||||
fputc(top & 0xff, f);
|
||||
fputc((top >> 8) & 0xff, f);
|
||||
|
||||
fputc(width & 0xff, f); // width and height of image
|
||||
fputc((width >> 8) & 0xff, f);
|
||||
fputc(height & 0xff, f);
|
||||
fputc((height >> 8) & 0xff, f);
|
||||
|
||||
//fputc(0, f); // no local color table, no transparency
|
||||
//fputc(0x80, f); // no local color table, but transparency
|
||||
|
||||
fputc(0x80 + pPal->bitDepth - 1, f); // local color table present, 2 ^ bitDepth entries
|
||||
GifWritePalette(pPal, f);
|
||||
|
||||
const int minCodeSize = pPal->bitDepth;
|
||||
const uint32_t clearCode = 1 << pPal->bitDepth;
|
||||
|
||||
fputc(minCodeSize, f); // min code size 8 bits
|
||||
|
||||
GifLzwNode* codetree = (GifLzwNode*)GIF_TEMP_MALLOC(sizeof(GifLzwNode) * 4096);
|
||||
|
||||
memset(codetree, 0, sizeof(GifLzwNode) * 4096);
|
||||
int32_t curCode = -1;
|
||||
uint32_t codeSize = minCodeSize + 1;
|
||||
uint32_t maxCode = clearCode + 1;
|
||||
|
||||
GifBitStatus stat;
|
||||
stat.byte = 0;
|
||||
stat.bitIndex = 0;
|
||||
stat.chunkIndex = 0;
|
||||
|
||||
GifWriteCode(f, stat, clearCode, codeSize); // start with a fresh LZW dictionary
|
||||
|
||||
for (uint32_t yy = 0; yy<height; ++yy)
|
||||
{
|
||||
for (uint32_t xx = 0; xx<width; ++xx)
|
||||
{
|
||||
uint8_t nextValue = image[(yy*width + xx) * 4 + 3];
|
||||
|
||||
// "loser mode" - no compression, every single code is followed immediately by a clear
|
||||
//WriteCode( f, stat, nextValue, codeSize );
|
||||
//WriteCode( f, stat, 256, codeSize );
|
||||
|
||||
if (curCode < 0)
|
||||
{
|
||||
// first value in a new run
|
||||
curCode = nextValue;
|
||||
}
|
||||
else if (codetree[curCode].m_next[nextValue])
|
||||
{
|
||||
// current run already in the dictionary
|
||||
curCode = codetree[curCode].m_next[nextValue];
|
||||
}
|
||||
else
|
||||
{
|
||||
// finish the current run, write a code
|
||||
GifWriteCode(f, stat, curCode, codeSize);
|
||||
|
||||
// insert the new run into the dictionary
|
||||
codetree[curCode].m_next[nextValue] = ++maxCode;
|
||||
|
||||
if (maxCode >= (1ul << codeSize))
|
||||
{
|
||||
// dictionary entry count has broken a size barrier,
|
||||
// we need more bits for codes
|
||||
codeSize++;
|
||||
}
|
||||
if (maxCode == 4095)
|
||||
{
|
||||
// the dictionary is full, clear it out and begin anew
|
||||
GifWriteCode(f, stat, clearCode, codeSize); // clear tree
|
||||
|
||||
memset(codetree, 0, sizeof(GifLzwNode) * 4096);
|
||||
curCode = -1;
|
||||
codeSize = minCodeSize + 1;
|
||||
maxCode = clearCode + 1;
|
||||
}
|
||||
|
||||
curCode = nextValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// compression footer
|
||||
GifWriteCode(f, stat, curCode, codeSize);
|
||||
GifWriteCode(f, stat, clearCode, codeSize);
|
||||
GifWriteCode(f, stat, clearCode + 1, minCodeSize + 1);
|
||||
|
||||
// write out the last partial chunk
|
||||
while (stat.bitIndex) GifWriteBit(stat, 0);
|
||||
if (stat.chunkIndex) GifWriteChunk(f, stat);
|
||||
|
||||
fputc(0, f); // image block terminator
|
||||
|
||||
GIF_TEMP_FREE(codetree);
|
||||
}
|
||||
|
||||
struct GifWriter
|
||||
{
|
||||
FILE* f;
|
||||
uint8_t* oldImage;
|
||||
bool firstFrame;
|
||||
};
|
||||
|
||||
// Creates a gif file.
|
||||
// The input GIFWriter is assumed to be uninitialized.
|
||||
// The delay value is the time between frames in hundredths of a second - note that not all viewers pay much attention to this value.
