Merge remote-tracking branch 'upstream/master' into scriptvec3

This commit is contained in:
SamGondelman 2018-09-04 17:53:07 -07:00
commit 589e88af4a
124 changed files with 2729 additions and 1165 deletions

View file

@ -98,13 +98,17 @@ public class FriendsFragment extends Fragment {
mUsersAdapter.setListener(new UserListAdapter.AdapterListener() {
@Override
public void onEmptyAdapter() {
mSwipeRefreshLayout.setRefreshing(false);
public void onEmptyAdapter(boolean shouldStopRefreshing) {
if (shouldStopRefreshing) {
mSwipeRefreshLayout.setRefreshing(false);
}
}
@Override
public void onNonEmptyAdapter() {
mSwipeRefreshLayout.setRefreshing(false);
public void onNonEmptyAdapter(boolean shouldStopRefreshing) {
if (shouldStopRefreshing) {
mSwipeRefreshLayout.setRefreshing(false);
}
}
@Override
@ -115,6 +119,8 @@ public class FriendsFragment extends Fragment {
mUsersView.setAdapter(mUsersAdapter);
mUsersAdapter.startLoad();
mSlidingUpPanelLayout.setFadeOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {

View file

@ -76,18 +76,22 @@ public class HomeFragment extends Fragment {
});
mDomainAdapter.setListener(new DomainAdapter.AdapterListener() {
@Override
public void onEmptyAdapter() {
public void onEmptyAdapter(boolean shouldStopRefreshing) {
searchNoResultsView.setText(R.string.search_no_results);
searchNoResultsView.setVisibility(View.VISIBLE);
mDomainsView.setVisibility(View.GONE);
mSwipeRefreshLayout.setRefreshing(false);
if (shouldStopRefreshing) {
mSwipeRefreshLayout.setRefreshing(false);
}
}
@Override
public void onNonEmptyAdapter() {
public void onNonEmptyAdapter(boolean shouldStopRefreshing) {
searchNoResultsView.setVisibility(View.GONE);
mDomainsView.setVisibility(View.VISIBLE);
mSwipeRefreshLayout.setRefreshing(false);
if (shouldStopRefreshing) {
mSwipeRefreshLayout.setRefreshing(false);
}
}
@Override
@ -96,11 +100,20 @@ public class HomeFragment extends Fragment {
}
});
mDomainsView.setAdapter(mDomainAdapter);
mDomainAdapter.startLoad();
mSearchView = rootView.findViewById(R.id.searchView);
mSearchIconView = rootView.findViewById(R.id.search_mag_icon);
mClearSearch = rootView.findViewById(R.id.search_clear);
getActivity().getWindow().setSoftInputMode(WindowManager.LayoutParams.SOFT_INPUT_STATE_ALWAYS_HIDDEN);
return rootView;
}
@Override
public void onStart() {
super.onStart();
mSearchView.addTextChangedListener(new TextWatcher() {
@Override
public void beforeTextChanged(CharSequence charSequence, int i, int i1, int i2) {}
@ -142,10 +155,6 @@ public class HomeFragment extends Fragment {
mDomainAdapter.loadDomains(mSearchView.getText().toString(), true);
}
});
getActivity().getWindow().setSoftInputMode(WindowManager.LayoutParams.SOFT_INPUT_STATE_ALWAYS_HIDDEN);
return rootView;
}
@Override

View file

@ -12,6 +12,7 @@ import android.widget.TextView;
import com.squareup.picasso.Picasso;
import java.util.Arrays;
import java.util.List;
import io.highfidelity.hifiinterface.R;
@ -36,19 +37,41 @@ public class DomainAdapter extends RecyclerView.Adapter<DomainAdapter.ViewHolder
// references to our domains
private Domain[] mDomains = {};
private static Domain[] DOMAINS_TMP_CACHE = {};
public DomainAdapter(Context c, String protocol, String lastLocation) {
mContext = c;
this.mInflater = LayoutInflater.from(mContext);
mProtocol = protocol;
mLastLocation = lastLocation;
domainProvider = new UserStoryDomainProvider(mProtocol);
loadDomains("", true);
}
public void setListener(AdapterListener adapterListener) {
mAdapterListener = adapterListener;
}
public void startLoad() {
useTmpCachedDomains();
loadDomains("", true);
}
private void useTmpCachedDomains() {
synchronized (this) {
if (DOMAINS_TMP_CACHE != null && DOMAINS_TMP_CACHE.length > 0) {
mDomains = Arrays.copyOf(DOMAINS_TMP_CACHE, DOMAINS_TMP_CACHE.length);
notifyDataSetChanged();
if (mAdapterListener != null) {
if (mDomains.length == 0) {
mAdapterListener.onEmptyAdapter(false);
} else {
mAdapterListener.onNonEmptyAdapter(false);
}
}
}
}
}
public void loadDomains(String filterText, boolean forceRefresh) {
domainProvider.retrieve(filterText, new DomainProvider.DomainCallback() {
@Override
@ -60,13 +83,18 @@ public class DomainAdapter extends RecyclerView.Adapter<DomainAdapter.ViewHolder
overrideDefaultThumbnails(domain);
mDomains = new Domain[domain.size()];
mDomains = domain.toArray(mDomains);
notifyDataSetChanged();
if (mAdapterListener != null) {
if (mDomains.length == 0) {
mAdapterListener.onEmptyAdapter();
} else {
mAdapterListener.onNonEmptyAdapter();
synchronized (this) {
domain.toArray(mDomains);
if (filterText.isEmpty()) {
DOMAINS_TMP_CACHE = Arrays.copyOf(mDomains, mDomains.length);
}
notifyDataSetChanged();
if (mAdapterListener != null) {
if (mDomains.length == 0) {
mAdapterListener.onEmptyAdapter(true);
} else {
mAdapterListener.onNonEmptyAdapter(true);
}
}
}
}
@ -112,8 +140,6 @@ public class DomainAdapter extends RecyclerView.Adapter<DomainAdapter.ViewHolder
@Override
public void onBindViewHolder(ViewHolder holder, int position) {
// TODO
//holder.thumbnail.setImageResource(mDomains[position].thumbnail);
Domain domain = mDomains[position];
holder.mDomainName.setText(domain.name);
Uri uri = Uri.parse(domain.thumbnail);
@ -164,8 +190,8 @@ public class DomainAdapter extends RecyclerView.Adapter<DomainAdapter.ViewHolder
}
public interface AdapterListener {
void onEmptyAdapter();
void onNonEmptyAdapter();
void onEmptyAdapter(boolean shouldStopRefreshing);
void onNonEmptyAdapter(boolean shouldStopRefreshing);
void onError(Exception e, String message);
}
}

View file

@ -37,28 +37,57 @@ public class UserListAdapter extends RecyclerView.Adapter<UserListAdapter.ViewHo
private ItemClickListener mClickListener;
private AdapterListener mAdapterListener;
private static List<User> USERS_TMP_CACHE;
public UserListAdapter(Context c, UsersProvider usersProvider) {
mContext = c;
mInflater = LayoutInflater.from(mContext);
mProvider = usersProvider;
loadUsers();
}
public void setListener(AdapterListener adapterListener) {
mAdapterListener = adapterListener;
}
public void startLoad() {
useTmpCachedUsers();
loadUsers();
}
private void useTmpCachedUsers() {
synchronized (this) {
if (USERS_TMP_CACHE != null && USERS_TMP_CACHE.size() > 0) {
mUsers = new ArrayList<>(USERS_TMP_CACHE.size());
mUsers.addAll(USERS_TMP_CACHE);
notifyDataSetChanged();
if (mAdapterListener != null) {
if (mUsers.isEmpty()) {
mAdapterListener.onEmptyAdapter(false);
} else {
mAdapterListener.onNonEmptyAdapter(false);
}
}
}
}
}
public void loadUsers() {
mProvider.retrieve(new UsersProvider.UsersCallback() {
@Override
public void retrieveOk(List<User> users) {
mUsers = new ArrayList<>(users);
notifyDataSetChanged();
if (mAdapterListener != null) {
if (mUsers.isEmpty()) {
mAdapterListener.onEmptyAdapter();
} else {
mAdapterListener.onNonEmptyAdapter();
synchronized (this) {
USERS_TMP_CACHE = new ArrayList<>(mUsers.size());
USERS_TMP_CACHE.addAll(mUsers);
if (mAdapterListener != null) {
if (mUsers.isEmpty()) {
mAdapterListener.onEmptyAdapter(true);
} else {
mAdapterListener.onNonEmptyAdapter(true);
}
}
}
}
@ -240,8 +269,9 @@ public class UserListAdapter extends RecyclerView.Adapter<UserListAdapter.ViewHo
}
public interface AdapterListener {
void onEmptyAdapter();
void onNonEmptyAdapter();
void onEmptyAdapter(boolean shouldStopRefreshing);
void onNonEmptyAdapter(boolean shouldStopRefreshing);
void onError(Exception e, String message);
}
}

View file

@ -463,19 +463,15 @@ SharedNodePointer DomainGatekeeper::processAgentConnectRequest(const NodeConnect
limitedNodeList->eachNodeBreakable([nodeConnection, username, &existingNodeID](const SharedNodePointer& node){
if (node->getPublicSocket() == nodeConnection.publicSockAddr && node->getLocalSocket() == nodeConnection.localSockAddr) {
// we have a node that already has these exact sockets - this can occur if a node
// is failing to connect to the domain
// we'll re-use the existing node ID
// as long as the user hasn't changed their username (by logging in or logging out)
auto existingNodeData = static_cast<DomainServerNodeData*>(node->getLinkedData());
if (existingNodeData->getUsername() == username) {
qDebug() << "Deleting existing connection from same sockaddr: " << node->getUUID();
existingNodeID = node->getUUID();
return false;
}
// we have a node that already has these exact sockets
// this can occur if a node is failing to connect to the domain
// remove the old node before adding the new node
qDebug() << "Deleting existing connection from same sockaddr: " << node->getUUID();
existingNodeID = node->getUUID();
return false;
}
return true;
});

View file

@ -119,6 +119,22 @@ Item {
visible: root.expanded
text: "Avatars NOT Updated: " + root.notUpdatedAvatarCount
}
StatText {
visible: root.expanded
text: "Total picks:\n " +
root.stylusPicksCount + " styluses\n " +
root.rayPicksCount + " rays\n " +
root.parabolaPicksCount + " parabolas\n " +
root.collisionPicksCount + " colliders"
}
StatText {
visible: root.expanded
text: "Intersection calls: Entities/Overlays/Avatars/HUD\n " +
"Styluses:\t" + root.stylusPicksUpdated.x + "/" + root.stylusPicksUpdated.y + "/" + root.stylusPicksUpdated.z + "/" + root.stylusPicksUpdated.w + "\n " +
"Rays:\t" + root.rayPicksUpdated.x + "/" + root.rayPicksUpdated.y + "/" + root.rayPicksUpdated.z + "/" + root.rayPicksUpdated.w + "\n " +
"Parabolas:\t" + root.parabolaPicksUpdated.x + "/" + root.parabolaPicksUpdated.y + "/" + root.parabolaPicksUpdated.z + "/" + root.parabolaPicksUpdated.w + "\n " +
"Colliders:\t" + root.collisionPicksUpdated.x + "/" + root.collisionPicksUpdated.y + "/" + root.collisionPicksUpdated.z + "/" + root.collisionPicksUpdated.w
}
}
}

View file

@ -52,12 +52,18 @@ Item {
id: back
enabledColor: hifi.colors.darkGray
disabledColor: hifi.colors.lightGrayText
enabled: historyIndex > 0
enabled: true
text: "BACK"
MouseArea {
anchors.fill: parent
onClicked: goBack()
onClicked: {
if (historyIndex > 0) {
goBack();
} else {
closeWebEngine();
}
}
}
}

View file

@ -726,6 +726,9 @@ static const QString STATE_SNAP_TURN = "SnapTurn";
static const QString STATE_ADVANCED_MOVEMENT_CONTROLS = "AdvancedMovement";
static const QString STATE_GROUNDED = "Grounded";
static const QString STATE_NAV_FOCUSED = "NavigationFocused";
static const QString STATE_PLATFORM_WINDOWS = "PlatformWindows";
static const QString STATE_PLATFORM_MAC = "PlatformMac";
static const QString STATE_PLATFORM_ANDROID = "PlatformAndroid";
// Statically provided display and input plugins
extern DisplayPluginList getDisplayPlugins();
@ -909,7 +912,8 @@ bool setupEssentials(int& argc, char** argv, bool runningMarkerExisted) {
DependencyManager::set<MessagesClient>();
controller::StateController::setStateVariables({ { STATE_IN_HMD, STATE_CAMERA_FULL_SCREEN_MIRROR,
STATE_CAMERA_FIRST_PERSON, STATE_CAMERA_THIRD_PERSON, STATE_CAMERA_ENTITY, STATE_CAMERA_INDEPENDENT,
STATE_SNAP_TURN, STATE_ADVANCED_MOVEMENT_CONTROLS, STATE_GROUNDED, STATE_NAV_FOCUSED } });
STATE_SNAP_TURN, STATE_ADVANCED_MOVEMENT_CONTROLS, STATE_GROUNDED, STATE_NAV_FOCUSED,
STATE_PLATFORM_WINDOWS, STATE_PLATFORM_MAC, STATE_PLATFORM_ANDROID } });
DependencyManager::set<UserInputMapper>();
DependencyManager::set<controller::ScriptingInterface, ControllerScriptingInterface>();
DependencyManager::set<InterfaceParentFinder>();
@ -1683,6 +1687,27 @@ Application::Application(int& argc, char** argv, QElapsedTimer& startupTimer, bo
_applicationStateDevice->setInputVariant(STATE_NAV_FOCUSED, []() -> float {
return DependencyManager::get<OffscreenUi>()->navigationFocused() ? 1 : 0;
});
_applicationStateDevice->setInputVariant(STATE_PLATFORM_WINDOWS, []() -> float {
#if defined(Q_OS_WIN)
return 1;
#else
return 0;
#endif
});
_applicationStateDevice->setInputVariant(STATE_PLATFORM_MAC, []() -> float {
#if defined(Q_OS_MAC)
return 1;
#else
return 0;
#endif
});
_applicationStateDevice->setInputVariant(STATE_PLATFORM_ANDROID, []() -> float {
#if defined(Q_OS_ANDROID)
return 1;
#else
return 0;
#endif
});
// Setup the _keyboardMouseDevice, _touchscreenDevice, _touchscreenVirtualPadDevice and the user input mapper with the default bindings
userInputMapper->registerDevice(_keyboardMouseDevice->getInputDevice());
@ -1735,11 +1760,6 @@ Application::Application(int& argc, char** argv, QElapsedTimer& startupTimer, bo
QTimer* settingsTimer = new QTimer();
moveToNewNamedThread(settingsTimer, "Settings Thread", [this, settingsTimer]{
connect(qApp, &Application::beforeAboutToQuit, [this, settingsTimer]{
bool autoLogout = Setting::Handle<bool>(AUTO_LOGOUT_SETTING_NAME, false).get();
if (autoLogout) {
auto accountManager = DependencyManager::get<AccountManager>();
accountManager->logout();
}
// Disconnect the signal from the save settings
QObject::disconnect(settingsTimer, &QTimer::timeout, this, &Application::saveSettings);
// Stop the settings timer
@ -1841,6 +1861,10 @@ Application::Application(int& argc, char** argv, QElapsedTimer& startupTimer, bo
});
EntityTree::setAddMaterialToEntityOperator([this](const QUuid& entityID, graphics::MaterialLayer material, const std::string& parentMaterialName) {
if (_aboutToQuit) {
return false;
}
// try to find the renderable
auto renderable = getEntities()->renderableForEntityId(entityID);
if (renderable) {
@ -1856,6 +1880,10 @@ Application::Application(int& argc, char** argv, QElapsedTimer& startupTimer, bo
return false;
});
EntityTree::setRemoveMaterialFromEntityOperator([this](const QUuid& entityID, graphics::MaterialPointer material, const std::string& parentMaterialName) {
if (_aboutToQuit) {
return false;
}
// try to find the renderable
auto renderable = getEntities()->renderableForEntityId(entityID);
if (renderable) {
@ -2483,6 +2511,11 @@ void Application::cleanupBeforeQuit() {
}
DependencyManager::destroy<ScriptEngines>();
bool autoLogout = Setting::Handle<bool>(AUTO_LOGOUT_SETTING_NAME, false).get();
if (autoLogout) {
DependencyManager::get<AccountManager>()->removeAccountFromFile();
}
_displayPlugin.reset();
PluginManager::getInstance()->shutdown();
@ -5787,15 +5820,13 @@ void Application::update(float deltaTime) {
auto t5 = std::chrono::high_resolution_clock::now();
workload::Timings timings(6);
timings[0] = (t4 - t0);
timings[1] = (t5 - t4);
timings[2] = (t4 - t3);
timings[3] = (t3 - t2);
timings[4] = (t2 - t1);
timings[5] = (t1 - t0);
timings[0] = t1 - t0; // prePhysics entities
timings[1] = t2 - t1; // prePhysics avatars
timings[2] = t3 - t2; // stepPhysics
timings[3] = t4 - t3; // postPhysics
timings[4] = t5 - t4; // non-physical kinematics
timings[5] = workload::Timing_ns((int32_t)(NSECS_PER_SECOND * deltaTime)); // game loop duration
_gameWorkload.updateSimulationTimings(timings);
}
}
} else {

View file

@ -312,6 +312,9 @@ public:
Q_INVOKABLE void copyToClipboard(const QString& text);
int getOtherAvatarsReplicaCount() { return DependencyManager::get<AvatarHashMap>()->getReplicaCount(); }
void setOtherAvatarsReplicaCount(int count) { DependencyManager::get<AvatarHashMap>()->setReplicaCount(count); }
#if defined(Q_OS_ANDROID)
void beforeEnterBackground();
void enterBackground();

View file

@ -145,20 +145,9 @@ void AvatarBookmarks::removeBookmark(const QString& bookmarkName) {
emit bookmarkDeleted(bookmarkName);
}
bool isWearableEntity(const EntityItemPointer& entity) {
return entity->isVisible() && (entity->getParentJointIndex() != INVALID_JOINT_INDEX || (entity->getType() == EntityTypes::Model && (std::static_pointer_cast<ModelEntityItem>(entity))->getRelayParentJoints()))
&& (entity->getParentID() == DependencyManager::get<NodeList>()->getSessionUUID() || entity->getParentID() == DependencyManager::get<AvatarManager>()->getMyAvatar()->getSelfID());
}
void AvatarBookmarks::updateAvatarEntities(const QVariantList &avatarEntities) {
auto myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
auto treeRenderer = DependencyManager::get<EntityTreeRenderer>();
EntityTreePointer entityTree = treeRenderer ? treeRenderer->getTree() : nullptr;
myAvatar->removeAvatarEntities([&](const QUuid& entityID) {
auto entity = entityTree->findEntityByID(entityID);
return entity && isWearableEntity(entity);
});
myAvatar->removeWearableAvatarEntities();
addAvatarEntities(avatarEntities);
}
@ -183,10 +172,7 @@ void AvatarBookmarks::loadBookmark(const QString& bookmarkName) {
auto myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
auto treeRenderer = DependencyManager::get<EntityTreeRenderer>();
EntityTreePointer entityTree = treeRenderer ? treeRenderer->getTree() : nullptr;
myAvatar->removeAvatarEntities([&](const QUuid& entityID) {
auto entity = entityTree->findEntityByID(entityID);
return entity && isWearableEntity(entity);
});
myAvatar->removeWearableAvatarEntities();
const QString& avatarUrl = bookmark.value(ENTRY_AVATAR_URL, "").toString();
myAvatar->useFullAvatarURL(avatarUrl);
qCDebug(interfaceapp) << "Avatar On " << avatarUrl;

View file

@ -46,6 +46,7 @@
#include "InterfaceLogging.h"
#include "LocationBookmarks.h"
#include "DeferredLightingEffect.h"
#include "PickManager.h"
#include "AmbientOcclusionEffect.h"
#include "RenderShadowTask.h"
@ -691,6 +692,11 @@ Menu::Menu() {
addCheckableActionToQMenuAndActionHash(physicsOptionsMenu, MenuOption::PhysicsShowBulletConstraints, 0, false, qApp, SLOT(setShowBulletConstraints(bool)));
addCheckableActionToQMenuAndActionHash(physicsOptionsMenu, MenuOption::PhysicsShowBulletConstraintLimits, 0, false, qApp, SLOT(setShowBulletConstraintLimits(bool)));
// Developer > Picking >>>
MenuWrapper* pickingOptionsMenu = developerMenu->addMenu("Picking");
addCheckableActionToQMenuAndActionHash(pickingOptionsMenu, MenuOption::ForceCoarsePicking, 0, false,
DependencyManager::get<PickManager>().data(), SLOT(setForceCoarsePicking(bool)));
// Developer > Display Crash Options
addCheckableActionToQMenuAndActionHash(developerMenu, MenuOption::DisplayCrashOptions, 0, true);
// Developer > Crash >>>

View file

@ -221,6 +221,7 @@ namespace MenuOption {
const QString NotificationSounds = "play_notification_sounds";
const QString NotificationSoundsSnapshot = "play_notification_sounds_snapshot";
const QString NotificationSoundsTablet = "play_notification_sounds_tablet";
const QString ForceCoarsePicking = "Force Coarse Picking";
const QString ComputeBlendshapes = "Compute Blendshapes";
}

View file

@ -583,8 +583,14 @@ RayToAvatarIntersectionResult AvatarManager::findRayIntersectionVector(const Pic
return result;
}
glm::vec3 normDirection = glm::normalize(ray.direction);
// It's better to intersect the ray against the avatar's actual mesh, but this is currently difficult to
// do, because the transformed mesh data only exists over in GPU-land. As a compromise, this code
// intersects against the avatars capsule and then against the (T-pose) mesh. The end effect is that picking
// against the avatar is sort-of right, but you likely wont be able to pick against the arms.
// TODO -- find a way to extract transformed avatar mesh data from the rendering engine.
std::vector<SortedAvatar> sortedAvatars;
auto avatarHashCopy = getHashCopy();
for (auto avatarData : avatarHashCopy) {
auto avatar = std::static_pointer_cast<Avatar>(avatarData);
@ -593,52 +599,65 @@ RayToAvatarIntersectionResult AvatarManager::findRayIntersectionVector(const Pic
continue;
}
float distance;
BoxFace face;
glm::vec3 surfaceNormal;
SkeletonModelPointer avatarModel = avatar->getSkeletonModel();
// It's better to intersect the ray against the avatar's actual mesh, but this is currently difficult to
// do, because the transformed mesh data only exists over in GPU-land. As a compromise, this code
// intersects against the avatars capsule and then against the (T-pose) mesh. The end effect is that picking
// against the avatar is sort-of right, but you likely wont be able to pick against the arms.
// TODO -- find a way to extract transformed avatar mesh data from the rendering engine.
float distance = FLT_MAX;
#if 0
// if we weren't picking against the capsule, we would want to pick against the avatarBounds...
// AABox avatarBounds = avatarModel->getRenderableMeshBound();
// if (!avatarBounds.findRayIntersection(ray.origin, normDirection, distance, face, surfaceNormal)) {
// // ray doesn't intersect avatar's bounding-box
// continue;
// }
SkeletonModelPointer avatarModel = avatar->getSkeletonModel();
AABox avatarBounds = avatarModel->getRenderableMeshBound();
if (avatarBounds.contains(ray.origin)) {
distance = 0.0f;
} else {
float boundDistance = FLT_MAX;
BoxFace face;
glm::vec3 surfaceNormal;
if (avatarBounds.findRayIntersection(ray.origin, ray.direction, boundDistance, face, surfaceNormal)) {
distance = boundDistance;
}
}
#else
glm::vec3 start;
glm::vec3 end;
float radius;
avatar->getCapsule(start, end, radius);
bool intersects = findRayCapsuleIntersection(ray.origin, normDirection, start, end, radius, distance);
if (!intersects) {
// ray doesn't intersect avatar's capsule
continue;
findRayCapsuleIntersection(ray.origin, ray.direction, start, end, radius, distance);
#endif
if (distance < FLT_MAX) {
sortedAvatars.emplace_back(distance, avatar);
}
}
if (sortedAvatars.size() > 1) {
static auto comparator = [](const SortedAvatar& left, const SortedAvatar& right) { return left.first < right.first; };
std::sort(sortedAvatars.begin(), sortedAvatars.end(), comparator);
}
for (auto it = sortedAvatars.begin(); it != sortedAvatars.end(); ++it) {
const SortedAvatar& sortedAvatar = *it;
// We can exit once avatarCapsuleDistance > bestDistance
if (sortedAvatar.first > result.distance) {
break;
}
float distance = FLT_MAX;
BoxFace face;
glm::vec3 surfaceNormal;
QVariantMap extraInfo;
intersects = avatarModel->findRayIntersectionAgainstSubMeshes(ray.origin, normDirection,
distance, face, surfaceNormal, extraInfo, true);
if (intersects && (!result.intersects || distance < result.distance)) {
result.intersects = true;
result.avatarID = avatar->getID();
result.distance = distance;
result.face = face;
result.surfaceNormal = surfaceNormal;
result.extraInfo = extraInfo;
SkeletonModelPointer avatarModel = sortedAvatar.second->getSkeletonModel();
if (avatarModel->findRayIntersectionAgainstSubMeshes(ray.origin, ray.direction, distance, face, surfaceNormal, extraInfo, true)) {
if (distance < result.distance) {
result.intersects = true;
result.avatarID = sortedAvatar.second->getID();
result.distance = distance;
result.face = face;
result.surfaceNormal = surfaceNormal;
result.extraInfo = extraInfo;
}
}
}
if (result.intersects) {
result.intersection = ray.origin + normDirection * result.distance;
result.intersection = ray.origin + ray.direction * result.distance;
}
return result;
@ -657,6 +676,14 @@ ParabolaToAvatarIntersectionResult AvatarManager::findParabolaIntersectionVector
return result;
}
// It's better to intersect the ray against the avatar's actual mesh, but this is currently difficult to
// do, because the transformed mesh data only exists over in GPU-land. As a compromise, this code
// intersects against the avatars capsule and then against the (T-pose) mesh. The end effect is that picking
// against the avatar is sort-of right, but you likely wont be able to pick against the arms.
// TODO -- find a way to extract transformed avatar mesh data from the rendering engine.
std::vector<SortedAvatar> sortedAvatars;
auto avatarHashCopy = getHashCopy();
for (auto avatarData : avatarHashCopy) {
auto avatar = std::static_pointer_cast<Avatar>(avatarData);
@ -665,47 +692,60 @@ ParabolaToAvatarIntersectionResult AvatarManager::findParabolaIntersectionVector
continue;
}
float parabolicDistance;
BoxFace face;
glm::vec3 surfaceNormal;
SkeletonModelPointer avatarModel = avatar->getSkeletonModel();
// It's better to intersect the parabola against the avatar's actual mesh, but this is currently difficult to
// do, because the transformed mesh data only exists over in GPU-land. As a compromise, this code
// intersects against the avatars capsule and then against the (T-pose) mesh. The end effect is that picking
// against the avatar is sort-of right, but you likely wont be able to pick against the arms.
// TODO -- find a way to extract transformed avatar mesh data from the rendering engine.
float distance = FLT_MAX;
#if 0
// if we weren't picking against the capsule, we would want to pick against the avatarBounds...
// AABox avatarBounds = avatarModel->getRenderableMeshBound();
// if (!avatarBounds.findParabolaIntersection(pick.origin, pick.velocity, pick.acceleration, parabolicDistance, face, surfaceNormal)) {
// // parabola doesn't intersect avatar's bounding-box
// continue;
// }
SkeletonModelPointer avatarModel = avatar->getSkeletonModel();
AABox avatarBounds = avatarModel->getRenderableMeshBound();
if (avatarBounds.contains(pick.origin)) {
distance = 0.0f;
} else {
float boundDistance = FLT_MAX;
BoxFace face;
glm::vec3 surfaceNormal;
if (avatarBounds.findParabolaIntersection(pick.origin, pick.velocity, pick.acceleration, boundDistance, face, surfaceNormal)) {
distance = boundDistance;
}
}
#else
glm::vec3 start;
glm::vec3 end;
float radius;
avatar->getCapsule(start, end, radius);
bool intersects = findParabolaCapsuleIntersection(pick.origin, pick.velocity, pick.acceleration, start, end, radius, avatar->getWorldOrientation(), parabolicDistance);
if (!intersects) {
// ray doesn't intersect avatar's capsule
continue;
findParabolaCapsuleIntersection(pick.origin, pick.velocity, pick.acceleration, start, end, radius, avatar->getWorldOrientation(), distance);
#endif
if (distance < FLT_MAX) {
sortedAvatars.emplace_back(distance, avatar);
}
}
if (sortedAvatars.size() > 1) {
static auto comparator = [](const SortedAvatar& left, const SortedAvatar& right) { return left.first < right.first; };
std::sort(sortedAvatars.begin(), sortedAvatars.end(), comparator);
}
for (auto it = sortedAvatars.begin(); it != sortedAvatars.end(); ++it) {
const SortedAvatar& sortedAvatar = *it;
// We can exit once avatarCapsuleDistance > bestDistance
if (sortedAvatar.first > result.parabolicDistance) {
break;
}
float parabolicDistance = FLT_MAX;
BoxFace face;
glm::vec3 surfaceNormal;
QVariantMap extraInfo;
intersects = avatarModel->findParabolaIntersectionAgainstSubMeshes(pick.origin, pick.velocity, pick.acceleration,
parabolicDistance, face, surfaceNormal, extraInfo, true);
if (intersects && (!result.intersects || parabolicDistance < result.parabolicDistance)) {
result.intersects = true;
result.avatarID = avatar->getID();
result.parabolicDistance = parabolicDistance;
result.face = face;
result.surfaceNormal = surfaceNormal;
result.extraInfo = extraInfo;
SkeletonModelPointer avatarModel = sortedAvatar.second->getSkeletonModel();
if (avatarModel->findParabolaIntersectionAgainstSubMeshes(pick.origin, pick.velocity, pick.acceleration, parabolicDistance, face, surfaceNormal, extraInfo, true)) {
if (parabolicDistance < result.parabolicDistance) {
result.intersects = true;
result.avatarID = sortedAvatar.second->getID();
result.parabolicDistance = parabolicDistance;
result.face = face;
result.surfaceNormal = surfaceNormal;
result.extraInfo = extraInfo;
}
}
}

View file

@ -31,6 +31,8 @@
#include "MyAvatar.h"
#include "OtherAvatar.h"
using SortedAvatar = std::pair<float, std::shared_ptr<Avatar>>;
/**jsdoc
* The AvatarManager API has properties and methods which manage Avatars within the same domain.
*

View file

@ -91,8 +91,6 @@ const float MIN_SCALE_CHANGED_DELTA = 0.001f;
const int MODE_READINGS_RING_BUFFER_SIZE = 500;
const float CENTIMETERS_PER_METER = 100.0f;
//#define DEBUG_DRAW_HMD_MOVING_AVERAGE
MyAvatar::MyAvatar(QThread* thread) :
Avatar(thread),
_yawSpeed(YAW_SPEED_DEFAULT),
@ -447,9 +445,27 @@ void MyAvatar::reset(bool andRecenter, bool andReload, bool andHead) {
void MyAvatar::update(float deltaTime) {
// update moving average of HMD facing in xz plane.
const float HMD_FACING_TIMESCALE = getRotationRecenterFilterLength();
const float PERCENTAGE_WEIGHT_HEAD_VS_SHOULDERS_AZIMUTH = 0.0f; // 100 percent shoulders
float tau = deltaTime / HMD_FACING_TIMESCALE;
_headControllerFacingMovingAverage = lerp(_headControllerFacingMovingAverage, _headControllerFacing, tau);
setHipToHandController(computeHandAzimuth());
// put the average hand azimuth into sensor space.
// then mix it with head facing direction to determine rotation recenter
if (getControllerPoseInAvatarFrame(controller::Action::LEFT_HAND).isValid() && getControllerPoseInAvatarFrame(controller::Action::RIGHT_HAND).isValid()) {
glm::vec3 handHipAzimuthWorldSpace = transformVectorFast(getTransform().getMatrix(), glm::vec3(_hipToHandController.x, 0.0f, _hipToHandController.y));
glm::mat4 sensorToWorldMat = getSensorToWorldMatrix();
glm::mat4 worldToSensorMat = glm::inverse(sensorToWorldMat);
glm::vec3 handHipAzimuthSensorSpace = transformVectorFast(worldToSensorMat, handHipAzimuthWorldSpace);
glm::vec2 normedHandHipAzimuthSensorSpace(0.0f, 1.0f);
if (glm::length(glm::vec2(handHipAzimuthSensorSpace.x, handHipAzimuthSensorSpace.z)) > 0.0f) {
normedHandHipAzimuthSensorSpace = glm::normalize(glm::vec2(handHipAzimuthSensorSpace.x, handHipAzimuthSensorSpace.z));
}
glm::vec2 headFacingPlusHandHipAzimuthMix = lerp(normedHandHipAzimuthSensorSpace, _headControllerFacing, PERCENTAGE_WEIGHT_HEAD_VS_SHOULDERS_AZIMUTH);
_headControllerFacingMovingAverage = lerp(_headControllerFacingMovingAverage, headFacingPlusHandHipAzimuthMix, tau);
} else {
_headControllerFacingMovingAverage = lerp(_headControllerFacingMovingAverage, _headControllerFacing, tau);
}
if (_smoothOrientationTimer < SMOOTH_TIME_ORIENTATION) {
_rotationChanged = usecTimestampNow();
@ -462,19 +478,23 @@ void MyAvatar::update(float deltaTime) {
setCurrentStandingHeight(computeStandingHeightMode(getControllerPoseInAvatarFrame(controller::Action::HEAD)));
setAverageHeadRotation(computeAverageHeadRotation(getControllerPoseInAvatarFrame(controller::Action::HEAD)));
#ifdef DEBUG_DRAW_HMD_MOVING_AVERAGE
auto sensorHeadPose = getControllerPoseInSensorFrame(controller::Action::HEAD);
glm::vec3 worldHeadPos = transformPoint(getSensorToWorldMatrix(), sensorHeadPose.getTranslation());
glm::vec3 worldFacingAverage = transformVectorFast(getSensorToWorldMatrix(), glm::vec3(_headControllerFacingMovingAverage.x, 0.0f, _headControllerFacingMovingAverage.y));
glm::vec3 worldFacing = transformVectorFast(getSensorToWorldMatrix(), glm::vec3(_headControllerFacing.x, 0.0f, _headControllerFacing.y));
DebugDraw::getInstance().drawRay(worldHeadPos, worldHeadPos + worldFacing, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f));
DebugDraw::getInstance().drawRay(worldHeadPos, worldHeadPos + worldFacingAverage, glm::vec4(0.0f, 0.0f, 1.0f, 1.0f));
#endif
if (_drawAverageFacingEnabled) {
auto sensorHeadPose = getControllerPoseInSensorFrame(controller::Action::HEAD);
glm::vec3 worldHeadPos = transformPoint(getSensorToWorldMatrix(), sensorHeadPose.getTranslation());
glm::vec3 worldFacingAverage = transformVectorFast(getSensorToWorldMatrix(), glm::vec3(_headControllerFacingMovingAverage.x, 0.0f, _headControllerFacingMovingAverage.y));
glm::vec3 worldFacing = transformVectorFast(getSensorToWorldMatrix(), glm::vec3(_headControllerFacing.x, 0.0f, _headControllerFacing.y));
DebugDraw::getInstance().drawRay(worldHeadPos, worldHeadPos + worldFacing, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f));
DebugDraw::getInstance().drawRay(worldHeadPos, worldHeadPos + worldFacingAverage, glm::vec4(0.0f, 0.0f, 1.0f, 1.0f));
// draw hand azimuth vector
glm::vec3 handAzimuthMidpoint = transformPoint(getTransform().getMatrix(), glm::vec3(_hipToHandController.x, 0.0f, _hipToHandController.y));
DebugDraw::getInstance().drawRay(getWorldPosition(), handAzimuthMidpoint, glm::vec4(0.0f, 1.0f, 1.0f, 1.0f));
}
if (_goToPending) {
setWorldPosition(_goToPosition);
setWorldOrientation(_goToOrientation);
_headControllerFacingMovingAverage = _headControllerFacing; // reset moving average
_headControllerFacingMovingAverage = _headControllerFacing; // reset moving average
_goToPending = false;
// updateFromHMDSensorMatrix (called from paintGL) expects that the sensorToWorldMatrix is updated for any position changes
// that happen between render and Application::update (which calls updateSensorToWorldMatrix to do so).
@ -796,6 +816,47 @@ void MyAvatar::updateFromHMDSensorMatrix(const glm::mat4& hmdSensorMatrix) {
}
}
// Find the vector halfway between the hip to hand azimuth vectors
// This midpoint hand azimuth is in Avatar space
glm::vec2 MyAvatar::computeHandAzimuth() const {
controller::Pose leftHandPoseAvatarSpace = getLeftHandPose();
controller::Pose rightHandPoseAvatarSpace = getRightHandPose();
controller::Pose headPoseAvatarSpace = getControllerPoseInAvatarFrame(controller::Action::HEAD);
const float HALFWAY = 0.50f;
glm::vec2 latestHipToHandController = _hipToHandController;
if (leftHandPoseAvatarSpace.isValid() && rightHandPoseAvatarSpace.isValid() && headPoseAvatarSpace.isValid()) {
// we need the old azimuth reading to prevent flipping the facing direction 180
// in the case where the hands go from being slightly less than 180 apart to slightly more than 180 apart.
glm::vec2 oldAzimuthReading = _hipToHandController;
if ((glm::length(glm::vec2(rightHandPoseAvatarSpace.translation.x, rightHandPoseAvatarSpace.translation.z)) > 0.0f) && (glm::length(glm::vec2(leftHandPoseAvatarSpace.translation.x, leftHandPoseAvatarSpace.translation.z)) > 0.0f)) {
latestHipToHandController = lerp(glm::normalize(glm::vec2(rightHandPoseAvatarSpace.translation.x, rightHandPoseAvatarSpace.translation.z)), glm::normalize(glm::vec2(leftHandPoseAvatarSpace.translation.x, leftHandPoseAvatarSpace.translation.z)), HALFWAY);
} else {
latestHipToHandController = glm::vec2(0.0f, -1.0f);
}
glm::vec3 headLookAtAvatarSpace = transformVectorFast(headPoseAvatarSpace.getMatrix(), glm::vec3(0.0f, 0.0f, 1.0f));
glm::vec2 headAzimuthAvatarSpace = glm::vec2(headLookAtAvatarSpace.x, headLookAtAvatarSpace.z);
if (glm::length(headAzimuthAvatarSpace) > 0.0f) {
headAzimuthAvatarSpace = glm::normalize(headAzimuthAvatarSpace);
} else {
headAzimuthAvatarSpace = -latestHipToHandController;
}
// check the angular distance from forward and back
float cosForwardAngle = glm::dot(latestHipToHandController, oldAzimuthReading);
float cosHeadShoulder = glm::dot(-latestHipToHandController, headAzimuthAvatarSpace);
// if we are now closer to the 180 flip of the previous chest forward
// then we negate our computed latestHipToHandController to keep the chest from flipping.
// also check the head to shoulder azimuth difference if we negate.
// don't negate the chest azimuth if this is greater than 100 degrees.
if ((cosForwardAngle < 0.0f) && !(cosHeadShoulder < -0.2f)) {
latestHipToHandController = -latestHipToHandController;
}
}
return latestHipToHandController;
}
void MyAvatar::updateJointFromController(controller::Action poseKey, ThreadSafeValueCache<glm::mat4>& matrixCache) {
assert(QThread::currentThread() == thread());
auto userInputMapper = DependencyManager::get<UserInputMapper>();
@ -1703,18 +1764,50 @@ void MyAvatar::setSkeletonModelURL(const QUrl& skeletonModelURL) {
emit skeletonChanged();
}
void MyAvatar::removeAvatarEntities(const std::function<bool(const QUuid& entityID)>& condition) {
bool isWearableEntity(const EntityItemPointer& entity) {
return entity->isVisible()
&& (entity->getParentJointIndex() != INVALID_JOINT_INDEX
|| (entity->getType() == EntityTypes::Model && (std::static_pointer_cast<ModelEntityItem>(entity))->getRelayParentJoints()))
&& (entity->getParentID() == DependencyManager::get<NodeList>()->getSessionUUID()
|| entity->getParentID() == AVATAR_SELF_ID);
}
void MyAvatar::clearAvatarEntities() {
auto treeRenderer = DependencyManager::get<EntityTreeRenderer>();
EntityTreePointer entityTree = treeRenderer ? treeRenderer->getTree() : nullptr;
if (entityTree) {
entityTree->withWriteLock([&] {
AvatarEntityMap avatarEntities = getAvatarEntityData();
for (auto entityID : avatarEntities.keys()) {
if (!condition || condition(entityID)) {
entityTree->deleteEntity(entityID, true, true);
}
}
AvatarEntityMap avatarEntities = getAvatarEntityData();
for (auto entityID : avatarEntities.keys()) {
entityTree->withWriteLock([&entityID, &entityTree] {
// remove this entity first from the entity tree
entityTree->deleteEntity(entityID, true, true);
});
// remove the avatar entity from our internal list
// (but indicate it doesn't need to be pulled from the tree)
clearAvatarEntity(entityID, false);
}
}
void MyAvatar::removeWearableAvatarEntities() {
auto treeRenderer = DependencyManager::get<EntityTreeRenderer>();
EntityTreePointer entityTree = treeRenderer ? treeRenderer->getTree() : nullptr;
if (entityTree) {
AvatarEntityMap avatarEntities = getAvatarEntityData();
for (auto entityID : avatarEntities.keys()) {
auto entity = entityTree->findEntityByID(entityID);
if (entity && isWearableEntity(entity)) {
entityTree->withWriteLock([&entityID, &entityTree] {
// remove this entity first from the entity tree
entityTree->deleteEntity(entityID, true, true);
});
// remove the avatar entity from our internal list
// (but indicate it doesn't need to be pulled from the tree)
clearAvatarEntity(entityID, false);
}
}
}
}
@ -2116,7 +2209,7 @@ void MyAvatar::setAttachmentData(const QVector<AttachmentData>& attachmentData)
}
// clear any existing avatar entities
setAvatarEntityData(AvatarEntityMap());
clearAvatarEntities();
for (auto& properties : newEntitiesProperties) {
DependencyManager::get<EntityScriptingInterface>()->addEntity(properties, true);
@ -2212,7 +2305,11 @@ void MyAvatar::initHeadBones() {
neckJointIndex = _skeletonModel->getFBXGeometry().neckJointIndex;
}
if (neckJointIndex == -1) {
return;
neckJointIndex = (_skeletonModel->getFBXGeometry().headJointIndex - 1);
if (neckJointIndex < 0) {
// return if the head is not even there. can't cauterize!!
return;
}
}
_headBoneSet.clear();
std::queue<int> q;
@ -3321,6 +3418,24 @@ glm::mat4 MyAvatar::deriveBodyFromHMDSensor() const {
return createMatFromQuatAndPos(headOrientationYawOnly, bodyPos);
}
glm::mat4 MyAvatar::getSpine2RotationRigSpace() const {
// static const glm::quat RIG_CHANGE_OF_BASIS = Quaternions::Y_180;
// RIG_CHANGE_OF_BASIS * AVATAR_TO_RIG_ROTATION * inverse(RIG_CHANGE_OF_BASIS) = Quaternions::Y_180; //avatar Space;
const glm::quat AVATAR_TO_RIG_ROTATION = Quaternions::Y_180;
glm::vec3 hipToHandRigSpace = AVATAR_TO_RIG_ROTATION * glm::vec3(_hipToHandController.x, 0.0f, _hipToHandController.y);
glm::vec3 u, v, w;
if (glm::length(hipToHandRigSpace) > 0.0f) {
hipToHandRigSpace = glm::normalize(hipToHandRigSpace);
} else {
hipToHandRigSpace = glm::vec3(0.0f, 0.0f, 1.0f);
}
generateBasisVectors(glm::vec3(0.0f,1.0f,0.0f), hipToHandRigSpace, u, v, w);
glm::mat4 spine2RigSpace(glm::vec4(w, 0.0f), glm::vec4(u, 0.0f), glm::vec4(v, 0.0f), glm::vec4(glm::vec3(0.0f, 0.0f, 0.0f), 1.0f));
return spine2RigSpace;
}
// ease in function for dampening cg movement
static float slope(float num) {
const float CURVE_CONSTANT = 1.0f;
@ -3904,7 +4019,7 @@ bool MyAvatar::FollowHelper::shouldActivateHorizontalCG(MyAvatar& myAvatar) cons
glm::vec3 currentHeadPosition = currentHeadPose.getTranslation();
float anatomicalHeadToHipsDistance = glm::length(defaultHeadPosition - defaultHipsPosition);
if (!isActive(Horizontal) &&
(glm::length(currentHeadPosition - defaultHipsPosition) > (anatomicalHeadToHipsDistance + DEFAULT_AVATAR_SPINE_STRETCH_LIMIT))) {
(glm::length(currentHeadPosition - defaultHipsPosition) > (anatomicalHeadToHipsDistance + (DEFAULT_AVATAR_SPINE_STRETCH_LIMIT * anatomicalHeadToHipsDistance)))) {
myAvatar.setResetMode(true);
stepDetected = true;
}
@ -3928,25 +4043,32 @@ void MyAvatar::FollowHelper::prePhysicsUpdate(MyAvatar& myAvatar, const glm::mat
qApp->getCamera().getMode() != CAMERA_MODE_MIRROR) {
if (!isActive(Rotation) && (shouldActivateRotation(myAvatar, desiredBodyMatrix, currentBodyMatrix) || hasDriveInput)) {
activate(Rotation);
myAvatar.setHeadControllerFacingMovingAverage(myAvatar._headControllerFacing);
myAvatar.setHeadControllerFacingMovingAverage(myAvatar.getHeadControllerFacing());
}
if (myAvatar.getCenterOfGravityModelEnabled()) {
if (!isActive(Horizontal) && (shouldActivateHorizontalCG(myAvatar) || hasDriveInput)) {
activate(Horizontal);
if (myAvatar.getEnableStepResetRotation()) {
activate(Rotation);
myAvatar.setHeadControllerFacingMovingAverage(myAvatar.getHeadControllerFacing());
}
}
} else {
if (!isActive(Horizontal) && (shouldActivateHorizontal(myAvatar, desiredBodyMatrix, currentBodyMatrix) || hasDriveInput)) {
activate(Horizontal);
if (myAvatar.getEnableStepResetRotation()) {
activate(Rotation);
myAvatar.setHeadControllerFacingMovingAverage(myAvatar.getHeadControllerFacing());
}
}
}
if (!isActive(Vertical) && (shouldActivateVertical(myAvatar, desiredBodyMatrix, currentBodyMatrix) || hasDriveInput)) {
activate(Vertical);
}
} else {
if (!isActive(Rotation) && getForceActivateRotation()) {
activate(Rotation);
myAvatar.setHeadControllerFacingMovingAverage(myAvatar._headControllerFacing);
myAvatar.setHeadControllerFacingMovingAverage(myAvatar.getHeadControllerFacing());
setForceActivateRotation(false);
}
if (!isActive(Horizontal) && getForceActivateHorizontal()) {

View file

@ -201,6 +201,8 @@ class MyAvatar : public Avatar {
Q_PROPERTY(bool hasAudioEnabledFaceMovement READ getHasAudioEnabledFaceMovement WRITE setHasAudioEnabledFaceMovement)
Q_PROPERTY(float rotationRecenterFilterLength READ getRotationRecenterFilterLength WRITE setRotationRecenterFilterLength)
Q_PROPERTY(float rotationThreshold READ getRotationThreshold WRITE setRotationThreshold)
Q_PROPERTY(bool enableStepResetRotation READ getEnableStepResetRotation WRITE setEnableStepResetRotation)
Q_PROPERTY(bool enableDrawAverageFacing READ getEnableDrawAverageFacing WRITE setEnableDrawAverageFacing)
//TODO: make gravity feature work Q_PROPERTY(glm::vec3 gravity READ getGravity WRITE setGravity)
Q_PROPERTY(glm::vec3 leftHandPosition READ getLeftHandPosition)
@ -318,6 +320,9 @@ public:
// as it moves through the world.
void updateFromHMDSensorMatrix(const glm::mat4& hmdSensorMatrix);
// compute the hip to hand average azimuth.
glm::vec2 computeHandAzimuth() const;
// read the location of a hand controller and save the transform
void updateJointFromController(controller::Action poseKey, ThreadSafeValueCache<glm::mat4>& matrixCache);
@ -909,6 +914,10 @@ public:
virtual void rebuildCollisionShape() override;
const glm::vec2& getHipToHandController() const { return _hipToHandController; }
void setHipToHandController(glm::vec2 currentHipToHandController) { _hipToHandController = currentHipToHandController; }
const glm::vec2& getHeadControllerFacing() const { return _headControllerFacing; }
void setHeadControllerFacing(glm::vec2 currentHeadControllerFacing) { _headControllerFacing = currentHeadControllerFacing; }
const glm::vec2& getHeadControllerFacingMovingAverage() const { return _headControllerFacingMovingAverage; }
void setHeadControllerFacingMovingAverage(glm::vec2 currentHeadControllerFacing) { _headControllerFacingMovingAverage = currentHeadControllerFacing; }
float getCurrentStandingHeight() const { return _currentStandingHeight; }
@ -931,7 +940,8 @@ public:
* @returns {object[]}
*/
Q_INVOKABLE QVariantList getAvatarEntitiesVariant();
void removeAvatarEntities(const std::function<bool(const QUuid& entityID)>& condition = {});
void clearAvatarEntities();
void removeWearableAvatarEntities();
/**jsdoc
* @function MyAvatar.isFlying
@ -1045,6 +1055,8 @@ public:
// results are in sensor frame (-z forward)
glm::mat4 deriveBodyFromHMDSensor() const;
glm::mat4 getSpine2RotationRigSpace() const;
glm::vec3 computeCounterBalance();
// derive avatar body position and orientation from using the current HMD Sensor location in relation to the previous
@ -1515,6 +1527,10 @@ private:
float getRotationRecenterFilterLength() const { return _rotationRecenterFilterLength; }
void setRotationThreshold(float angleRadians);
float getRotationThreshold() const { return _rotationThreshold; }
void setEnableStepResetRotation(bool stepReset) { _stepResetRotationEnabled = stepReset; }
bool getEnableStepResetRotation() const { return _stepResetRotationEnabled; }
void setEnableDrawAverageFacing(bool drawAverage) { _drawAverageFacingEnabled = drawAverage; }
bool getEnableDrawAverageFacing() const { return _drawAverageFacingEnabled; }
bool isMyAvatar() const override { return true; }
virtual int parseDataFromBuffer(const QByteArray& buffer) override;
virtual glm::vec3 getSkeletonPosition() const override;
@ -1637,6 +1653,8 @@ private:
std::atomic<bool> _hasScriptedBlendShapes { false };
std::atomic<float> _rotationRecenterFilterLength { 4.0f };
std::atomic<float> _rotationThreshold { 0.5235f }; // 30 degrees in radians
std::atomic<bool> _stepResetRotationEnabled { true };
std::atomic<bool> _drawAverageFacingEnabled { false };
// working copy -- see AvatarData for thread-safe _sensorToWorldMatrixCache, used for outward facing access
glm::mat4 _sensorToWorldMatrix { glm::mat4() };
@ -1650,6 +1668,8 @@ private:
glm::vec2 _headControllerFacingMovingAverage { 0.0f, 0.0f }; // facing vector in xz plane (sensor space)
glm::quat _averageHeadRotation { 0.0f, 0.0f, 0.0f, 1.0f };
glm::vec2 _hipToHandController { 0.0f, -1.0f }; // spine2 facing vector in xz plane (avatar space)
float _currentStandingHeight { 0.0f };
bool _resetMode { true };
RingBufferHistory<int> _recentModeReadings;
@ -1782,4 +1802,6 @@ void audioListenModeFromScriptValue(const QScriptValue& object, AudioListenerMod
QScriptValue driveKeysToScriptValue(QScriptEngine* engine, const MyAvatar::DriveKeys& driveKeys);
void driveKeysFromScriptValue(const QScriptValue& object, MyAvatar::DriveKeys& driveKeys);
bool isWearableEntity(const EntityItemPointer& entity);
#endif // hifi_MyAvatar_h

View file

@ -0,0 +1,23 @@
//
// Created by Sabrina Shanman 8/14/2018
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "MyAvatarHeadTransformNode.h"
#include "DependencyManager.h"
#include "AvatarManager.h"
#include "MyAvatar.h"
Transform MyAvatarHeadTransformNode::getTransform() {
auto myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
glm::vec3 pos = myAvatar->getHeadPosition();
glm::quat headOri = myAvatar->getHeadOrientation();
glm::quat ori = headOri * glm::angleAxis(-PI / 2.0f, Vectors::RIGHT);
return Transform(ori, glm::vec3(1.0f), pos);
}

View file

@ -0,0 +1,19 @@
//
// Created by Sabrina Shanman 8/14/2018
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_MyAvatarHeadTransformNode_h
#define hifi_MyAvatarHeadTransformNode_h
#include "TransformNode.h"
class MyAvatarHeadTransformNode : public TransformNode {
public:
MyAvatarHeadTransformNode() { }
Transform getTransform() override;
};
#endif // hifi_MyAvatarHeadTransformNode_h

View file

@ -238,6 +238,35 @@ void MySkeletonModel::updateRig(float deltaTime, glm::mat4 parentTransform) {
params.primaryControllerPoses[Rig::PrimaryControllerType_Hips] = sensorToRigPose * hips;
params.primaryControllerFlags[Rig::PrimaryControllerType_Hips] = (uint8_t)Rig::ControllerFlags::Enabled | (uint8_t)Rig::ControllerFlags::Estimated;
// set spine2 if we have hand controllers
if (myAvatar->getControllerPoseInAvatarFrame(controller::Action::RIGHT_HAND).isValid() &&
myAvatar->getControllerPoseInAvatarFrame(controller::Action::LEFT_HAND).isValid() &&
!(params.primaryControllerFlags[Rig::PrimaryControllerType_Spine2] & (uint8_t)Rig::ControllerFlags::Enabled)) {
AnimPose currentSpine2Pose;
AnimPose currentHeadPose;
AnimPose currentHipsPose;
bool spine2Exists = _rig.getAbsoluteJointPoseInRigFrame(_rig.indexOfJoint("Spine2"), currentSpine2Pose);
bool headExists = _rig.getAbsoluteJointPoseInRigFrame(_rig.indexOfJoint("Head"), currentHeadPose);
bool hipsExists = _rig.getAbsoluteJointPoseInRigFrame(_rig.indexOfJoint("Hips"), currentHipsPose);
if (spine2Exists && headExists && hipsExists) {
AnimPose rigSpaceYaw(myAvatar->getSpine2RotationRigSpace());
glm::vec3 u, v, w;
glm::vec3 fwd = rigSpaceYaw.rot() * glm::vec3(0.0f, 0.0f, 1.0f);
glm::vec3 up = currentHeadPose.trans() - currentHipsPose.trans();
if (glm::length(up) > 0.0f) {
up = glm::normalize(up);
} else {
up = glm::vec3(0.0f, 1.0f, 0.0f);
}
generateBasisVectors(up, fwd, u, v, w);
AnimPose newSpinePose(glm::mat4(glm::vec4(w, 0.0f), glm::vec4(u, 0.0f), glm::vec4(v, 0.0f), glm::vec4(glm::vec3(0.0f, 0.0f, 0.0f), 1.0f)));
currentSpine2Pose.rot() = newSpinePose.rot();
params.primaryControllerPoses[Rig::PrimaryControllerType_Spine2] = currentSpine2Pose;
params.primaryControllerFlags[Rig::PrimaryControllerType_Spine2] = (uint8_t)Rig::ControllerFlags::Enabled | (uint8_t)Rig::ControllerFlags::Estimated;
}
}
} else {
_prevHipsValid = false;
}

View file

@ -40,11 +40,9 @@ QmlCommerce::QmlCommerce() {
connect(ledger.data(), &Ledger::transferAssetToUsernameResult, this, &QmlCommerce::transferAssetToUsernameResult);
connect(ledger.data(), &Ledger::availableUpdatesResult, this, &QmlCommerce::availableUpdatesResult);
connect(ledger.data(), &Ledger::updateItemResult, this, &QmlCommerce::updateItemResult);
auto accountManager = DependencyManager::get<AccountManager>();
connect(accountManager.data(), &AccountManager::usernameChanged, this, [&]() {
setPassphrase("");
});
connect(accountManager.data(), &AccountManager::usernameChanged, this, [&]() { setPassphrase(""); });
_appsPath = PathUtils::getAppDataPath() + "Apps/";
}
@ -105,7 +103,11 @@ void QmlCommerce::balance() {
}
}
void QmlCommerce::inventory(const QString& editionFilter, const QString& typeFilter, const QString& titleFilter, const int& page, const int& perPage) {
void QmlCommerce::inventory(const QString& editionFilter,
const QString& typeFilter,
const QString& titleFilter,
const int& page,
const int& perPage) {
auto ledger = DependencyManager::get<Ledger>();
auto wallet = DependencyManager::get<Wallet>();
QStringList cachedPublicKeys = wallet->listPublicKeys();
@ -166,24 +168,30 @@ void QmlCommerce::certificateInfo(const QString& certificateId) {
ledger->certificateInfo(certificateId);
}
void QmlCommerce::transferAssetToNode(const QString& nodeID, const QString& certificateID, const int& amount, const QString& optionalMessage) {
void QmlCommerce::transferAssetToNode(const QString& nodeID,
const QString& certificateID,
const int& amount,
const QString& optionalMessage) {
auto ledger = DependencyManager::get<Ledger>();
auto wallet = DependencyManager::get<Wallet>();
QStringList keys = wallet->listPublicKeys();
if (keys.count() == 0) {
QJsonObject result{ { "status", "fail" },{ "message", "Uninitialized Wallet." } };
QJsonObject result{ { "status", "fail" }, { "message", "Uninitialized Wallet." } };
return emit transferAssetToNodeResult(result);
}
QString key = keys[0];
ledger->transferAssetToNode(key, nodeID, certificateID, amount, optionalMessage);
}
void QmlCommerce::transferAssetToUsername(const QString& username, const QString& certificateID, const int& amount, const QString& optionalMessage) {
void QmlCommerce::transferAssetToUsername(const QString& username,
const QString& certificateID,
const int& amount,
const QString& optionalMessage) {
auto ledger = DependencyManager::get<Ledger>();
auto wallet = DependencyManager::get<Wallet>();
QStringList keys = wallet->listPublicKeys();
if (keys.count() == 0) {
QJsonObject result{ { "status", "fail" },{ "message", "Uninitialized Wallet." } };
QJsonObject result{ { "status", "fail" }, { "message", "Uninitialized Wallet." } };
return emit transferAssetToUsernameResult(result);
}
QString key = keys[0];
@ -194,10 +202,7 @@ void QmlCommerce::replaceContentSet(const QString& itemHref, const QString& cert
auto ledger = DependencyManager::get<Ledger>();
ledger->updateLocation(certificateID, DependencyManager::get<AddressManager>()->getPlaceName(), true);
qApp->replaceDomainContent(itemHref);
QJsonObject messageProperties = {
{ "status", "SuccessfulRequestToReplaceContent" },
{ "content_set_url", itemHref }
};
QJsonObject messageProperties = { { "status", "SuccessfulRequestToReplaceContent" }, { "content_set_url", itemHref } };
UserActivityLogger::getInstance().logAction("replace_domain_content", messageProperties);
emit contentSetChanged(itemHref);
@ -214,10 +219,7 @@ QString QmlCommerce::getInstalledApps(const QString& justInstalledAppID) {
QDir directory(_appsPath);
QStringList apps = directory.entryList(QStringList("*.app.json"));
foreach(QString appFileName, apps) {
installedAppsFromMarketplace += appFileName;
installedAppsFromMarketplace += ",";
foreach (QString appFileName, apps) {
// If we were supplied a "justInstalledAppID" argument, that means we're entering this function
// to get the new list of installed apps immediately after installing an app.
// In that case, the app we installed may not yet have its associated script running -
@ -243,10 +245,12 @@ QString QmlCommerce::getInstalledApps(const QString& justInstalledAppID) {
// delete the .app.json from the user's local disk.
if (!runningScripts.contains(scriptURL)) {
if (!appFile.remove()) {
qCWarning(commerce)
<< "Couldn't delete local .app.json file (app's script isn't running). App filename is:"
<< appFileName;
qCWarning(commerce) << "Couldn't delete local .app.json file (app's script isn't running). App filename is:"
<< appFileName;
}
} else {
installedAppsFromMarketplace += appFileName;
installedAppsFromMarketplace += ",";
}
} else {
qCDebug(commerce) << "Couldn't open local .app.json file for reading.";
@ -317,7 +321,9 @@ bool QmlCommerce::uninstallApp(const QString& itemHref) {
// Read from the file to know what .js script to stop
QFile appFile(_appsPath + "/" + appHref.fileName());
if (!appFile.open(QIODevice::ReadOnly)) {
qCDebug(commerce) << "Couldn't open local .app.json file for deletion. Cannot continue with app uninstallation. App filename is:" << appHref.fileName();
qCDebug(commerce)
<< "Couldn't open local .app.json file for deletion. Cannot continue with app uninstallation. App filename is:"
<< appHref.fileName();
return false;
}
QJsonDocument appFileJsonDocument = QJsonDocument::fromJson(appFile.readAll());
@ -325,13 +331,15 @@ bool QmlCommerce::uninstallApp(const QString& itemHref) {
QString scriptUrl = appFileJsonObject["scriptURL"].toString();
if (!DependencyManager::get<ScriptEngines>()->stopScript(scriptUrl.trimmed(), false)) {
qCWarning(commerce) << "Couldn't stop script during app uninstall. Continuing anyway. ScriptURL is:" << scriptUrl.trimmed();
qCWarning(commerce) << "Couldn't stop script during app uninstall. Continuing anyway. ScriptURL is:"
<< scriptUrl.trimmed();
}
// Delete the .app.json from the filesystem
// remove() closes the file first.
if (!appFile.remove()) {
qCWarning(commerce) << "Couldn't delete local .app.json file during app uninstall. Continuing anyway. App filename is:" << appHref.fileName();
qCWarning(commerce) << "Couldn't delete local .app.json file during app uninstall. Continuing anyway. App filename is:"
<< appHref.fileName();
}
QFileInfo appFileInfo(appFile);
@ -352,7 +360,8 @@ bool QmlCommerce::openApp(const QString& itemHref) {
QJsonObject appFileJsonObject = appFileJsonDocument.object();
QString homeUrl = appFileJsonObject["homeURL"].toString();
auto tablet = dynamic_cast<TabletProxy*>(DependencyManager::get<TabletScriptingInterface>()->getTablet("com.highfidelity.interface.tablet.system"));
auto tablet = dynamic_cast<TabletProxy*>(
DependencyManager::get<TabletScriptingInterface>()->getTablet("com.highfidelity.interface.tablet.system"));
if (homeUrl.contains(".qml", Qt::CaseInsensitive)) {
tablet->loadQMLSource(homeUrl);
} else if (homeUrl.contains(".html", Qt::CaseInsensitive)) {
@ -377,7 +386,7 @@ void QmlCommerce::updateItem(const QString& certificateId) {
auto wallet = DependencyManager::get<Wallet>();
QStringList keys = wallet->listPublicKeys();
if (keys.count() == 0) {
QJsonObject result{ { "status", "fail" },{ "message", "Uninitialized Wallet." } };
QJsonObject result{ { "status", "fail" }, { "message", "Uninitialized Wallet." } };
return emit updateItemResult(result);
}
QString key = keys[0];

View file

@ -32,9 +32,6 @@ PickResultPointer CollisionPickResult::compareAndProcessNewResult(const PickResu
}
intersects = entityIntersections.size() || avatarIntersections.size();
if (newCollisionResult->loadState == LOAD_STATE_NOT_LOADED || loadState == LOAD_STATE_UNKNOWN) {
loadState = (LoadState)newCollisionResult->loadState;
}
return std::make_shared<CollisionPickResult>(*this);
}
@ -80,23 +77,42 @@ QVariantMap CollisionPickResult::toVariantMap() const {
}
variantMap["intersectingObjects"] = qIntersectingObjects;
variantMap["loaded"] = (loadState == LOAD_STATE_LOADED);
variantMap["collisionRegion"] = pickVariant;
return variantMap;
}
bool CollisionPick::isShapeInfoReady() {
bool CollisionPick::isLoaded() const {
return !_mathPick.shouldComputeShapeInfo() || (_cachedResource && _cachedResource->isLoaded());
}
bool CollisionPick::getShapeInfoReady() {
if (_mathPick.shouldComputeShapeInfo()) {
if (_cachedResource && _cachedResource->isLoaded()) {
computeShapeInfo(_mathPick, *_mathPick.shapeInfo, _cachedResource);
return true;
_mathPick.loaded = true;
} else {
_mathPick.loaded = false;
}
return false;
} else {
computeShapeInfoDimensionsOnly(_mathPick, *_mathPick.shapeInfo, _cachedResource);
_mathPick.loaded = true;
}
return true;
return _mathPick.loaded;
}
void CollisionPick::computeShapeInfoDimensionsOnly(CollisionRegion& pick, ShapeInfo& shapeInfo, QSharedPointer<GeometryResource> resource) {
ShapeType type = shapeInfo.getType();
glm::vec3 dimensions = pick.transform.getScale();
QString modelURL = (resource ? resource->getURL().toString() : "");
if (type == SHAPE_TYPE_COMPOUND) {
shapeInfo.setParams(type, dimensions, modelURL);
} else if (type >= SHAPE_TYPE_SIMPLE_HULL && type <= SHAPE_TYPE_STATIC_MESH) {
shapeInfo.setParams(type, 0.5f * dimensions, modelURL);
} else {
shapeInfo.setParams(type, 0.5f * dimensions, modelURL);
}
}
void CollisionPick::computeShapeInfo(CollisionRegion& pick, ShapeInfo& shapeInfo, QSharedPointer<GeometryResource> resource) {
@ -328,8 +344,25 @@ void CollisionPick::computeShapeInfo(CollisionRegion& pick, ShapeInfo& shapeInfo
}
}
CollisionPick::CollisionPick(const PickFilter& filter, float maxDistance, bool enabled, CollisionRegion collisionRegion, PhysicsEnginePointer physicsEngine) :
Pick(filter, maxDistance, enabled),
_mathPick(collisionRegion),
_physicsEngine(physicsEngine) {
if (collisionRegion.shouldComputeShapeInfo()) {
_cachedResource = DependencyManager::get<ModelCache>()->getCollisionGeometryResource(collisionRegion.modelURL);
}
_mathPick.loaded = isLoaded();
}
CollisionRegion CollisionPick::getMathematicalPick() const {
return _mathPick;
CollisionRegion mathPick = _mathPick;
mathPick.loaded = isLoaded();
if (!parentTransform) {
return mathPick;
} else {
mathPick.transform = parentTransform->getTransform().worldTransform(mathPick.transform);
return mathPick;
}
}
void CollisionPick::filterIntersections(std::vector<ContactTestResult>& intersections) const {
@ -356,31 +389,37 @@ void CollisionPick::filterIntersections(std::vector<ContactTestResult>& intersec
}
PickResultPointer CollisionPick::getEntityIntersection(const CollisionRegion& pick) {
if (!isShapeInfoReady()) {
if (!pick.loaded) {
// Cannot compute result
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), CollisionPickResult::LOAD_STATE_NOT_LOADED, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}
getShapeInfoReady();
auto entityIntersections = _physicsEngine->contactTest(USER_COLLISION_MASK_ENTITIES, *pick.shapeInfo, pick.transform);
auto entityIntersections = _physicsEngine->contactTest(USER_COLLISION_MASK_ENTITIES, *pick.shapeInfo, pick.transform, USER_COLLISION_GROUP_DYNAMIC, pick.threshold);
filterIntersections(entityIntersections);
return std::make_shared<CollisionPickResult>(pick, CollisionPickResult::LOAD_STATE_LOADED, entityIntersections, std::vector<ContactTestResult>());
return std::make_shared<CollisionPickResult>(pick, entityIntersections, std::vector<ContactTestResult>());
}
PickResultPointer CollisionPick::getOverlayIntersection(const CollisionRegion& pick) {
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), isShapeInfoReady() ? CollisionPickResult::LOAD_STATE_LOADED : CollisionPickResult::LOAD_STATE_NOT_LOADED, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
return std::make_shared<CollisionPickResult>(pick, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}
PickResultPointer CollisionPick::getAvatarIntersection(const CollisionRegion& pick) {
if (!isShapeInfoReady()) {
if (!pick.loaded) {
// Cannot compute result
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), CollisionPickResult::LOAD_STATE_NOT_LOADED, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
return std::make_shared<CollisionPickResult>(pick, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}
getShapeInfoReady();
auto avatarIntersections = _physicsEngine->contactTest(USER_COLLISION_MASK_AVATARS, *pick.shapeInfo, pick.transform);
auto avatarIntersections = _physicsEngine->contactTest(USER_COLLISION_MASK_AVATARS, *pick.shapeInfo, pick.transform, USER_COLLISION_GROUP_DYNAMIC, pick.threshold);
filterIntersections(avatarIntersections);
return std::make_shared<CollisionPickResult>(pick, CollisionPickResult::LOAD_STATE_LOADED, std::vector<ContactTestResult>(), avatarIntersections);
return std::make_shared<CollisionPickResult>(pick, std::vector<ContactTestResult>(), avatarIntersections);
}
PickResultPointer CollisionPick::getHUDIntersection(const CollisionRegion& pick) {
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), isShapeInfoReady() ? CollisionPickResult::LOAD_STATE_LOADED : CollisionPickResult::LOAD_STATE_NOT_LOADED, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}
Transform CollisionPick::getResultTransform() const {
return Transform(getMathematicalPick().transform);
}

View file

@ -11,35 +11,28 @@
#include <PhysicsEngine.h>
#include <model-networking/ModelCache.h>
#include <RegisteredMetaTypes.h>
#include <TransformNode.h>
#include <Pick.h>
class CollisionPickResult : public PickResult {
public:
enum LoadState {
LOAD_STATE_UNKNOWN,
LOAD_STATE_NOT_LOADED,
LOAD_STATE_LOADED
};
CollisionPickResult() {}
CollisionPickResult(const QVariantMap& pickVariant) : PickResult(pickVariant) {}
CollisionPickResult(const CollisionRegion& searchRegion, LoadState loadState, const std::vector<ContactTestResult>& entityIntersections, const std::vector<ContactTestResult>& avatarIntersections) :
CollisionPickResult(const CollisionRegion& searchRegion, const std::vector<ContactTestResult>& entityIntersections, const std::vector<ContactTestResult>& avatarIntersections) :
PickResult(searchRegion.toVariantMap()),
loadState(loadState),
intersects(entityIntersections.size() || avatarIntersections.size()),
entityIntersections(entityIntersections),
avatarIntersections(avatarIntersections) {
avatarIntersections(avatarIntersections)
{
}
CollisionPickResult(const CollisionPickResult& collisionPickResult) : PickResult(collisionPickResult.pickVariant) {
avatarIntersections = collisionPickResult.avatarIntersections;
entityIntersections = collisionPickResult.entityIntersections;
intersects = collisionPickResult.intersects;
loadState = collisionPickResult.loadState;
}
LoadState loadState { LOAD_STATE_UNKNOWN };
bool intersects { false };
std::vector<ContactTestResult> entityIntersections;
std::vector<ContactTestResult> avatarIntersections;
@ -54,28 +47,24 @@ public:
class CollisionPick : public Pick<CollisionRegion> {
public:
CollisionPick(const PickFilter& filter, float maxDistance, bool enabled, CollisionRegion collisionRegion, PhysicsEnginePointer physicsEngine) :
Pick(filter, maxDistance, enabled),
_mathPick(collisionRegion),
_physicsEngine(physicsEngine) {
if (collisionRegion.shouldComputeShapeInfo()) {
_cachedResource = DependencyManager::get<ModelCache>()->getCollisionGeometryResource(collisionRegion.modelURL);
}
}
CollisionPick(const PickFilter& filter, float maxDistance, bool enabled, CollisionRegion collisionRegion, PhysicsEnginePointer physicsEngine);
CollisionRegion getMathematicalPick() const override;
PickResultPointer getDefaultResult(const QVariantMap& pickVariant) const override {
return std::make_shared<CollisionPickResult>(pickVariant, CollisionPickResult::LOAD_STATE_UNKNOWN, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
return std::make_shared<CollisionPickResult>(pickVariant, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}
PickResultPointer getEntityIntersection(const CollisionRegion& pick) override;
PickResultPointer getOverlayIntersection(const CollisionRegion& pick) override;
PickResultPointer getAvatarIntersection(const CollisionRegion& pick) override;
PickResultPointer getHUDIntersection(const CollisionRegion& pick) override;
Transform getResultTransform() const override;
protected:
// Returns true if pick.shapeInfo is valid. Otherwise, attempts to get the shapeInfo ready for use.
bool isShapeInfoReady();
// Returns true if the resource for _mathPick.shapeInfo is loaded or if a resource is not needed.
bool isLoaded() const;
// Returns true if _mathPick.shapeInfo is valid. Otherwise, attempts to get the _mathPick ready for use.
bool getShapeInfoReady();
void computeShapeInfo(CollisionRegion& pick, ShapeInfo& shapeInfo, QSharedPointer<GeometryResource> resource);
void computeShapeInfoDimensionsOnly(CollisionRegion& pick, ShapeInfo& shapeInfo, QSharedPointer<GeometryResource> resource);
void filterIntersections(std::vector<ContactTestResult>& intersections) const;
CollisionRegion _mathPick;

View file

@ -35,6 +35,37 @@ void LaserPointer::editRenderStatePath(const std::string& state, const QVariant&
}
}
QVariantMap LaserPointer::toVariantMap() const {
QVariantMap qVariantMap;
QVariantMap qRenderStates;
for (auto iter = _renderStates.cbegin(); iter != _renderStates.cend(); iter++) {
auto renderState = iter->second;
QVariantMap qRenderState;
qRenderState["start"] = renderState->getStartID();
qRenderState["path"] = std::static_pointer_cast<RenderState>(renderState)->getPathID();
qRenderState["end"] = renderState->getEndID();
qRenderStates[iter->first.c_str()] = qRenderState;
}
qVariantMap["renderStates"] = qRenderStates;
QVariantMap qDefaultRenderStates;
for (auto iter = _defaultRenderStates.cbegin(); iter != _defaultRenderStates.cend(); iter++) {
float distance = iter->second.first;
auto defaultRenderState = iter->second.second;
QVariantMap qDefaultRenderState;
qDefaultRenderState["distance"] = distance;
qDefaultRenderState["start"] = defaultRenderState->getStartID();
qDefaultRenderState["path"] = std::static_pointer_cast<RenderState>(defaultRenderState)->getPathID();
qDefaultRenderState["end"] = defaultRenderState->getEndID();
qDefaultRenderStates[iter->first.c_str()] = qDefaultRenderState;
}
qVariantMap["defaultRenderStates"] = qDefaultRenderStates;
return qVariantMap;
}
glm::vec3 LaserPointer::getPickOrigin(const PickResultPointer& pickResult) const {
auto rayPickResult = std::static_pointer_cast<RayPickResult>(pickResult);
return (rayPickResult ? vec3FromVariant(rayPickResult->pickVariant["origin"]) : glm::vec3(0.0f));
@ -42,6 +73,9 @@ glm::vec3 LaserPointer::getPickOrigin(const PickResultPointer& pickResult) const
glm::vec3 LaserPointer::getPickEnd(const PickResultPointer& pickResult, float distance) const {
auto rayPickResult = std::static_pointer_cast<RayPickResult>(pickResult);
if (!rayPickResult) {
return glm::vec3(0.0f);
}
if (distance > 0.0f) {
PickRay pick = PickRay(rayPickResult->pickVariant);
return pick.origin + distance * pick.direction;

View file

@ -42,6 +42,8 @@ public:
LaserPointer(const QVariant& rayProps, const RenderStateMap& renderStates, const DefaultRenderStateMap& defaultRenderStates, bool hover, const PointerTriggers& triggers,
bool faceAvatar, bool followNormal, float followNormalStrength, bool centerEndY, bool lockEnd, bool distanceScaleEnd, bool scaleWithAvatar, bool enabled);
QVariantMap toVariantMap() const override;
static std::shared_ptr<StartEndRenderState> buildRenderState(const QVariantMap& propMap);
protected:

View file

@ -0,0 +1,27 @@
//
// Created by Sabrina Shanman 8/14/2018
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "MouseTransformNode.h"
#include "Application.h"
#include "display-plugins/CompositorHelper.h"
#include "RayPick.h"
Transform MouseTransformNode::getTransform() {
QVariant position = qApp->getApplicationCompositor().getReticleInterface()->getPosition();
if (position.isValid()) {
Transform transform;
QVariantMap posMap = position.toMap();
PickRay pickRay = qApp->getCamera().computePickRay(posMap["x"].toFloat(), posMap["y"].toFloat());
transform.setTranslation(pickRay.origin);
transform.setRotation(rotationBetween(Vectors::UP, pickRay.direction));
return transform;
}
return Transform();
}

View file

@ -0,0 +1,18 @@
//
// Created by Sabrina Shanman 8/14/2018
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_MouseTransformNode_h
#define hifi_MouseTransformNode_h
#include "TransformNode.h"
class MouseTransformNode : public TransformNode {
public:
Transform getTransform() override;
};
#endif // hifi_MouseTransformNode_h

View file

@ -13,11 +13,13 @@
#include "avatar/AvatarManager.h"
#include "scripting/HMDScriptingInterface.h"
#include "DependencyManager.h"
#include "PickManager.h"
PickResultPointer ParabolaPick::getEntityIntersection(const PickParabola& pick) {
if (glm::length2(pick.acceleration) > EPSILON && glm::length2(pick.velocity) > EPSILON) {
bool precisionPicking = !(getFilter().doesPickCoarse() || DependencyManager::get<PickManager>()->getForceCoarsePicking());
ParabolaToEntityIntersectionResult entityRes =
DependencyManager::get<EntityScriptingInterface>()->findParabolaIntersectionVector(pick, !getFilter().doesPickCoarse(),
DependencyManager::get<EntityScriptingInterface>()->findParabolaIntersectionVector(pick, precisionPicking,
getIncludeItemsAs<EntityItemID>(), getIgnoreItemsAs<EntityItemID>(), !getFilter().doesPickInvisible(), !getFilter().doesPickNonCollidable());
if (entityRes.intersects) {
return std::make_shared<ParabolaPickResult>(IntersectionType::ENTITY, entityRes.entityID, entityRes.distance, entityRes.parabolicDistance, entityRes.intersection, pick, entityRes.surfaceNormal, entityRes.extraInfo);
@ -28,8 +30,9 @@ PickResultPointer ParabolaPick::getEntityIntersection(const PickParabola& pick)
PickResultPointer ParabolaPick::getOverlayIntersection(const PickParabola& pick) {
if (glm::length2(pick.acceleration) > EPSILON && glm::length2(pick.velocity) > EPSILON) {
bool precisionPicking = !(getFilter().doesPickCoarse() || DependencyManager::get<PickManager>()->getForceCoarsePicking());
ParabolaToOverlayIntersectionResult overlayRes =
qApp->getOverlays().findParabolaIntersectionVector(pick, !getFilter().doesPickCoarse(),
qApp->getOverlays().findParabolaIntersectionVector(pick, precisionPicking,
getIncludeItemsAs<OverlayID>(), getIgnoreItemsAs<OverlayID>(), !getFilter().doesPickInvisible(), !getFilter().doesPickNonCollidable());
if (overlayRes.intersects) {
return std::make_shared<ParabolaPickResult>(IntersectionType::OVERLAY, overlayRes.overlayID, overlayRes.distance, overlayRes.parabolicDistance, overlayRes.intersection, pick, overlayRes.surfaceNormal, overlayRes.extraInfo);
@ -67,4 +70,16 @@ glm::vec3 ParabolaPick::getAcceleration() const {
return scale * (DependencyManager::get<AvatarManager>()->getMyAvatar()->getWorldOrientation() * _accelerationAxis);
}
return scale * _accelerationAxis;
}
Transform ParabolaPick::getResultTransform() const {
PickResultPointer result = getPrevPickResult();
if (!result) {
return Transform();
}
auto parabolaResult = std::static_pointer_cast<ParabolaPickResult>(result);
Transform transform;
transform.setTranslation(parabolaResult->intersection);
return transform;
}

View file

@ -83,6 +83,7 @@ public:
PickResultPointer getOverlayIntersection(const PickParabola& pick) override;
PickResultPointer getAvatarIntersection(const PickParabola& pick) override;
PickResultPointer getHUDIntersection(const PickParabola& pick) override;
Transform getResultTransform() const override;
protected:
float _speed;

View file

@ -60,6 +60,35 @@ void ParabolaPointer::editRenderStatePath(const std::string& state, const QVaria
}
}
QVariantMap ParabolaPointer::toVariantMap() const {
QVariantMap qVariantMap;
QVariantMap qRenderStates;
for (auto iter = _renderStates.cbegin(); iter != _renderStates.cend(); iter++) {
auto renderState = iter->second;
QVariantMap qRenderState;
qRenderState["start"] = renderState->getStartID();
qRenderState["end"] = renderState->getEndID();
qRenderStates[iter->first.c_str()] = qRenderState;
}
qVariantMap["renderStates"] = qRenderStates;
QVariantMap qDefaultRenderStates;
for (auto iter = _defaultRenderStates.cbegin(); iter != _defaultRenderStates.cend(); iter++) {
float distance = iter->second.first;
auto defaultRenderState = iter->second.second;
QVariantMap qDefaultRenderState;
qDefaultRenderState["distance"] = distance;
qDefaultRenderState["start"] = defaultRenderState->getStartID();
qDefaultRenderState["end"] = defaultRenderState->getEndID();
qDefaultRenderStates[iter->first.c_str()] = qDefaultRenderState;
}
qVariantMap["defaultRenderStates"] = qDefaultRenderStates;
return qVariantMap;
}
glm::vec3 ParabolaPointer::getPickOrigin(const PickResultPointer& pickResult) const {
auto parabolaPickResult = std::static_pointer_cast<ParabolaPickResult>(pickResult);
return (parabolaPickResult ? vec3FromVariant(parabolaPickResult->pickVariant["origin"]) : glm::vec3(0.0f));
@ -67,6 +96,9 @@ glm::vec3 ParabolaPointer::getPickOrigin(const PickResultPointer& pickResult) co
glm::vec3 ParabolaPointer::getPickEnd(const PickResultPointer& pickResult, float distance) const {
auto parabolaPickResult = std::static_pointer_cast<ParabolaPickResult>(pickResult);
if (!parabolaPickResult) {
return glm::vec3(0.0f);
}
if (distance > 0.0f) {
PickParabola pick = PickParabola(parabolaPickResult->pickVariant);
return pick.origin + pick.velocity * distance + 0.5f * pick.acceleration * distance * distance;

View file

@ -97,6 +97,8 @@ public:
ParabolaPointer(const QVariant& rayProps, const RenderStateMap& renderStates, const DefaultRenderStateMap& defaultRenderStates, bool hover, const PointerTriggers& triggers,
bool faceAvatar, bool followNormal, float followNormalStrength, bool centerEndY, bool lockEnd, bool distanceScaleEnd, bool scaleWithAvatar, bool enabled);
QVariantMap toVariantMap() const override;
static std::shared_ptr<StartEndRenderState> buildRenderState(const QVariantMap& propMap);
protected:

View file

@ -54,11 +54,13 @@ PathPointer::~PathPointer() {
void PathPointer::setRenderState(const std::string& state) {
withWriteLock([&] {
if (!_currentRenderState.empty() && state != _currentRenderState) {
if (_renderStates.find(_currentRenderState) != _renderStates.end()) {
_renderStates[_currentRenderState]->disable();
auto renderState = _renderStates.find(_currentRenderState);
if (renderState != _renderStates.end()) {
renderState->second->disable();
}
if (_defaultRenderStates.find(_currentRenderState) != _defaultRenderStates.end()) {
_defaultRenderStates[_currentRenderState].second->disable();
auto defaultRenderState = _defaultRenderStates.find(_currentRenderState);
if (defaultRenderState != _defaultRenderStates.end()) {
defaultRenderState->second.second->disable();
}
}
_currentRenderState = state;
@ -105,7 +107,7 @@ PickResultPointer PathPointer::getVisualPickResult(const PickResultPointer& pick
glm::mat4 entityMat = createMatFromQuatAndPos(props.getRotation(), props.getPosition());
glm::mat4 finalPosAndRotMat = entityMat * _lockEndObject.offsetMat;
pos = extractTranslation(finalPosAndRotMat);
rot = glmExtractRotation(finalPosAndRotMat);
rot = props.getRotation();
dim = props.getDimensions();
registrationPoint = props.getRegistrationPoint();
}
@ -142,52 +144,57 @@ PickResultPointer PathPointer::getVisualPickResult(const PickResultPointer& pick
void PathPointer::updateVisuals(const PickResultPointer& pickResult) {
IntersectionType type = getPickedObjectType(pickResult);
if (_enabled && !_currentRenderState.empty() && _renderStates.find(_currentRenderState) != _renderStates.end() &&
auto renderState = _renderStates.find(_currentRenderState);
auto defaultRenderState = _defaultRenderStates.find(_currentRenderState);
if (_enabled && !_currentRenderState.empty() && renderState != _renderStates.end() &&
(type != IntersectionType::NONE || _pathLength > 0.0f)) {
glm::vec3 origin = getPickOrigin(pickResult);
glm::vec3 end = getPickEnd(pickResult, _pathLength);
glm::vec3 surfaceNormal = getPickedObjectNormal(pickResult);
_renderStates[_currentRenderState]->update(origin, end, surfaceNormal, _scaleWithAvatar, _distanceScaleEnd, _centerEndY, _faceAvatar,
_followNormal, _followNormalStrength, _pathLength, pickResult);
if (_defaultRenderStates.find(_currentRenderState) != _defaultRenderStates.end()) {
_defaultRenderStates[_currentRenderState].second->disable();
renderState->second->update(origin, end, surfaceNormal, _scaleWithAvatar, _distanceScaleEnd, _centerEndY, _faceAvatar,
_followNormal, _followNormalStrength, _pathLength, pickResult);
if (defaultRenderState != _defaultRenderStates.end() && defaultRenderState->second.second->isEnabled()) {
defaultRenderState->second.second->disable();
}
} else if (_enabled && !_currentRenderState.empty() && _defaultRenderStates.find(_currentRenderState) != _defaultRenderStates.end()) {
if (_renderStates.find(_currentRenderState) != _renderStates.end()) {
_renderStates[_currentRenderState]->disable();
} else if (_enabled && !_currentRenderState.empty() && defaultRenderState != _defaultRenderStates.end()) {
if (renderState != _renderStates.end() && renderState->second->isEnabled()) {
renderState->second->disable();
}
glm::vec3 origin = getPickOrigin(pickResult);
glm::vec3 end = getPickEnd(pickResult, _defaultRenderStates[_currentRenderState].first);
_defaultRenderStates[_currentRenderState].second->update(origin, end, Vectors::UP, _scaleWithAvatar, _distanceScaleEnd, _centerEndY,
_faceAvatar, _followNormal, _followNormalStrength, _defaultRenderStates[_currentRenderState].first, pickResult);
glm::vec3 end = getPickEnd(pickResult, defaultRenderState->second.first);
defaultRenderState->second.second->update(origin, end, Vectors::UP, _scaleWithAvatar, _distanceScaleEnd, _centerEndY,
_faceAvatar, _followNormal, _followNormalStrength, defaultRenderState->second.first, pickResult);
} else if (!_currentRenderState.empty()) {
if (_renderStates.find(_currentRenderState) != _renderStates.end()) {
_renderStates[_currentRenderState]->disable();
if (renderState != _renderStates.end() && renderState->second->isEnabled()) {
renderState->second->disable();
}
if (_defaultRenderStates.find(_currentRenderState) != _defaultRenderStates.end()) {
_defaultRenderStates[_currentRenderState].second->disable();
if (defaultRenderState != _defaultRenderStates.end() && defaultRenderState->second.second->isEnabled()) {
defaultRenderState->second.second->disable();
}
}
}
void PathPointer::editRenderState(const std::string& state, const QVariant& startProps, const QVariant& pathProps, const QVariant& endProps) {
withWriteLock([&] {
updateRenderStateOverlay(_renderStates[state]->getStartID(), startProps);
updateRenderStateOverlay(_renderStates[state]->getEndID(), endProps);
QVariant startDim = startProps.toMap()["dimensions"];
if (startDim.isValid()) {
_renderStates[state]->setStartDim(vec3FromVariant(startDim));
}
QVariant endDim = endProps.toMap()["dimensions"];
if (endDim.isValid()) {
_renderStates[state]->setEndDim(vec3FromVariant(endDim));
}
QVariant rotation = endProps.toMap()["rotation"];
if (rotation.isValid()) {
_renderStates[state]->setEndRot(quatFromVariant(rotation));
}
auto renderState = _renderStates.find(state);
if (renderState != _renderStates.end()) {
updateRenderStateOverlay(renderState->second->getStartID(), startProps);
updateRenderStateOverlay(renderState->second->getEndID(), endProps);
QVariant startDim = startProps.toMap()["dimensions"];
if (startDim.isValid()) {
renderState->second->setStartDim(vec3FromVariant(startDim));
}
QVariant endDim = endProps.toMap()["dimensions"];
if (endDim.isValid()) {
renderState->second->setEndDim(vec3FromVariant(endDim));
}
QVariant rotation = endProps.toMap()["rotation"];
if (rotation.isValid()) {
renderState->second->setEndRot(quatFromVariant(rotation));
}
editRenderStatePath(state, pathProps);
editRenderStatePath(state, pathProps);
}
});
}
@ -271,6 +278,7 @@ void StartEndRenderState::disable() {
endProps.insert("ignoreRayIntersection", true);
qApp->getOverlays().editOverlay(getEndID(), endProps);
}
_enabled = false;
}
void StartEndRenderState::update(const glm::vec3& origin, const glm::vec3& end, const glm::vec3& surfaceNormal, bool scaleWithAvatar, bool distanceScaleEnd, bool centerEndY,
@ -337,6 +345,7 @@ void StartEndRenderState::update(const glm::vec3& origin, const glm::vec3& end,
endProps.insert("ignoreRayIntersection", doesEndIgnoreRays());
qApp->getOverlays().editOverlay(getEndID(), endProps);
}
_enabled = true;
}
glm::vec2 PathPointer::findPos2D(const PickedObject& pickedObject, const glm::vec3& origin) {
@ -350,4 +359,4 @@ glm::vec2 PathPointer::findPos2D(const PickedObject& pickedObject, const glm::ve
default:
return glm::vec2(NAN);
}
}
}

View file

@ -47,6 +47,8 @@ public:
virtual void update(const glm::vec3& origin, const glm::vec3& end, const glm::vec3& surfaceNormal, bool scaleWithAvatar, bool distanceScaleEnd, bool centerEndY,
bool faceAvatar, bool followNormal, float followNormalStrength, float distance, const PickResultPointer& pickResult);
bool isEnabled() const { return _enabled; }
protected:
OverlayID _startID;
OverlayID _endID;
@ -59,6 +61,8 @@ protected:
glm::quat _avgEndRot;
bool _avgEndRotInitialized { false };
bool _enabled { true };
};
typedef std::unordered_map<std::string, std::shared_ptr<StartEndRenderState>> RenderStateMap;

View file

@ -23,6 +23,13 @@
#include "MouseParabolaPick.h"
#include "CollisionPick.h"
#include "SpatialParentFinder.h"
#include "NestableTransformNode.h"
#include "PickTransformNode.h"
#include "MouseTransformNode.h"
#include "avatar/MyAvatarHeadTransformNode.h"
#include "avatar/AvatarManager.h"
#include <ScriptEngine.h>
unsigned int PickScriptingInterface::createPick(const PickQuery::PickType type, const QVariant& properties) {
@ -276,8 +283,10 @@ unsigned int PickScriptingInterface::createCollisionPick(const QVariant& propert
}
CollisionRegion collisionRegion(propMap);
auto collisionPick = std::make_shared<CollisionPick>(filter, maxDistance, enabled, collisionRegion, qApp->getPhysicsEngine());
collisionPick->parentTransform = createTransformNode(propMap);
return DependencyManager::get<PickManager>()->addPick(PickQuery::Collision, std::make_shared<CollisionPick>(filter, maxDistance, enabled, collisionRegion, qApp->getPhysicsEngine()));
return DependencyManager::get<PickManager>()->addPick(PickQuery::Collision, collisionPick);
}
void PickScriptingInterface::enablePick(unsigned int uid) {
@ -351,3 +360,43 @@ unsigned int PickScriptingInterface::getPerFrameTimeBudget() const {
void PickScriptingInterface::setPerFrameTimeBudget(unsigned int numUsecs) {
DependencyManager::get<PickManager>()->setPerFrameTimeBudget(numUsecs);
}
std::shared_ptr<TransformNode> PickScriptingInterface::createTransformNode(const QVariantMap& propMap) {
if (propMap["parentID"].isValid()) {
QUuid parentUuid = propMap["parentID"].toUuid();
if (!parentUuid.isNull()) {
// Infer object type from parentID
// For now, assume a QUuuid is a SpatiallyNestable. This should change when picks are converted over to QUuids.
bool success;
std::weak_ptr<SpatiallyNestable> nestablePointer = DependencyManager::get<SpatialParentFinder>()->find(parentUuid, success, nullptr);
int parentJointIndex = 0;
if (propMap["parentJointIndex"].isValid()) {
parentJointIndex = propMap["parentJointIndex"].toInt();
}
auto sharedNestablePointer = nestablePointer.lock();
if (success && sharedNestablePointer) {
return std::make_shared<NestableTransformNode>(nestablePointer, parentJointIndex);
}
}
unsigned int pickID = propMap["parentID"].toUInt();
if (pickID != 0) {
return std::make_shared<PickTransformNode>(pickID);
}
}
if (propMap["joint"].isValid()) {
QString joint = propMap["joint"].toString();
if (joint == "Mouse") {
return std::make_shared<MouseTransformNode>();
} else if (joint == "Avatar") {
return std::make_shared<MyAvatarHeadTransformNode>();
} else if (!joint.isNull()) {
auto myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
int jointIndex = myAvatar->getJointIndex(joint);
return std::make_shared<NestableTransformNode>(myAvatar, jointIndex);
}
}
return std::shared_ptr<TransformNode>();
}

View file

@ -152,9 +152,6 @@ public:
* @property {CollisionRegion} collisionRegion The CollisionRegion that was used. Valid even if there was no intersection.
*/
// TODO: Add this to the CollisionPickResult jsdoc once model collision picks are working
//* @property {boolean} loaded If the CollisionRegion was successfully loaded (may be false if a model was used)
/**jsdoc
* Information about the Collision Pick's intersection with an object
*
@ -320,6 +317,9 @@ public slots:
* @returns {number}
*/
static constexpr unsigned int INTERSECTED_HUD() { return IntersectionType::HUD; }
protected:
static std::shared_ptr<TransformNode> createTransformNode(const QVariantMap& propMap);
};
#endif // hifi_PickScriptingInterface_h

View file

@ -76,16 +76,19 @@ unsigned int PointerScriptingInterface::createStylus(const QVariant& properties)
* @property {number} distance The distance at which to render the end of this Ray Pointer, if one is defined.
*/
/**jsdoc
* A set of properties used to define the visual aspect of a Ray Pointer in the case that the Pointer is intersecting something.
* A set of properties which define the visual aspect of a Ray Pointer in the case that the Pointer is intersecting something.
*
* @typedef {object} Pointers.RayPointerRenderState
* @property {string} name The name of this render state, used by {@link Pointers.setRenderState} and {@link Pointers.editRenderState}
* @property {Overlays.OverlayProperties} [start] All of the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field).
* An overlay to represent the beginning of the Ray Pointer, if desired.
* @property {Overlays.OverlayProperties} [path] All of the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field), which <b>must</b> be <code>"line3d"</code>.
* An overlay to represent the path of the Ray Pointer, if desired.
* @property {Overlays.OverlayProperties} [end] All of the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field).
* An overlay to represent the end of the Ray Pointer, if desired.
* @property {string} name When using {@link Pointers.createPointer}, the name of this render state, used by {@link Pointers.setRenderState} and {@link Pointers.editRenderState}
* @property {Overlays.OverlayProperties|QUuid} [start] When using {@link Pointers.createPointer}, an optionally defined overlay to represent the beginning of the Ray Pointer,
* using the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field).
* When returned from {@link Pointers.getPointerProperties}, the ID of the created overlay if it exists, or a null ID otherwise.
* @property {Overlays.OverlayProperties|QUuid} [path] When using {@link Pointers.createPointer}, an optionally defined overlay to represent the path of the Ray Pointer,
* using the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field), which <b>must</b> be <code>"line3d"</code>.
* When returned from {@link Pointers.getPointerProperties}, the ID of the created overlay if it exists, or a null ID otherwise.
* @property {Overlays.OverlayProperties|QUuid} [end] When using {@link Pointers.createPointer}, an optionally defined overlay to represent the end of the Ray Pointer,
* using the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field).
* When returned from {@link Pointers.getPointerProperties}, the ID of the created overlay if it exists, or a null ID otherwise.
*/
/**jsdoc
* A set of properties that can be passed to {@link Pointers.createPointer} to create a new Pointer. Contains the relevant {@link Picks.PickProperties} to define the underlying Pick.
@ -99,8 +102,12 @@ unsigned int PointerScriptingInterface::createStylus(const QVariant& properties)
* @property {number} [followNormalStrength=0.0] The strength of the interpolation between the real normal and the visual normal if followNormal is true. <code>0-1</code>. If 0 or 1,
* the normal will follow exactly.
* @property {boolean} [enabled=false]
* @property {Pointers.RayPointerRenderState[]} [renderStates] A list of different visual states to switch between.
* @property {Pointers.DefaultRayPointerRenderState[]} [defaultRenderStates] A list of different visual states to use if there is no intersection.
* @property {Pointers.RayPointerRenderState[]|Object.<string, Pointers.RayPointerRenderState>} [renderStates] A collection of different visual states to switch between.
* When using {@link Pointers.createPointer}, a list of RayPointerRenderStates.
* When returned from {@link Pointers.getPointerProperties}, a map between render state names and RayPointRenderStates.
* @property {Pointers.DefaultRayPointerRenderState[]|Object.<string, Pointers.DefaultRayPointerRenderState>} [defaultRenderStates] A collection of different visual states to use if there is no intersection.
* When using {@link Pointers.createPointer}, a list of DefaultRayPointerRenderStates.
* When returned from {@link Pointers.getPointerProperties}, a map between render state names and DefaultRayPointRenderStates.
* @property {boolean} [hover=false] If this Pointer should generate hover events.
* @property {Pointers.Trigger[]} [triggers] A list of different triggers mechanisms that control this Pointer's click event generation.
*/
@ -224,12 +231,15 @@ unsigned int PointerScriptingInterface::createLaserPointer(const QVariant& prope
* A set of properties used to define the visual aspect of a Parabola Pointer in the case that the Pointer is intersecting something.
*
* @typedef {object} Pointers.ParabolaPointerRenderState
* @property {string} name The name of this render state, used by {@link Pointers.setRenderState} and {@link Pointers.editRenderState}
* @property {Overlays.OverlayProperties} [start] All of the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field).
* An overlay to represent the beginning of the Parabola Pointer, if desired.
* @property {Pointers.ParabolaProperties} [path] The rendering properties of the parabolic path defined by the Parabola Pointer.
* @property {Overlays.OverlayProperties} [end] All of the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field).
* An overlay to represent the end of the Parabola Pointer, if desired.
* @property {string} name When using {@link Pointers.createPointer}, the name of this render state, used by {@link Pointers.setRenderState} and {@link Pointers.editRenderState}
* @property {Overlays.OverlayProperties|QUuid} [start] When using {@link Pointers.createPointer}, an optionally defined overlay to represent the beginning of the Parabola Pointer,
* using the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field).
* When returned from {@link Pointers.getPointerProperties}, the ID of the created overlay if it exists, or a null ID otherwise.
* @property {Pointers.ParabolaProperties} [path] When using {@link Pointers.createPointer}, the optionally defined rendering properties of the parabolic path defined by the Parabola Pointer.
* Not defined in {@link Pointers.getPointerProperties}.
* @property {Overlays.OverlayProperties|QUuid} [end] When using {@link Pointers.createPointer}, an optionally defined overlay to represent the end of the Parabola Pointer,
* using the properties you would normally pass to {@link Overlays.addOverlay}, plus the type (as a <code>type</code> field).
* When returned from {@link Pointers.getPointerProperties}, the ID of the created overlay if it exists, or a null ID otherwise.
*/
/**jsdoc
* A set of properties that can be passed to {@link Pointers.createPointer} to create a new Pointer. Contains the relevant {@link Picks.PickProperties} to define the underlying Pick.
@ -243,8 +253,12 @@ unsigned int PointerScriptingInterface::createLaserPointer(const QVariant& prope
* @property {number} [followNormalStrength=0.0] The strength of the interpolation between the real normal and the visual normal if followNormal is true. <code>0-1</code>. If 0 or 1,
* the normal will follow exactly.
* @property {boolean} [enabled=false]
* @property {Pointers.ParabolaPointerRenderState[]} [renderStates] A list of different visual states to switch between.
* @property {Pointers.DefaultParabolaPointerRenderState[]} [defaultRenderStates] A list of different visual states to use if there is no intersection.
* @property {Pointers.ParabolaPointerRenderState[]|Object.<string, Pointers.ParabolaPointerRenderState>} [renderStates] A collection of different visual states to switch between.
* When using {@link Pointers.createPointer}, a list of ParabolaPointerRenderStates.
* When returned from {@link Pointers.getPointerProperties}, a map between render state names and ParabolaPointerRenderStates.
* @property {Pointers.DefaultParabolaPointerRenderState[]|Object.<string, Pointers.DefaultParabolaPointerRenderState>} [defaultRenderStates] A collection of different visual states to use if there is no intersection.
* When using {@link Pointers.createPointer}, a list of DefaultParabolaPointerRenderStates.
* When returned from {@link Pointers.getPointerProperties}, a map between render state names and DefaultParabolaPointerRenderStates.
* @property {boolean} [hover=false] If this Pointer should generate hover events.
* @property {Pointers.Trigger[]} [triggers] A list of different triggers mechanisms that control this Pointer's click event generation.
*/
@ -375,4 +389,8 @@ QVariantMap PointerScriptingInterface::getPrevPickResult(unsigned int uid) const
result = pickResult->toVariantMap();
}
return result;
}
QVariantMap PointerScriptingInterface::getPointerProperties(unsigned int uid) const {
return DependencyManager::get<PointerManager>()->getPointerProperties(uid);
}

View file

@ -203,6 +203,14 @@ public:
*/
Q_INVOKABLE bool isMouse(unsigned int uid) { return DependencyManager::get<PointerManager>()->isMouse(uid); }
/**jsdoc
* Returns information about an existing Pointer
* @function Pointers.getPointerState
* @param {number} uid The ID of the Pointer, as returned by {@link Pointers.createPointer}.
* @returns {Pointers.LaserPointerProperties|Pointers.StylusPointerProperties|Pointers.ParabolaPointerProperties} The information about the Pointer.
* Currently only includes renderStates and defaultRenderStates with associated overlay IDs.
*/
Q_INVOKABLE QVariantMap getPointerProperties(unsigned int uid) const;
};
#endif // hifi_PointerScriptingInterface_h

View file

@ -13,10 +13,12 @@
#include "avatar/AvatarManager.h"
#include "scripting/HMDScriptingInterface.h"
#include "DependencyManager.h"
#include "PickManager.h"
PickResultPointer RayPick::getEntityIntersection(const PickRay& pick) {
bool precisionPicking = !(getFilter().doesPickCoarse() || DependencyManager::get<PickManager>()->getForceCoarsePicking());
RayToEntityIntersectionResult entityRes =
DependencyManager::get<EntityScriptingInterface>()->findRayIntersectionVector(pick, !getFilter().doesPickCoarse(),
DependencyManager::get<EntityScriptingInterface>()->findRayIntersectionVector(pick, precisionPicking,
getIncludeItemsAs<EntityItemID>(), getIgnoreItemsAs<EntityItemID>(), !getFilter().doesPickInvisible(), !getFilter().doesPickNonCollidable());
if (entityRes.intersects) {
return std::make_shared<RayPickResult>(IntersectionType::ENTITY, entityRes.entityID, entityRes.distance, entityRes.intersection, pick, entityRes.surfaceNormal, entityRes.extraInfo);
@ -26,8 +28,9 @@ PickResultPointer RayPick::getEntityIntersection(const PickRay& pick) {
}
PickResultPointer RayPick::getOverlayIntersection(const PickRay& pick) {
bool precisionPicking = !(getFilter().doesPickCoarse() || DependencyManager::get<PickManager>()->getForceCoarsePicking());
RayToOverlayIntersectionResult overlayRes =
qApp->getOverlays().findRayIntersectionVector(pick, !getFilter().doesPickCoarse(),
qApp->getOverlays().findRayIntersectionVector(pick, precisionPicking,
getIncludeItemsAs<OverlayID>(), getIgnoreItemsAs<OverlayID>(), !getFilter().doesPickInvisible(), !getFilter().doesPickNonCollidable());
if (overlayRes.intersects) {
return std::make_shared<RayPickResult>(IntersectionType::OVERLAY, overlayRes.overlayID, overlayRes.distance, overlayRes.intersection, pick, overlayRes.surfaceNormal, overlayRes.extraInfo);
@ -50,6 +53,18 @@ PickResultPointer RayPick::getHUDIntersection(const PickRay& pick) {
return std::make_shared<RayPickResult>(IntersectionType::HUD, QUuid(), glm::distance(pick.origin, hudRes), hudRes, pick);
}
Transform RayPick::getResultTransform() const {
PickResultPointer result = getPrevPickResult();
if (!result) {
return Transform();
}
auto rayResult = std::static_pointer_cast<RayPickResult>(result);
Transform transform;
transform.setTranslation(rayResult->intersection);
return transform;
}
glm::vec3 RayPick::intersectRayWithXYPlane(const glm::vec3& origin, const glm::vec3& direction, const glm::vec3& point, const glm::quat& rotation, const glm::vec3& registration) {
// TODO: take into account registration
glm::vec3 n = rotation * Vectors::FRONT;

View file

@ -77,6 +77,7 @@ public:
PickResultPointer getOverlayIntersection(const PickRay& pick) override;
PickResultPointer getAvatarIntersection(const PickRay& pick) override;
PickResultPointer getHUDIntersection(const PickRay& pick) override;
Transform getResultTransform() const override;
// These are helper functions for projecting and intersecting rays
static glm::vec3 intersectRayWithEntityXYPlane(const QUuid& entityID, const glm::vec3& origin, const glm::vec3& direction);

View file

@ -225,4 +225,16 @@ PickResultPointer StylusPick::getAvatarIntersection(const StylusTip& pick) {
PickResultPointer StylusPick::getHUDIntersection(const StylusTip& pick) {
return std::make_shared<StylusPickResult>(pick.toVariantMap());
}
Transform StylusPick::getResultTransform() const {
PickResultPointer result = getPrevPickResult();
if (!result) {
return Transform();
}
auto stylusResult = std::static_pointer_cast<StylusPickResult>(result);
Transform transform;
transform.setTranslation(stylusResult->intersection);
return transform;
}

View file

@ -66,6 +66,7 @@ public:
PickResultPointer getOverlayIntersection(const StylusTip& pick) override;
PickResultPointer getAvatarIntersection(const StylusTip& pick) override;
PickResultPointer getHUDIntersection(const StylusTip& pick) override;
Transform getResultTransform() const override;
bool isLeftHand() const override { return _side == Side::Left; }
bool isRightHand() const override { return _side == Side::Right; }

View file

@ -64,7 +64,9 @@ void StylusPointer::updateVisuals(const PickResultPointer& pickResult) {
return;
}
}
hide();
if (_showing) {
hide();
}
}
void StylusPointer::show(const StylusTip& tip) {
@ -80,6 +82,7 @@ void StylusPointer::show(const StylusTip& tip) {
props["visible"] = true;
qApp->getOverlays().editOverlay(_stylusOverlay, props);
}
_showing = true;
}
void StylusPointer::hide() {
@ -88,6 +91,7 @@ void StylusPointer::hide() {
props.insert("visible", false);
qApp->getOverlays().editOverlay(_stylusOverlay, props);
}
_showing = false;
}
bool StylusPointer::shouldHover(const PickResultPointer& pickResult) {
@ -203,6 +207,10 @@ void StylusPointer::setRenderState(const std::string& state) {
}
}
QVariantMap StylusPointer::toVariantMap() const {
return QVariantMap();
}
glm::vec3 StylusPointer::findIntersection(const PickedObject& pickedObject, const glm::vec3& origin, const glm::vec3& direction) {
switch (pickedObject.type) {
case ENTITY:

View file

@ -33,6 +33,8 @@ public:
void setRenderState(const std::string& state) override;
void editRenderState(const std::string& state, const QVariant& startProps, const QVariant& pathProps, const QVariant& endProps) override {}
QVariantMap toVariantMap() const override;
static OverlayID buildStylusOverlay(const QVariantMap& properties);
protected:
@ -76,6 +78,8 @@ private:
static glm::vec3 findIntersection(const PickedObject& pickedObject, const glm::vec3& origin, const glm::vec3& direction);
static glm::vec2 findPos2D(const PickedObject& pickedObject, const glm::vec3& origin);
bool _showing { true };
};
#endif // hifi_StylusPointer_h

View file

@ -190,4 +190,12 @@ void TestScriptingInterface::saveObject(QVariant variant, const QString& filenam
void TestScriptingInterface::showMaximized() {
qApp->getWindow()->showMaximized();
}
void TestScriptingInterface::setOtherAvatarsReplicaCount(int count) {
qApp->setOtherAvatarsReplicaCount(count);
}
int TestScriptingInterface::getOtherAvatarsReplicaCount() {
return qApp->getOtherAvatarsReplicaCount();
}

View file

@ -149,6 +149,20 @@ public slots:
*/
void showMaximized();
/**jsdoc
* Values higher than 0 will create replicas of other-avatars when entering a domain for testing purpouses
* @function Test.setOtherAvatarsReplicaCount
* @param {number} count - Number of replicas we want to create
*/
Q_INVOKABLE void setOtherAvatarsReplicaCount(int count);
/**jsdoc
* Return the number of replicas that are being created of other-avatars when entering a domain
* @function Test.getOtherAvatarsReplicaCount
* @returns {number} Current number of replicas of other-avatars.
*/
Q_INVOKABLE int getOtherAvatarsReplicaCount();
private:
bool waitForCondition(qint64 maxWaitMs, std::function<bool()> condition);
QString _testResultsLocation;

View file

@ -26,6 +26,7 @@
#include <OffscreenUi.h>
#include <PerfStat.h>
#include <plugins/DisplayPlugin.h>
#include <PickManager.h>
#include <gl/Context.h>
@ -147,6 +148,20 @@ void Stats::updateStats(bool force) {
}
STAT_UPDATE(gameLoopRate, (int)qApp->getGameLoopRate());
auto pickManager = DependencyManager::get<PickManager>();
if (pickManager && (_expanded || force)) {
std::vector<int> totalPicks = pickManager->getTotalPickCounts();
STAT_UPDATE(stylusPicksCount, totalPicks[PickQuery::Stylus]);
STAT_UPDATE(rayPicksCount, totalPicks[PickQuery::Ray]);
STAT_UPDATE(parabolaPicksCount, totalPicks[PickQuery::Parabola]);
STAT_UPDATE(collisionPicksCount, totalPicks[PickQuery::Collision]);
std::vector<QVector4D> updatedPicks = pickManager->getUpdatedPickCounts();
STAT_UPDATE(stylusPicksUpdated, updatedPicks[PickQuery::Stylus]);
STAT_UPDATE(rayPicksUpdated, updatedPicks[PickQuery::Ray]);
STAT_UPDATE(parabolaPicksUpdated, updatedPicks[PickQuery::Parabola]);
STAT_UPDATE(collisionPicksUpdated, updatedPicks[PickQuery::Collision]);
}
auto bandwidthRecorder = DependencyManager::get<BandwidthRecorder>();
STAT_UPDATE(packetInCount, (int)bandwidthRecorder->getCachedTotalAverageInputPacketsPerSecond());
STAT_UPDATE(packetOutCount, (int)bandwidthRecorder->getCachedTotalAverageOutputPacketsPerSecond());
@ -286,7 +301,7 @@ void Stats::updateStats(bool force) {
// downloads << (int)(resource->getProgress() * 100.0f) << "% ";
//}
//downloads << "(" << << " pending)";
} // expanded avatar column
}
// Fourth column, octree stats
int serverCount = 0;

View file

@ -22,7 +22,6 @@ public: \
private: \
type _##name{ initialValue };
/**jsdoc
* @namespace Stats
*
@ -169,6 +168,15 @@ private: \
* @property {number} implicitHeight
*
* @property {object} layer - <em>Read-only.</em>
* @property {number} stylusPicksCount - <em>Read-only.</em>
* @property {number} rayPicksCount - <em>Read-only.</em>
* @property {number} parabolaPicksCount - <em>Read-only.</em>
* @property {number} collisionPicksCount - <em>Read-only.</em>
* @property {Vec4} stylusPicksUpdated - <em>Read-only.</em>
* @property {Vec4} rayPicksUpdated - <em>Read-only.</em>
* @property {Vec4} parabolaPicksUpdated - <em>Read-only.</em>
* @property {Vec4} collisionPicksUpdated - <em>Read-only.</em>
*/
// Properties from x onwards are QQuickItem properties.
@ -287,6 +295,15 @@ class Stats : public QQuickItem {
STATS_PROPERTY(float, avatarSimulationTime, 0)
Q_PROPERTY(QStringList animStackNames READ animStackNames NOTIFY animStackNamesChanged)
STATS_PROPERTY(int, stylusPicksCount, 0)
STATS_PROPERTY(int, rayPicksCount, 0)
STATS_PROPERTY(int, parabolaPicksCount, 0)
STATS_PROPERTY(int, collisionPicksCount, 0)
STATS_PROPERTY(QVector4D, stylusPicksUpdated, QVector4D(0, 0, 0, 0))
STATS_PROPERTY(QVector4D, rayPicksUpdated, QVector4D(0, 0, 0, 0))
STATS_PROPERTY(QVector4D, parabolaPicksUpdated, QVector4D(0, 0, 0, 0))
STATS_PROPERTY(QVector4D, collisionPicksUpdated, QVector4D(0, 0, 0, 0))
public:
static Stats* getInstance();
@ -1254,6 +1271,62 @@ signals:
* @function Stats.update
*/
/**jsdoc
* Triggered when the value of the <code>stylusPicksCount</code> property changes.
* @function Stats.stylusPicksCountChanged
* @returns {Signal}
*/
void stylusPicksCountChanged();
/**jsdoc
* Triggered when the value of the <code>rayPicksCount</code> property changes.
* @function Stats.rayPicksCountChanged
* @returns {Signal}
*/
void rayPicksCountChanged();
/**jsdoc
* Triggered when the value of the <code>parabolaPicksCount</code> property changes.
* @function Stats.parabolaPicksCountChanged
* @returns {Signal}
*/
void parabolaPicksCountChanged();
/**jsdoc
* Triggered when the value of the <code>collisionPicksCount</code> property changes.
* @function Stats.collisionPicksCountChanged
* @returns {Signal}
*/
void collisionPicksCountChanged();
/**jsdoc
* Triggered when the value of the <code>stylusPicksUpdated</code> property changes.
* @function Stats.stylusPicksUpdatedChanged
* @returns {Signal}
*/
void stylusPicksUpdatedChanged();
/**jsdoc
* Triggered when the value of the <code>rayPicksUpdated</code> property changes.
* @function Stats.rayPicksUpdatedChanged
* @returns {Signal}
*/
void rayPicksUpdatedChanged();
/**jsdoc
* Triggered when the value of the <code>parabolaPicksUpdated</code> property changes.
* @function Stats.parabolaPicksUpdatedChanged
* @returns {Signal}
*/
void parabolaPicksUpdatedChanged();
/**jsdoc
* Triggered when the value of the <code>collisionPicksUpdated</code> property changes.
* @function Stats.collisionPicksUpdatedChanged
* @returns {Signal}
*/
void collisionPicksUpdatedChanged();
private:
int _recentMaxPackets{ 0 } ; // recent max incoming voxel packets to process
bool _resetRecentMaxPacketsSoon{ true };

View file

@ -181,7 +181,7 @@ bool ContextOverlayInterface::createOrDestroyContextOverlay(const EntityItemID&
float distance;
BoxFace face;
glm::vec3 normal;
boundingBox.findRayIntersection(cameraPosition, direction, distance, face, normal);
boundingBox.findRayIntersection(cameraPosition, direction, 1.0f / direction, distance, face, normal);
float offsetAngle = -CONTEXT_OVERLAY_OFFSET_ANGLE;
if (event.getID() == 1) { // "1" is left hand
offsetAngle *= -1.0f;

View file

@ -88,7 +88,7 @@ bool Volume3DOverlay::findRayIntersection(const glm::vec3& origin, const glm::ve
// we can use the AABox's ray intersection by mapping our origin and direction into the overlays frame
// and testing intersection there.
bool hit = _localBoundingBox.findRayIntersection(overlayFrameOrigin, overlayFrameDirection, distance, face, surfaceNormal);
bool hit = _localBoundingBox.findRayIntersection(overlayFrameOrigin, overlayFrameDirection, 1.0f / overlayFrameDirection, distance, face, surfaceNormal);
if (hit) {
surfaceNormal = transform.getRotation() * surfaceNormal;

View file

@ -156,6 +156,10 @@ void AnimBlendLinearMove::setFrameAndPhase(float dt, float alpha, int prevPoseIn
// integrate phase forward in time.
_phase += omega * dt;
if (_phase < 0.0f) {
_phase = 0.0f;
}
// detect loop trigger events
if (_phase >= 1.0f) {
triggersOut.setTrigger(_id + "Loop");

View file

@ -240,7 +240,7 @@ static void FIR_1x4_SSE(float* src, float* dst0, float* dst1, float* dst2, float
float* ps = &src[i - HRTF_TAPS + 1]; // process forwards
assert(HRTF_TAPS % 4 == 0);
static_assert(HRTF_TAPS % 4 == 0, "HRTF_TAPS must be a multiple of 4");
for (int k = 0; k < HRTF_TAPS; k += 4) {
@ -276,23 +276,8 @@ static void FIR_1x4_SSE(float* src, float* dst0, float* dst1, float* dst2, float
}
}
//
// Runtime CPU dispatch
//
#include "CPUDetect.h"
void FIR_1x4_AVX2(float* src, float* dst0, float* dst1, float* dst2, float* dst3, float coef[4][HRTF_TAPS], int numFrames);
void FIR_1x4_AVX512(float* src, float* dst0, float* dst1, float* dst2, float* dst3, float coef[4][HRTF_TAPS], int numFrames);
static void FIR_1x4(float* src, float* dst0, float* dst1, float* dst2, float* dst3, float coef[4][HRTF_TAPS], int numFrames) {
static auto f = cpuSupportsAVX512() ? FIR_1x4_AVX512 : (cpuSupportsAVX2() ? FIR_1x4_AVX2 : FIR_1x4_SSE);
(*f)(src, dst0, dst1, dst2, dst3, coef, numFrames); // dispatch
}
// 4 channel planar to interleaved
static void interleave_4x4(float* src0, float* src1, float* src2, float* src3, float* dst, int numFrames) {
static void interleave_4x4_SSE(float* src0, float* src1, float* src2, float* src3, float* dst, int numFrames) {
assert(numFrames % 4 == 0);
@ -323,7 +308,7 @@ static void interleave_4x4(float* src0, float* src1, float* src2, float* src3, f
// process 2 cascaded biquads on 4 channels (interleaved)
// biquads computed in parallel, by adding one sample of delay
static void biquad2_4x4(float* src, float* dst, float coef[5][8], float state[3][8], int numFrames) {
static void biquad2_4x4_SSE(float* src, float* dst, float coef[5][8], float state[3][8], int numFrames) {
// enable flush-to-zero mode to prevent denormals
unsigned int ftz = _MM_GET_FLUSH_ZERO_MODE();
@ -388,7 +373,7 @@ static void biquad2_4x4(float* src, float* dst, float coef[5][8], float state[3]
}
// crossfade 4 inputs into 2 outputs with accumulation (interleaved)
static void crossfade_4x2(float* src, float* dst, const float* win, int numFrames) {
static void crossfade_4x2_SSE(float* src, float* dst, const float* win, int numFrames) {
assert(numFrames % 4 == 0);
@ -435,12 +420,12 @@ static void crossfade_4x2(float* src, float* dst, const float* win, int numFrame
}
// linear interpolation with gain
static void interpolate(float* dst, const float* src0, const float* src1, float frac, float gain) {
static void interpolate_SSE(const float* src0, const float* src1, float* dst, float frac, float gain) {
__m128 f0 = _mm_set1_ps(gain * (1.0f - frac));
__m128 f1 = _mm_set1_ps(gain * frac);
assert(HRTF_TAPS % 4 == 0);
static_assert(HRTF_TAPS % 4 == 0, "HRTF_TAPS must be a multiple of 4");
for (int k = 0; k < HRTF_TAPS; k += 4) {
@ -453,6 +438,44 @@ static void interpolate(float* dst, const float* src0, const float* src1, float
}
}
//
// Runtime CPU dispatch
//
#include "CPUDetect.h"
void FIR_1x4_AVX2(float* src, float* dst0, float* dst1, float* dst2, float* dst3, float coef[4][HRTF_TAPS], int numFrames);
void FIR_1x4_AVX512(float* src, float* dst0, float* dst1, float* dst2, float* dst3, float coef[4][HRTF_TAPS], int numFrames);
void interleave_4x4_AVX2(float* src0, float* src1, float* src2, float* src3, float* dst, int numFrames);
void biquad2_4x4_AVX2(float* src, float* dst, float coef[5][8], float state[3][8], int numFrames);
void crossfade_4x2_AVX2(float* src, float* dst, const float* win, int numFrames);
void interpolate_AVX2(const float* src0, const float* src1, float* dst, float frac, float gain);
static void FIR_1x4(float* src, float* dst0, float* dst1, float* dst2, float* dst3, float coef[4][HRTF_TAPS], int numFrames) {
static auto f = cpuSupportsAVX512() ? FIR_1x4_AVX512 : (cpuSupportsAVX2() ? FIR_1x4_AVX2 : FIR_1x4_SSE);
(*f)(src, dst0, dst1, dst2, dst3, coef, numFrames); // dispatch
}
static void interleave_4x4(float* src0, float* src1, float* src2, float* src3, float* dst, int numFrames) {
static auto f = cpuSupportsAVX2() ? interleave_4x4_AVX2 : interleave_4x4_SSE;
(*f)(src0, src1, src2, src3, dst, numFrames); // dispatch
}
static void biquad2_4x4(float* src, float* dst, float coef[5][8], float state[3][8], int numFrames) {
static auto f = cpuSupportsAVX2() ? biquad2_4x4_AVX2 : biquad2_4x4_SSE;
(*f)(src, dst, coef, state, numFrames); // dispatch
}
static void crossfade_4x2(float* src, float* dst, const float* win, int numFrames) {
static auto f = cpuSupportsAVX2() ? crossfade_4x2_AVX2 : crossfade_4x2_SSE;
(*f)(src, dst, win, numFrames); // dispatch
}
static void interpolate(const float* src0, const float* src1, float* dst, float frac, float gain) {
static auto f = cpuSupportsAVX2() ? interpolate_AVX2 : interpolate_SSE;
(*f)(src0, src1, dst, frac, gain); // dispatch
}
#else // portable reference code
// 1 channel input, 4 channel output
@ -489,7 +512,7 @@ static void FIR_1x4(float* src, float* dst0, float* dst1, float* dst2, float* ds
float* ps = &src[i - HRTF_TAPS + 1]; // process forwards
assert(HRTF_TAPS % 4 == 0);
static_assert(HRTF_TAPS % 4 == 0, "HRTF_TAPS must be a multiple of 4");
for (int k = 0; k < HRTF_TAPS; k += 4) {
@ -715,7 +738,7 @@ static void crossfade_4x2(float* src, float* dst, const float* win, int numFrame
}
// linear interpolation with gain
static void interpolate(float* dst, const float* src0, const float* src1, float frac, float gain) {
static void interpolate(const float* src0, const float* src1, float* dst, float frac, float gain) {
float f0 = gain * (1.0f - frac);
float f1 = gain * frac;
@ -967,8 +990,8 @@ static void setFilters(float firCoef[4][HRTF_TAPS], float bqCoef[5][8], int dela
azimuthToIndex(azimuth, az0, az1, frac);
// interpolate FIR
interpolate(firCoef[channel+0], ir_table_table[index][azL0][0], ir_table_table[index][azL1][0], fracL, gain * gainL);
interpolate(firCoef[channel+1], ir_table_table[index][azR0][1], ir_table_table[index][azR1][1], fracR, gain * gainR);
interpolate(ir_table_table[index][azL0][0], ir_table_table[index][azL1][0], firCoef[channel+0], fracL, gain * gainL);
interpolate(ir_table_table[index][azR0][1], ir_table_table[index][azR1][1], firCoef[channel+1], fracR, gain * gainR);
// interpolate ITD
float itd = (1.0f - frac) * itd_table_table[index][az0] + frac * itd_table_table[index][az1];

View file

@ -44,7 +44,7 @@ void FIR_1x4_AVX2(float* src, float* dst0, float* dst1, float* dst2, float* dst3
float* ps = &src[i - HRTF_TAPS + 1]; // process forwards
assert(HRTF_TAPS % 4 == 0);
static_assert(HRTF_TAPS % 4 == 0, "HRTF_TAPS must be a multiple of 4");
for (int k = 0; k < HRTF_TAPS; k += 4) {
@ -87,4 +87,165 @@ void FIR_1x4_AVX2(float* src, float* dst0, float* dst1, float* dst2, float* dst3
_mm256_zeroupper();
}
// 4 channel planar to interleaved
void interleave_4x4_AVX2(float* src0, float* src1, float* src2, float* src3, float* dst, int numFrames) {
assert(numFrames % 8 == 0);
for (int i = 0; i < numFrames; i += 8) {
__m256 x0 = _mm256_loadu_ps(&src0[i]);
__m256 x1 = _mm256_loadu_ps(&src1[i]);
__m256 x2 = _mm256_loadu_ps(&src2[i]);
__m256 x3 = _mm256_loadu_ps(&src3[i]);
// interleave (4x4 matrix transpose)
__m256 t0 = _mm256_unpacklo_ps(x0, x1);
__m256 t1 = _mm256_unpackhi_ps(x0, x1);
__m256 t2 = _mm256_unpacklo_ps(x2, x3);
__m256 t3 = _mm256_unpackhi_ps(x2, x3);
x0 = _mm256_shuffle_ps(t0, t2, _MM_SHUFFLE(1,0,1,0));
x1 = _mm256_shuffle_ps(t0, t2, _MM_SHUFFLE(3,2,3,2));
x2 = _mm256_shuffle_ps(t1, t3, _MM_SHUFFLE(1,0,1,0));
x3 = _mm256_shuffle_ps(t1, t3, _MM_SHUFFLE(3,2,3,2));
t0 = _mm256_permute2f128_ps(x0, x1, 0x20);
t1 = _mm256_permute2f128_ps(x2, x3, 0x20);
t2 = _mm256_permute2f128_ps(x0, x1, 0x31);
t3 = _mm256_permute2f128_ps(x2, x3, 0x31);
_mm256_storeu_ps(&dst[4*i+0], t0);
_mm256_storeu_ps(&dst[4*i+8], t1);
_mm256_storeu_ps(&dst[4*i+16], t2);
_mm256_storeu_ps(&dst[4*i+24], t3);
}
_mm256_zeroupper();
}
// process 2 cascaded biquads on 4 channels (interleaved)
// biquads are computed in parallel, by adding one sample of delay
void biquad2_4x4_AVX2(float* src, float* dst, float coef[5][8], float state[3][8], int numFrames) {
// enable flush-to-zero mode to prevent denormals
unsigned int ftz = _MM_GET_FLUSH_ZERO_MODE();
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
// restore state
__m256 x0 = _mm256_setzero_ps();
__m256 y0 = _mm256_loadu_ps(state[0]);
__m256 w1 = _mm256_loadu_ps(state[1]);
__m256 w2 = _mm256_loadu_ps(state[2]);
// biquad coefs
__m256 b0 = _mm256_loadu_ps(coef[0]);
__m256 b1 = _mm256_loadu_ps(coef[1]);
__m256 b2 = _mm256_loadu_ps(coef[2]);
__m256 a1 = _mm256_loadu_ps(coef[3]);
__m256 a2 = _mm256_loadu_ps(coef[4]);
for (int i = 0; i < numFrames; i++) {
// x0 = (first biquad output << 128) | input
x0 = _mm256_insertf128_ps(_mm256_permute2f128_ps(y0, y0, 0x01), _mm_loadu_ps(&src[4*i]), 0);
// transposed Direct Form II
y0 = _mm256_fmadd_ps(x0, b0, w1);
w1 = _mm256_fmadd_ps(x0, b1, w2);
w2 = _mm256_mul_ps(x0, b2);
w1 = _mm256_fnmadd_ps(y0, a1, w1);
w2 = _mm256_fnmadd_ps(y0, a2, w2);
_mm_storeu_ps(&dst[4*i], _mm256_extractf128_ps(y0, 1)); // second biquad output
}
// save state
_mm256_storeu_ps(state[0], y0);
_mm256_storeu_ps(state[1], w1);
_mm256_storeu_ps(state[2], w2);
_MM_SET_FLUSH_ZERO_MODE(ftz);
_mm256_zeroupper();
}
// crossfade 4 inputs into 2 outputs with accumulation (interleaved)
void crossfade_4x2_AVX2(float* src, float* dst, const float* win, int numFrames) {
assert(numFrames % 8 == 0);
for (int i = 0; i < numFrames; i += 8) {
__m256 f0 = _mm256_loadu_ps(&win[i]);
__m256 x0 = _mm256_castps128_ps256(_mm_loadu_ps(&src[4*i+0]));
__m256 x1 = _mm256_castps128_ps256(_mm_loadu_ps(&src[4*i+4]));
__m256 x2 = _mm256_castps128_ps256(_mm_loadu_ps(&src[4*i+8]));
__m256 x3 = _mm256_castps128_ps256(_mm_loadu_ps(&src[4*i+12]));
x0 = _mm256_insertf128_ps(x0, _mm_loadu_ps(&src[4*i+16]), 1);
x1 = _mm256_insertf128_ps(x1, _mm_loadu_ps(&src[4*i+20]), 1);
x2 = _mm256_insertf128_ps(x2, _mm_loadu_ps(&src[4*i+24]), 1);
x3 = _mm256_insertf128_ps(x3, _mm_loadu_ps(&src[4*i+28]), 1);
__m256 y0 = _mm256_loadu_ps(&dst[2*i+0]);
__m256 y1 = _mm256_loadu_ps(&dst[2*i+8]);
// deinterleave (4x4 matrix transpose)
__m256 t0 = _mm256_unpacklo_ps(x0, x1);
__m256 t1 = _mm256_unpackhi_ps(x0, x1);
__m256 t2 = _mm256_unpacklo_ps(x2, x3);
__m256 t3 = _mm256_unpackhi_ps(x2, x3);
x0 = _mm256_shuffle_ps(t0, t2, _MM_SHUFFLE(1,0,1,0));
x1 = _mm256_shuffle_ps(t0, t2, _MM_SHUFFLE(3,2,3,2));
x2 = _mm256_shuffle_ps(t1, t3, _MM_SHUFFLE(1,0,1,0));
x3 = _mm256_shuffle_ps(t1, t3, _MM_SHUFFLE(3,2,3,2));
// crossfade
x0 = _mm256_sub_ps(x0, x2);
x1 = _mm256_sub_ps(x1, x3);
x2 = _mm256_fmadd_ps(f0, x0, x2);
x3 = _mm256_fmadd_ps(f0, x1, x3);
// interleave
t0 = _mm256_unpacklo_ps(x2, x3);
t1 = _mm256_unpackhi_ps(x2, x3);
x0 = _mm256_permute2f128_ps(t0, t1, 0x20);
x1 = _mm256_permute2f128_ps(t0, t1, 0x31);
// accumulate
y0 = _mm256_add_ps(y0, x0);
y1 = _mm256_add_ps(y1, x1);
_mm256_storeu_ps(&dst[2*i+0], y0);
_mm256_storeu_ps(&dst[2*i+8], y1);
}
_mm256_zeroupper();
}
// linear interpolation with gain
void interpolate_AVX2(const float* src0, const float* src1, float* dst, float frac, float gain) {
__m256 f0 = _mm256_set1_ps(gain * (1.0f - frac));
__m256 f1 = _mm256_set1_ps(gain * frac);
static_assert(HRTF_TAPS % 8 == 0, "HRTF_TAPS must be a multiple of 8");
for (int k = 0; k < HRTF_TAPS; k += 8) {
__m256 x0 = _mm256_loadu_ps(&src0[k]);
__m256 x1 = _mm256_loadu_ps(&src1[k]);
x0 = _mm256_mul_ps(f0, x0);
x0 = _mm256_fmadd_ps(f1, x1, x0);
_mm256_storeu_ps(&dst[k], x0);
}
_mm256_zeroupper();
}
#endif

View file

@ -44,7 +44,7 @@ void FIR_1x4_AVX512(float* src, float* dst0, float* dst1, float* dst2, float* ds
float* ps = &src[i - HRTF_TAPS + 1]; // process forwards
assert(HRTF_TAPS % 4 == 0);
static_assert(HRTF_TAPS % 4 == 0, "HRTF_TAPS must be a multiple of 4");
for (int k = 0; k < HRTF_TAPS; k += 4) {

View file

@ -458,7 +458,6 @@ protected:
glm::vec3 _lastAngularVelocity;
glm::vec3 _angularAcceleration;
glm::quat _lastOrientation;
glm::vec3 _worldUpDirection { Vectors::UP };
bool _moving { false }; ///< set when position is changing

View file

@ -294,6 +294,15 @@ bool SkeletonModel::getEyeModelPositions(glm::vec3& firstEyePosition, glm::vec3&
firstEyePosition = baseEyePosition + headRotation * glm::vec3(EYE_SEPARATION, 0.0f, EYES_FORWARD) * headHeight;
secondEyePosition = baseEyePosition + headRotation * glm::vec3(-EYE_SEPARATION, 0.0f, EYES_FORWARD) * headHeight;
return true;
} else if (getJointPosition(geometry.headJointIndex, headPosition)) {
glm::vec3 baseEyePosition = headPosition;
glm::quat headRotation;
getJointRotation(geometry.headJointIndex, headRotation);
const float EYES_FORWARD_HEAD_ONLY = 0.30f;
const float EYE_SEPARATION = 0.1f;
firstEyePosition = baseEyePosition + headRotation * glm::vec3(EYE_SEPARATION, 0.0f, EYES_FORWARD_HEAD_ONLY);
secondEyePosition = baseEyePosition + headRotation * glm::vec3(-EYE_SEPARATION, 0.0f, EYES_FORWARD_HEAD_ONLY);
return true;
}
return false;
}

View file

@ -918,7 +918,18 @@ int AvatarData::parseDataFromBuffer(const QByteArray& buffer) {
PACKET_READ_CHECK(AvatarGlobalPosition, sizeof(AvatarDataPacket::AvatarGlobalPosition));
auto data = reinterpret_cast<const AvatarDataPacket::AvatarGlobalPosition*>(sourceBuffer);
auto newValue = glm::vec3(data->globalPosition[0], data->globalPosition[1], data->globalPosition[2]);
glm::vec3 offset = glm::vec3(0.0f, 0.0f, 0.0f);
if (_replicaIndex > 0) {
const float SPACE_BETWEEN_AVATARS = 2.0f;
const int AVATARS_PER_ROW = 3;
int row = _replicaIndex % AVATARS_PER_ROW;
int col = floor(_replicaIndex / AVATARS_PER_ROW);
offset = glm::vec3(row * SPACE_BETWEEN_AVATARS, 0.0f, col * SPACE_BETWEEN_AVATARS);
}
auto newValue = glm::vec3(data->globalPosition[0], data->globalPosition[1], data->globalPosition[2]) + offset;
if (_globalPosition != newValue) {
_globalPosition = newValue;
_globalPositionChanged = usecTimestampNow();

View file

@ -337,6 +337,7 @@ enum KillAvatarReason : uint8_t {
TheirAvatarEnteredYourBubble,
YourAvatarEnteredTheirBubble
};
Q_DECLARE_METATYPE(KillAvatarReason);
class QDataStream;
@ -1186,6 +1187,8 @@ public:
virtual void addMaterial(graphics::MaterialLayer material, const std::string& parentMaterialName) {}
virtual void removeMaterial(graphics::MaterialPointer material, const std::string& parentMaterialName) {}
void setReplicaIndex(int replicaIndex) { _replicaIndex = replicaIndex; }
int getReplicaIndex() { return _replicaIndex; }
signals:
@ -1445,6 +1448,7 @@ protected:
udt::SequenceNumber _identitySequenceNumber { 0 };
bool _hasProcessedFirstIdentity { false };
float _density;
int _replicaIndex { 0 };
// null unless MyAvatar or ScriptableAvatar sending traits data to mixer
std::unique_ptr<ClientTraitsHandler> _clientTraitsHandler;
@ -1561,7 +1565,7 @@ class RayToAvatarIntersectionResult {
public:
bool intersects { false };
QUuid avatarID;
float distance { 0.0f };
float distance { FLT_MAX };
BoxFace face;
glm::vec3 intersection;
glm::vec3 surfaceNormal;

View file

@ -21,6 +21,84 @@
#include "AvatarLogging.h"
#include "AvatarTraits.h"
void AvatarReplicas::addReplica(const QUuid& parentID, AvatarSharedPointer replica) {
if (parentID == QUuid()) {
return;
}
if (_replicasMap.find(parentID) == _replicasMap.end()) {
std::vector<AvatarSharedPointer> emptyReplicas = std::vector<AvatarSharedPointer>();
_replicasMap.insert(std::pair<QUuid, std::vector<AvatarSharedPointer>>(parentID, emptyReplicas));
}
auto &replicas = _replicasMap[parentID];
replica->setReplicaIndex((int)replicas.size() + 1);
replicas.push_back(replica);
}
std::vector<QUuid> AvatarReplicas::getReplicaIDs(const QUuid& parentID) {
std::vector<QUuid> ids;
if (_replicasMap.find(parentID) != _replicasMap.end()) {
auto &replicas = _replicasMap[parentID];
for (int i = 0; i < (int)replicas.size(); i++) {
ids.push_back(replicas[i]->getID());
}
} else if (_replicaCount > 0) {
for (int i = 0; i < _replicaCount; i++) {
ids.push_back(QUuid::createUuid());
}
}
return ids;
}
void AvatarReplicas::parseDataFromBuffer(const QUuid& parentID, const QByteArray& buffer) {
if (_replicasMap.find(parentID) != _replicasMap.end()) {
auto &replicas = _replicasMap[parentID];
for (auto avatar : replicas) {
avatar->parseDataFromBuffer(buffer);
}
}
}
void AvatarReplicas::removeReplicas(const QUuid& parentID) {
if (_replicasMap.find(parentID) != _replicasMap.end()) {
_replicasMap.erase(parentID);
}
}
void AvatarReplicas::processAvatarIdentity(const QUuid& parentID, const QByteArray& identityData, bool& identityChanged, bool& displayNameChanged) {
if (_replicasMap.find(parentID) != _replicasMap.end()) {
auto &replicas = _replicasMap[parentID];
for (auto avatar : replicas) {
avatar->processAvatarIdentity(identityData, identityChanged, displayNameChanged);
}
}
}
void AvatarReplicas::processTrait(const QUuid& parentID, AvatarTraits::TraitType traitType, QByteArray traitBinaryData) {
if (_replicasMap.find(parentID) != _replicasMap.end()) {
auto &replicas = _replicasMap[parentID];
for (auto avatar : replicas) {
avatar->processTrait(traitType, traitBinaryData);
}
}
}
void AvatarReplicas::processDeletedTraitInstance(const QUuid& parentID, AvatarTraits::TraitType traitType, AvatarTraits::TraitInstanceID instanceID) {
if (_replicasMap.find(parentID) != _replicasMap.end()) {
auto &replicas = _replicasMap[parentID];
for (auto avatar : replicas) {
avatar->processDeletedTraitInstance(traitType, instanceID);
}
}
}
void AvatarReplicas::processTraitInstance(const QUuid& parentID, AvatarTraits::TraitType traitType,
AvatarTraits::TraitInstanceID instanceID, QByteArray traitBinaryData) {
if (_replicasMap.find(parentID) != _replicasMap.end()) {
auto &replicas = _replicasMap[parentID];
for (auto avatar : replicas) {
avatar->processTraitInstance(traitType, instanceID, traitBinaryData);
}
}
}
AvatarHashMap::AvatarHashMap() {
auto nodeList = DependencyManager::get<NodeList>();
@ -64,6 +142,21 @@ bool AvatarHashMap::isAvatarInRange(const glm::vec3& position, const float range
return false;
}
void AvatarHashMap::setReplicaCount(int count) {
_replicas.setReplicaCount(count);
auto avatars = getAvatarIdentifiers();
for (int i = 0; i < avatars.size(); i++) {
KillAvatarReason reason = KillAvatarReason::NoReason;
if (avatars[i] != QUuid()) {
removeAvatar(avatars[i], reason);
auto replicaIDs = _replicas.getReplicaIDs(avatars[i]);
for (auto id : replicaIDs) {
removeAvatar(id, reason);
}
}
}
}
int AvatarHashMap::numberOfAvatarsInRange(const glm::vec3& position, float rangeMeters) {
auto hashCopy = getHashCopy();
auto rangeMeters2 = rangeMeters * rangeMeters;
@ -135,18 +228,25 @@ AvatarSharedPointer AvatarHashMap::parseAvatarData(QSharedPointer<ReceivedMessag
// make sure this isn't our own avatar data or for a previously ignored node
auto nodeList = DependencyManager::get<NodeList>();
bool isNewAvatar;
if (sessionUUID != _lastOwnerSessionUUID && (!nodeList->isIgnoringNode(sessionUUID) || nodeList->getRequestsDomainListData())) {
auto avatar = newOrExistingAvatar(sessionUUID, sendingNode, isNewAvatar);
if (isNewAvatar) {
QWriteLocker locker(&_hashLock);
_pendingAvatars.insert(sessionUUID, { std::chrono::steady_clock::now(), 0, avatar });
}
auto replicaIDs = _replicas.getReplicaIDs(sessionUUID);
for (auto replicaID : replicaIDs) {
auto replicaAvatar = addAvatar(replicaID, sendingNode);
_replicas.addReplica(sessionUUID, replicaAvatar);
}
}
// have the matching (or new) avatar parse the data from the packet
int bytesRead = avatar->parseDataFromBuffer(byteArray);
message->seek(positionBeforeRead + bytesRead);
_replicas.parseDataFromBuffer(sessionUUID, byteArray);
return avatar;
} else {
// create a dummy AvatarData class to throw this data on the ground
@ -191,10 +291,13 @@ void AvatarHashMap::processAvatarIdentityPacket(QSharedPointer<ReceivedMessage>
bool displayNameChanged = false;
// In this case, the "sendingNode" is the Avatar Mixer.
avatar->processAvatarIdentity(message->getMessage(), identityChanged, displayNameChanged);
_replicas.processAvatarIdentity(identityUUID, message->getMessage(), identityChanged, displayNameChanged);
}
}
void AvatarHashMap::processBulkAvatarTraits(QSharedPointer<ReceivedMessage> message, SharedNodePointer sendingNode) {
while (message->getBytesLeftToRead()) {
// read the avatar ID to figure out which avatar this is for
auto avatarID = QUuid::fromRfc4122(message->readWithoutCopy(NUM_BYTES_RFC4122_UUID));
@ -202,7 +305,6 @@ void AvatarHashMap::processBulkAvatarTraits(QSharedPointer<ReceivedMessage> mess
// grab the avatar so we can ask it to process trait data
bool isNewAvatar;
auto avatar = newOrExistingAvatar(avatarID, sendingNode, isNewAvatar);
// read the first trait type for this avatar
AvatarTraits::TraitType traitType;
message->readPrimitive(&traitType);
@ -217,13 +319,14 @@ void AvatarHashMap::processBulkAvatarTraits(QSharedPointer<ReceivedMessage> mess
AvatarTraits::TraitWireSize traitBinarySize;
bool skipBinaryTrait = false;
if (AvatarTraits::isSimpleTrait(traitType)) {
message->readPrimitive(&traitBinarySize);
// check if this trait version is newer than what we already have for this avatar
if (packetTraitVersion > lastProcessedVersions[traitType]) {
avatar->processTrait(traitType, message->read(traitBinarySize));
auto traitData = message->read(traitBinarySize);
avatar->processTrait(traitType, traitData);
_replicas.processTrait(avatarID, traitType, traitData);
lastProcessedVersions[traitType] = packetTraitVersion;
} else {
skipBinaryTrait = true;
@ -238,8 +341,11 @@ void AvatarHashMap::processBulkAvatarTraits(QSharedPointer<ReceivedMessage> mess
if (packetTraitVersion > processedInstanceVersion) {
if (traitBinarySize == AvatarTraits::DELETED_TRAIT_SIZE) {
avatar->processDeletedTraitInstance(traitType, traitInstanceID);
_replicas.processDeletedTraitInstance(avatarID, traitType, traitInstanceID);
} else {
avatar->processTraitInstance(traitType, traitInstanceID, message->read(traitBinarySize));
auto traitData = message->read(traitBinarySize);
avatar->processTraitInstance(traitType, traitInstanceID, traitData);
_replicas.processTraitInstance(avatarID, traitType, traitInstanceID, traitData);
}
processedInstanceVersion = packetTraitVersion;
} else {
@ -265,17 +371,31 @@ void AvatarHashMap::processKillAvatar(QSharedPointer<ReceivedMessage> message, S
KillAvatarReason reason;
message->readPrimitive(&reason);
removeAvatar(sessionUUID, reason);
auto replicaIDs = _replicas.getReplicaIDs(sessionUUID);
for (auto id : replicaIDs) {
removeAvatar(id, reason);
}
}
void AvatarHashMap::removeAvatar(const QUuid& sessionUUID, KillAvatarReason removalReason) {
QWriteLocker locker(&_hashLock);
auto replicaIDs = _replicas.getReplicaIDs(sessionUUID);
_replicas.removeReplicas(sessionUUID);
for (auto id : replicaIDs) {
auto removedReplica = _avatarHash.take(id);
if (removedReplica) {
handleRemovedAvatar(removedReplica, removalReason);
}
}
_pendingAvatars.remove(sessionUUID);
auto removedAvatar = _avatarHash.take(sessionUUID);
if (removedAvatar) {
handleRemovedAvatar(removedAvatar, removalReason);
}
}
void AvatarHashMap::handleRemovedAvatar(const AvatarSharedPointer& removedAvatar, KillAvatarReason removalReason) {

View file

@ -41,6 +41,27 @@
* @hifi-assignment-client
*/
class AvatarReplicas {
public:
AvatarReplicas() {}
void addReplica(const QUuid& parentID, AvatarSharedPointer replica);
std::vector<QUuid> getReplicaIDs(const QUuid& parentID);
void parseDataFromBuffer(const QUuid& parentID, const QByteArray& buffer);
void processAvatarIdentity(const QUuid& parentID, const QByteArray& identityData, bool& identityChanged, bool& displayNameChanged);
void removeReplicas(const QUuid& parentID);
void processTrait(const QUuid& parentID, AvatarTraits::TraitType traitType, QByteArray traitBinaryData);
void processDeletedTraitInstance(const QUuid& parentID, AvatarTraits::TraitType traitType, AvatarTraits::TraitInstanceID instanceID);
void processTraitInstance(const QUuid& parentID, AvatarTraits::TraitType traitType,
AvatarTraits::TraitInstanceID instanceID, QByteArray traitBinaryData);
void setReplicaCount(int count) { _replicaCount = count; }
int getReplicaCount() { return _replicaCount; }
private:
std::map<QUuid, std::vector<AvatarSharedPointer>> _replicasMap;
int _replicaCount { 0 };
};
class AvatarHashMap : public QObject, public Dependency {
Q_OBJECT
SINGLETON_DEPENDENCY
@ -77,6 +98,9 @@ public:
virtual AvatarSharedPointer getAvatarBySessionID(const QUuid& sessionID) const { return findAvatar(sessionID); }
int numberOfAvatarsInRange(const glm::vec3& position, float rangeMeters);
void setReplicaCount(int count);
int getReplicaCount() { return _replicas.getReplicaCount(); };
signals:
/**jsdoc
@ -167,6 +191,8 @@ protected:
mutable QReadWriteLock _hashLock;
std::unordered_map<QUuid, AvatarTraits::TraitVersions> _processedTraitVersions;
AvatarReplicas _replicas;
private:
QUuid _lastOwnerSessionUUID;
};

View file

@ -571,7 +571,6 @@ bool RenderablePolyVoxEntityItem::findDetailedRayIntersection(const glm::vec3& o
}
glm::mat4 wtvMatrix = worldToVoxelMatrix();
glm::mat4 vtwMatrix = voxelToWorldMatrix();
glm::vec3 normDirection = glm::normalize(direction);
// the PolyVox ray intersection code requires a near and far point.
@ -584,8 +583,6 @@ bool RenderablePolyVoxEntityItem::findDetailedRayIntersection(const glm::vec3& o
glm::vec4 originInVoxel = wtvMatrix * glm::vec4(origin, 1.0f);
glm::vec4 farInVoxel = wtvMatrix * glm::vec4(farPoint, 1.0f);
glm::vec4 directionInVoxel = glm::normalize(farInVoxel - originInVoxel);
glm::vec4 result = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
PolyVox::RaycastResult raycastResult = doRayCast(originInVoxel, farInVoxel, result);
if (raycastResult == PolyVox::RaycastResults::Completed) {
@ -599,14 +596,9 @@ bool RenderablePolyVoxEntityItem::findDetailedRayIntersection(const glm::vec3& o
voxelBox += result3 - Vectors::HALF;
voxelBox += result3 + Vectors::HALF;
float voxelDistance;
bool hit = voxelBox.findRayIntersection(glm::vec3(originInVoxel), glm::vec3(directionInVoxel),
voxelDistance, face, surfaceNormal);
glm::vec4 voxelIntersectionPoint = glm::vec4(glm::vec3(originInVoxel) + glm::vec3(directionInVoxel) * voxelDistance, 1.0);
glm::vec4 intersectionPoint = vtwMatrix * voxelIntersectionPoint;
distance = glm::distance(origin, glm::vec3(intersectionPoint));
return hit;
glm::vec3 directionInVoxel = vec3(wtvMatrix * glm::vec4(direction, 0.0f));
return voxelBox.findRayIntersection(glm::vec3(originInVoxel), directionInVoxel, 1.0f / directionInVoxel,
distance, face, surfaceNormal);
}
bool RenderablePolyVoxEntityItem::findDetailedParabolaIntersection(const glm::vec3& origin, const glm::vec3& velocity,

View file

@ -48,6 +48,7 @@ public:
// Inputs
glm::vec3 origin;
glm::vec3 direction;
glm::vec3 invDirection;
const QVector<EntityItemID>& entityIdsToInclude;
const QVector<EntityItemID>& entityIdsToDiscard;
bool visibleOnly;
@ -825,28 +826,51 @@ bool findRayIntersectionOp(const OctreeElementPointer& element, void* extraData)
RayArgs* args = static_cast<RayArgs*>(extraData);
bool keepSearching = true;
EntityTreeElementPointer entityTreeElementPointer = std::static_pointer_cast<EntityTreeElement>(element);
EntityItemID entityID = entityTreeElementPointer->findRayIntersection(args->origin, args->direction, keepSearching,
EntityItemID entityID = entityTreeElementPointer->findRayIntersection(args->origin, args->direction,
args->element, args->distance, args->face, args->surfaceNormal, args->entityIdsToInclude,
args->entityIdsToDiscard, args->visibleOnly, args->collidableOnly, args->extraInfo, args->precisionPicking);
if (!entityID.isNull()) {
args->entityID = entityID;
// We recurse OctreeElements in order, so if we hit something, we can stop immediately
keepSearching = false;
}
return keepSearching;
}
float findRayIntersectionSortingOp(const OctreeElementPointer& element, void* extraData) {
RayArgs* args = static_cast<RayArgs*>(extraData);
EntityTreeElementPointer entityTreeElementPointer = std::static_pointer_cast<EntityTreeElement>(element);
float distance = FLT_MAX;
// If origin is inside the cube, always check this element first
if (entityTreeElementPointer->getAACube().contains(args->origin)) {
distance = 0.0f;
} else {
float boundDistance = FLT_MAX;
BoxFace face;
glm::vec3 surfaceNormal;
if (entityTreeElementPointer->getAACube().findRayIntersection(args->origin, args->direction, args->invDirection, boundDistance, face, surfaceNormal)) {
// Don't add this cell if it's already farther than our best distance so far
if (boundDistance < args->distance) {
distance = boundDistance;
}
}
}
return distance;
}
EntityItemID EntityTree::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
QVector<EntityItemID> entityIdsToInclude, QVector<EntityItemID> entityIdsToDiscard,
bool visibleOnly, bool collidableOnly, bool precisionPicking,
OctreeElementPointer& element, float& distance,
BoxFace& face, glm::vec3& surfaceNormal, QVariantMap& extraInfo,
Octree::lockType lockType, bool* accurateResult) {
RayArgs args = { origin, direction, entityIdsToInclude, entityIdsToDiscard,
RayArgs args = { origin, direction, 1.0f / direction, entityIdsToInclude, entityIdsToDiscard,
visibleOnly, collidableOnly, precisionPicking, element, distance, face, surfaceNormal, extraInfo, EntityItemID() };
distance = FLT_MAX;
bool requireLock = lockType == Octree::Lock;
bool lockResult = withReadLock([&]{
recurseTreeWithOperation(findRayIntersectionOp, &args);
recurseTreeWithOperationSorted(findRayIntersectionOp, findRayIntersectionSortingOp, &args);
}, requireLock);
if (accurateResult) {
@ -860,15 +884,38 @@ bool findParabolaIntersectionOp(const OctreeElementPointer& element, void* extra
ParabolaArgs* args = static_cast<ParabolaArgs*>(extraData);
bool keepSearching = true;
EntityTreeElementPointer entityTreeElementPointer = std::static_pointer_cast<EntityTreeElement>(element);
EntityItemID entityID = entityTreeElementPointer->findParabolaIntersection(args->origin, args->velocity, args->acceleration, keepSearching,
EntityItemID entityID = entityTreeElementPointer->findParabolaIntersection(args->origin, args->velocity, args->acceleration,
args->element, args->parabolicDistance, args->face, args->surfaceNormal, args->entityIdsToInclude,
args->entityIdsToDiscard, args->visibleOnly, args->collidableOnly, args->extraInfo, args->precisionPicking);
if (!entityID.isNull()) {
args->entityID = entityID;
// We recurse OctreeElements in order, so if we hit something, we can stop immediately
keepSearching = false;
}
return keepSearching;
}
float findParabolaIntersectionSortingOp(const OctreeElementPointer& element, void* extraData) {
ParabolaArgs* args = static_cast<ParabolaArgs*>(extraData);
EntityTreeElementPointer entityTreeElementPointer = std::static_pointer_cast<EntityTreeElement>(element);
float distance = FLT_MAX;
// If origin is inside the cube, always check this element first
if (entityTreeElementPointer->getAACube().contains(args->origin)) {
distance = 0.0f;
} else {
float boundDistance = FLT_MAX;
BoxFace face;
glm::vec3 surfaceNormal;
if (entityTreeElementPointer->getAACube().findParabolaIntersection(args->origin, args->velocity, args->acceleration, boundDistance, face, surfaceNormal)) {
// Don't add this cell if it's already farther than our best distance so far
if (boundDistance < args->parabolicDistance) {
distance = boundDistance;
}
}
}
return distance;
}
EntityItemID EntityTree::findParabolaIntersection(const PickParabola& parabola,
QVector<EntityItemID> entityIdsToInclude, QVector<EntityItemID> entityIdsToDiscard,
bool visibleOnly, bool collidableOnly, bool precisionPicking,
@ -882,7 +929,7 @@ EntityItemID EntityTree::findParabolaIntersection(const PickParabola& parabola,
bool requireLock = lockType == Octree::Lock;
bool lockResult = withReadLock([&] {
recurseTreeWithOperation(findParabolaIntersectionOp, &args);
recurseTreeWithOperationSorted(findParabolaIntersectionOp, findParabolaIntersectionSortingOp, &args);
}, requireLock);
if (accurateResult) {

View file

@ -140,31 +140,18 @@ bool EntityTreeElement::bestFitBounds(const glm::vec3& minPoint, const glm::vec3
}
EntityItemID EntityTreeElement::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
bool& keepSearching, OctreeElementPointer& element, float& distance,
BoxFace& face, glm::vec3& surfaceNormal, const QVector<EntityItemID>& entityIdsToInclude,
const QVector<EntityItemID>& entityIdsToDiscard, bool visibleOnly, bool collidableOnly,
QVariantMap& extraInfo, bool precisionPicking) {
OctreeElementPointer& element, float& distance, BoxFace& face, glm::vec3& surfaceNormal,
const QVector<EntityItemID>& entityIdsToInclude, const QVector<EntityItemID>& entityIdsToDiscard,
bool visibleOnly, bool collidableOnly, QVariantMap& extraInfo, bool precisionPicking) {
EntityItemID result;
float distanceToElementCube = std::numeric_limits<float>::max();
BoxFace localFace;
glm::vec3 localSurfaceNormal;
// if the ray doesn't intersect with our cube OR the distance to element is less than current best distance
// we can stop searching!
bool hit = _cube.findRayIntersection(origin, direction, distanceToElementCube, localFace, localSurfaceNormal);
if (!hit || (!_cube.contains(origin) && distanceToElementCube > distance)) {
keepSearching = false; // no point in continuing to search
return result; // we did not intersect
}
// by default, we only allow intersections with leaves with content
if (!canPickIntersect()) {
return result; // we don't intersect with non-leaves, and we keep searching
return result;
}
// if the distance to the element cube is not less than the current best distance, then it's not possible
// for any details inside the cube to be closer so we don't need to consider them.
QVariantMap localExtraInfo;
float distanceToElementDetails = distance;
EntityItemID entityID = findDetailedRayIntersection(origin, direction, element, distanceToElementDetails,
@ -228,7 +215,7 @@ EntityItemID EntityTreeElement::findDetailedRayIntersection(const glm::vec3& ori
float localDistance;
BoxFace localFace;
glm::vec3 localSurfaceNormal;
if (entityFrameBox.findRayIntersection(entityFrameOrigin, entityFrameDirection, localDistance,
if (entityFrameBox.findRayIntersection(entityFrameOrigin, entityFrameDirection, 1.0f / entityFrameDirection, localDistance,
localFace, localSurfaceNormal)) {
if (entityFrameBox.contains(entityFrameOrigin) || localDistance < distance) {
// now ask the entity if we actually intersect
@ -289,31 +276,19 @@ bool EntityTreeElement::findSpherePenetration(const glm::vec3& center, float rad
}
EntityItemID EntityTreeElement::findParabolaIntersection(const glm::vec3& origin, const glm::vec3& velocity,
const glm::vec3& acceleration, bool& keepSearching, OctreeElementPointer& element, float& parabolicDistance,
const glm::vec3& acceleration, OctreeElementPointer& element, float& parabolicDistance,
BoxFace& face, glm::vec3& surfaceNormal, const QVector<EntityItemID>& entityIdsToInclude,
const QVector<EntityItemID>& entityIdsToDiscard, bool visibleOnly, bool collidableOnly,
QVariantMap& extraInfo, bool precisionPicking) {
EntityItemID result;
float distanceToElementCube = std::numeric_limits<float>::max();
BoxFace localFace;
glm::vec3 localSurfaceNormal;
// if the parabola doesn't intersect with our cube OR the distance to element is less than current best distance
// we can stop searching!
bool hit = _cube.findParabolaIntersection(origin, velocity, acceleration, distanceToElementCube, localFace, localSurfaceNormal);
if (!hit || (!_cube.contains(origin) && distanceToElementCube > parabolicDistance)) {
keepSearching = false; // no point in continuing to search
return result; // we did not intersect
}
// by default, we only allow intersections with leaves with content
if (!canPickIntersect()) {
return result; // we don't intersect with non-leaves, and we keep searching
return result;
}
// if the distance to the element cube is not less than the current best distance, then it's not possible
// for any details inside the cube to be closer so we don't need to consider them.
QVariantMap localExtraInfo;
float distanceToElementDetails = parabolicDistance;
// We can precompute the world-space parabola normal and reuse it for the parabola plane intersects AABox sphere check

View file

@ -136,10 +136,9 @@ public:
virtual bool canPickIntersect() const override { return hasEntities(); }
virtual EntityItemID findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
bool& keepSearching, OctreeElementPointer& element, float& distance,
BoxFace& face, glm::vec3& surfaceNormal, const QVector<EntityItemID>& entityIdsToInclude,
const QVector<EntityItemID>& entityIdsToDiscard, bool visibleOnly, bool collidableOnly,
QVariantMap& extraInfo, bool precisionPicking = false);
OctreeElementPointer& element, float& distance, BoxFace& face, glm::vec3& surfaceNormal,
const QVector<EntityItemID>& entityIdsToInclude, const QVector<EntityItemID>& entityIdsToDiscard,
bool visibleOnly, bool collidableOnly, QVariantMap& extraInfo, bool precisionPicking = false);
virtual EntityItemID findDetailedRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
OctreeElementPointer& element, float& distance,
BoxFace& face, glm::vec3& surfaceNormal, const QVector<EntityItemID>& entityIdsToInclude,
@ -149,7 +148,7 @@ public:
glm::vec3& penetration, void** penetratedObject) const override;
virtual EntityItemID findParabolaIntersection(const glm::vec3& origin, const glm::vec3& velocity,
const glm::vec3& acceleration, bool& keepSearching, OctreeElementPointer& element, float& parabolicDistance,
const glm::vec3& acceleration, OctreeElementPointer& element, float& parabolicDistance,
BoxFace& face, glm::vec3& surfaceNormal, const QVector<EntityItemID>& entityIdsToInclude,
const QVector<EntityItemID>& entityIdsToDiscard, bool visibleOnly, bool collidableOnly,
QVariantMap& extraInfo, bool precisionPicking = false);

View file

@ -256,20 +256,18 @@ bool ShapeEntityItem::findDetailedRayIntersection(const glm::vec3& origin, const
glm::mat4 entityToWorldMatrix = getEntityToWorldMatrix();
glm::mat4 worldToEntityMatrix = glm::inverse(entityToWorldMatrix);
glm::vec3 entityFrameOrigin = glm::vec3(worldToEntityMatrix * glm::vec4(origin, 1.0f));
glm::vec3 entityFrameDirection = glm::normalize(glm::vec3(worldToEntityMatrix * glm::vec4(direction, 0.0f)));
glm::vec3 entityFrameDirection = glm::vec3(worldToEntityMatrix * glm::vec4(direction, 0.0f));
float localDistance;
// NOTE: unit sphere has center of 0,0,0 and radius of 0.5
if (findRaySphereIntersection(entityFrameOrigin, entityFrameDirection, glm::vec3(0.0f), 0.5f, localDistance)) {
// determine where on the unit sphere the hit point occured
glm::vec3 entityFrameHitAt = entityFrameOrigin + (entityFrameDirection * localDistance);
// then translate back to work coordinates
glm::vec3 hitAt = glm::vec3(entityToWorldMatrix * glm::vec4(entityFrameHitAt, 1.0f));
distance = glm::distance(origin, hitAt);
if (findRaySphereIntersection(entityFrameOrigin, entityFrameDirection, glm::vec3(0.0f), 0.5f, distance)) {
bool success;
// FIXME: this is only correct for uniformly scaled spheres
surfaceNormal = glm::normalize(hitAt - getCenterPosition(success));
if (!success) {
glm::vec3 center = getCenterPosition(success);
if (success) {
// FIXME: this is only correct for uniformly scaled spheres
// determine where on the unit sphere the hit point occured
glm::vec3 hitAt = origin + (direction * distance);
surfaceNormal = glm::normalize(hitAt - center);
} else {
return false;
}
return true;
@ -291,9 +289,11 @@ bool ShapeEntityItem::findDetailedParabolaIntersection(const glm::vec3& origin,
// NOTE: unit sphere has center of 0,0,0 and radius of 0.5
if (findParabolaSphereIntersection(entityFrameOrigin, entityFrameVelocity, entityFrameAcceleration, glm::vec3(0.0f), 0.5f, parabolicDistance)) {
bool success;
// FIXME: this is only correct for uniformly scaled spheres
surfaceNormal = glm::normalize((origin + velocity * parabolicDistance + 0.5f * acceleration * parabolicDistance * parabolicDistance) - getCenterPosition(success));
if (!success) {
glm::vec3 center = getCenterPosition(success);
if (success) {
// FIXME: this is only correct for uniformly scaled spheres
surfaceNormal = glm::normalize((origin + velocity * parabolicDistance + 0.5f * acceleration * parabolicDistance * parabolicDistance) - center);
} else {
return false;
}
return true;

View file

@ -935,7 +935,7 @@ FBXGeometry* GLTFReader::readGLTF(QByteArray& model, const QVariantHash& mapping
}
bool GLTFReader::readBinary(const QString& url, QByteArray& outdata) {
QUrl binaryUrl = _url.resolved(QUrl(url).fileName());
QUrl binaryUrl = _url.resolved(url);
qCDebug(modelformat) << "binaryUrl: " << binaryUrl << " OriginalUrl: " << _url;
bool success;
@ -948,7 +948,7 @@ bool GLTFReader::doesResourceExist(const QString& url) {
if (_url.isEmpty()) {
return false;
}
QUrl candidateUrl = _url.resolved(QUrl(url).fileName());
QUrl candidateUrl = _url.resolved(url);
return DependencyManager::get<ResourceManager>()->resourceExists(candidateUrl);
}
@ -1001,8 +1001,9 @@ FBXTexture GLTFReader::getFBXTexture(const GLTFTexture& texture) {
fbxtex.texcoordSet = 0;
if (texture.defined["source"]) {
QString fname = QUrl(_file.images[texture.source].uri).fileName();
QUrl textureUrl = _url.resolved(fname);
QString url = _file.images[texture.source].uri;
QString fname = QUrl(url).fileName();
QUrl textureUrl = _url.resolved(url);
qCDebug(modelformat) << "fname: " << fname;
qCDebug(modelformat) << "textureUrl: " << textureUrl;
qCDebug(modelformat) << "Url: " << _url;

View file

@ -263,15 +263,19 @@ void OBJReader::parseMaterialLibrary(QIODevice* device) {
default:
materials[matName] = currentMaterial;
#ifdef WANT_DEBUG
qCDebug(modelformat) << "OBJ Reader Last material illumination model:" << currentMaterial.illuminationModel <<
" shininess:" << currentMaterial.shininess << " opacity:" << currentMaterial.opacity <<
" diffuse color:" << currentMaterial.diffuseColor << " specular color:" <<
currentMaterial.specularColor << " emissive color:" << currentMaterial.emissiveColor <<
" diffuse texture:" << currentMaterial.diffuseTextureFilename << " specular texture:" <<
currentMaterial.specularTextureFilename << " emissive texture:" <<
currentMaterial.emissiveTextureFilename << " bump texture:" <<
currentMaterial.bumpTextureFilename;
#endif
qCDebug(modelformat) <<
"OBJ Reader Last material illumination model:" << currentMaterial.illuminationModel <<
" shininess:" << currentMaterial.shininess <<
" opacity:" << currentMaterial.opacity <<
" diffuse color:" << currentMaterial.diffuseColor <<
" specular color:" << currentMaterial.specularColor <<
" emissive color:" << currentMaterial.emissiveColor <<
" diffuse texture:" << currentMaterial.diffuseTextureFilename <<
" specular texture:" << currentMaterial.specularTextureFilename <<
" emissive texture:" << currentMaterial.emissiveTextureFilename <<
" bump texture:" << currentMaterial.bumpTextureFilename <<
" opacity texture:" << currentMaterial.opacityTextureFilename;
#endif
return;
}
QByteArray token = tokenizer.getDatum();
@ -289,6 +293,8 @@ void OBJReader::parseMaterialLibrary(QIODevice* device) {
currentMaterial.emissiveTextureFilename = "";
currentMaterial.specularTextureFilename = "";
currentMaterial.bumpTextureFilename = "";
currentMaterial.opacityTextureFilename = "";
} else if (token == "Ns") {
currentMaterial.shininess = tokenizer.getFloat();
} else if (token == "Ni") {
@ -321,7 +327,7 @@ void OBJReader::parseMaterialLibrary(QIODevice* device) {
currentMaterial.emissiveColor = tokenizer.getVec3();
} else if (token == "Ks") {
currentMaterial.specularColor = tokenizer.getVec3();
} else if ((token == "map_Kd") || (token == "map_Ke") || (token == "map_Ks") || (token == "map_bump") || (token == "bump")) {
} else if ((token == "map_Kd") || (token == "map_Ke") || (token == "map_Ks") || (token == "map_bump") || (token == "bump") || (token == "map_d")) {
const QByteArray textureLine = tokenizer.getLineAsDatum();
QByteArray filename;
OBJMaterialTextureOptions textureOptions;
@ -341,6 +347,8 @@ void OBJReader::parseMaterialLibrary(QIODevice* device) {
} else if ((token == "map_bump") || (token == "bump")) {
currentMaterial.bumpTextureFilename = filename;
currentMaterial.bumpTextureOptions = textureOptions;
} else if (token == "map_d") {
currentMaterial.opacityTextureFilename = filename;
}
}
}
@ -900,6 +908,9 @@ FBXGeometry::Pointer OBJReader::readOBJ(QByteArray& model, const QVariantHash& m
fbxMaterial.normalTexture.isBumpmap = true;
fbxMaterial.bumpMultiplier = objMaterial.bumpTextureOptions.bumpMultiplier;
}
if (!objMaterial.opacityTextureFilename.isEmpty()) {
fbxMaterial.opacityTexture.filename = objMaterial.opacityTextureFilename;
}
modelMaterial->setEmissive(fbxMaterial.emissiveColor);
modelMaterial->setAlbedo(fbxMaterial.diffuseColor);

View file

@ -66,6 +66,8 @@ public:
QByteArray specularTextureFilename;
QByteArray emissiveTextureFilename;
QByteArray bumpTextureFilename;
QByteArray opacityTextureFilename;
OBJMaterialTextureOptions bumpTextureOptions;
int illuminationModel;
bool used { false };

View file

@ -765,7 +765,6 @@ void GLBackend::recycle() const {
}
_textureManagement._transferEngine->manageMemory();
Texture::KtxStorage::releaseOpenKtxFiles();
}
void GLBackend::setCameraCorrection(const Mat4& correction, const Mat4& prevRenderView, bool reset) {

View file

@ -405,6 +405,7 @@ bool GLTextureTransferEngineDefault::processActiveBufferQueue() {
_activeTransferQueue.splice(_activeTransferQueue.end(), activeBufferQueue);
}
Texture::KtxStorage::releaseOpenKtxFiles();
return true;
}

View file

@ -302,6 +302,8 @@ controller::Input::NamedVector KeyboardMouseDevice::InputDevice::getAvailableInp
availableInputs.append(Input::NamedPair(makeInput(Qt::Key_PageDown), QKeySequence(Qt::Key_PageDown).toString()));
availableInputs.append(Input::NamedPair(makeInput(Qt::Key_Tab), QKeySequence(Qt::Key_Tab).toString()));
availableInputs.append(Input::NamedPair(makeInput(Qt::Key_Control), "Control"));
availableInputs.append(Input::NamedPair(makeInput(Qt::Key_Delete), "Delete"));
availableInputs.append(Input::NamedPair(makeInput(Qt::Key_Backspace), QKeySequence(Qt::Key_Backspace).toString()));
availableInputs.append(Input::NamedPair(makeInput(Qt::LeftButton), "LeftMouseButton"));
availableInputs.append(Input::NamedPair(makeInput(Qt::MiddleButton), "MiddleMouseButton"));

View file

@ -96,6 +96,8 @@ public:
QUrl getMetaverseServerURL() { return NetworkingConstants::METAVERSE_SERVER_URL(); }
void removeAccountFromFile();
public slots:
void requestAccessToken(const QString& login, const QString& password);
void requestAccessTokenWithSteam(QByteArray authSessionTicket);
@ -133,7 +135,6 @@ private:
void operator=(AccountManager const& other) = delete;
void persistAccountToFile();
void removeAccountFromFile();
void passSuccessToCallback(QNetworkReply* reply);
void passErrorToCallback(QNetworkReply* reply);

View file

@ -273,6 +273,7 @@ void NodeList::reset(bool skipDomainHandlerReset) {
// refresh the owner UUID to the NULL UUID
setSessionUUID(QUuid());
setSessionLocalID(Node::NULL_LOCAL_ID);
// if we setup the DTLS socket, also disconnect from the DTLS socket readyRead() so it can handle handshaking
if (_dtlsSocket) {
@ -647,6 +648,23 @@ void NodeList::processDomainServerList(QSharedPointer<ReceivedMessage> message)
Node::LocalID newLocalID;
packetStream >> newUUID;
packetStream >> newLocalID;
// when connected, if the session ID or local ID were not null and changed, we should reset
auto currentLocalID = getSessionLocalID();
auto currentSessionID = getSessionUUID();
if (_domainHandler.isConnected() &&
((currentLocalID != Node::NULL_LOCAL_ID && newLocalID != currentLocalID) ||
(!currentSessionID.isNull() && newUUID != currentSessionID))) {
qCDebug(networking) << "Local ID or Session ID changed while connected to domain - forcing NodeList reset";
// reset the nodelist, but don't do a domain handler reset since we're about to process a good domain list
reset(true);
// tell the domain handler that we're no longer connected so that below
// it can re-perform actions as if we just connected
_domainHandler.setIsConnected(false);
}
setSessionLocalID(newLocalID);
setSessionUUID(newUUID);

View file

@ -68,55 +68,12 @@ Octree::~Octree() {
eraseAllOctreeElements(false);
}
// Inserts the value and key into three arrays sorted by the key array, the first array is the value,
// the second array is a sorted key for the value, the third array is the index for the value in it original
// non-sorted array
// returns -1 if size exceeded
// originalIndexArray is optional
int insertOctreeElementIntoSortedArrays(const OctreeElementPointer& value, float key, int originalIndex,
OctreeElementPointer* valueArray, float* keyArray, int* originalIndexArray,
int currentCount, int maxCount) {
if (currentCount < maxCount) {
int i = 0;
if (currentCount > 0) {
while (i < currentCount && key > keyArray[i]) {
i++;
}
// i is our desired location
// shift array elements to the right
if (i < currentCount && i+1 < maxCount) {
for (int j = currentCount - 1; j > i; j--) {
valueArray[j] = valueArray[j - 1];
keyArray[j] = keyArray[j - 1];
}
}
}
// place new element at i
valueArray[i] = value;
keyArray[i] = key;
if (originalIndexArray) {
originalIndexArray[i] = originalIndex;
}
return currentCount + 1;
}
return -1; // error case
}
// Recurses voxel tree calling the RecurseOctreeOperation function for each element.
// stops recursion if operation function returns false.
void Octree::recurseTreeWithOperation(const RecurseOctreeOperation& operation, void* extraData) {
recurseElementWithOperation(_rootElement, operation, extraData);
}
// Recurses voxel tree calling the RecurseOctreePostFixOperation function for each element in post-fix order.
void Octree::recurseTreeWithPostOperation(const RecurseOctreeOperation& operation, void* extraData) {
recurseElementWithPostOperation(_rootElement, operation, extraData);
}
// Recurses