|
||||
bool GifBegin(GifWriter* writer, const char* filename, uint32_t width, uint32_t height, uint32_t delay, int32_t bitDepth = 8, bool dither = false)
|
||||
{
|
||||
#if _MSC_VER >= 1400
|
||||
writer->f = 0;
|
||||
fopen_s(&writer->f, filename, "wb");
|
||||
#else
|
||||
writer->f = fopen(filename, "wb");
|
||||
#endif
|
||||
if (!writer->f) return false;
|
||||
|
||||
writer->firstFrame = true;
|
||||
|
||||
// allocate
|
||||
writer->oldImage = (uint8_t*)GIF_MALLOC(width*height * 4);
|
||||
|
||||
fputs("GIF89a", writer->f);
|
||||
|
||||
// screen descriptor
|
||||
fputc(width & 0xff, writer->f);
|
||||
fputc((width >> 8) & 0xff, writer->f);
|
||||
fputc(height & 0xff, writer->f);
|
||||
fputc((height >> 8) & 0xff, writer->f);
|
||||
|
||||
fputc(0xf0, writer->f); // there is an unsorted global color table of 2 entries
|
||||
fputc(0, writer->f); // background color
|
||||
fputc(0, writer->f); // pixels are square (we need to specify this because it's 1989)
|
||||
|
||||
// now the "global" palette (really just a dummy palette)
|
||||
// color 0: black
|
||||
fputc(0, writer->f);
|
||||
fputc(0, writer->f);
|
||||
fputc(0, writer->f);
|
||||
// color 1: also black
|
||||
fputc(0, writer->f);
|
||||
fputc(0, writer->f);
|
||||
fputc(0, writer->f);
|
||||
|
||||
if (delay != 0)
|
||||
{
|
||||
// animation header
|
||||
fputc(0x21, writer->f); // extension
|
||||
fputc(0xff, writer->f); // application specific
|
||||
fputc(11, writer->f); // length 11
|
||||
fputs("NETSCAPE2.0", writer->f); // yes, really
|
||||
fputc(3, writer->f); // 3 bytes of NETSCAPE2.0 data
|
||||
|
||||
fputc(1, writer->f); // JUST BECAUSE
|
||||
fputc(0, writer->f); // loop infinitely (byte 0)
|
||||
fputc(0, writer->f); // loop infinitely (byte 1)
|
||||
|
||||
fputc(0, writer->f); // block terminator
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Writes out a new frame to a GIF in progress.
|
||||
// The GIFWriter should have been created by GIFBegin.
|
||||
// AFAIK, it is legal to use different bit depths for different frames of an image -
|
||||
// this may be handy to save bits in animations that don't change much.
|
||||
bool GifWriteFrame(GifWriter* writer, const uint8_t* image, uint32_t width, uint32_t height, uint32_t delay, uint8_t bitDepth = 8, bool dither = false)
|
||||
{
|
||||
if (!writer->f) return false;
|
||||
|
||||
const uint8_t* oldImage = writer->firstFrame ? NULL : writer->oldImage;
|
||||
writer->firstFrame = false;
|
||||
|
||||
GifPalette pal;
|
||||
GifMakePalette((dither ? NULL : oldImage), image, width, height, bitDepth, dither, &pal);
|
||||
|
||||
if (dither)
|
||||
GifDitherImage(oldImage, image, writer->oldImage, width, height, &pal);
|
||||
else
|
||||
GifThresholdImage(oldImage, image, writer->oldImage, width, height, &pal);
|
||||
|
||||
GifWriteLzwImage(writer->f, writer->oldImage, 0, 0, width, height, delay, &pal);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Writes the EOF code, closes the file handle, and frees temp memory used by a GIF.
|
||||
// Many if not most viewers will still display a GIF properly if the EOF code is missing,
|
||||
// but it's still a good idea to write it out.
|
||||
bool GifEnd(GifWriter* writer)
|
||||
{
|
||||
if (!writer->f) return false;
|
||||
|
||||
fputc(0x3b, writer->f); // end of file
|
||||
fclose(writer->f);
|
||||
GIF_FREE(writer->oldImage);
|
||||
|
||||
writer->f = NULL;
|
||||
writer->oldImage = NULL;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif
|
|
@ -120,7 +120,7 @@ function onClicked() {
|
|||
|
||||
// take snapshot (with no notification)
|
||||
Script.setTimeout(function () {
|
||||
Window.takeSnapshot(false, 1.91);
|
||||
Window.takeSnapshotAnimated(false, 1.91);
|
||||
}, SNAPSHOT_DELAY);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue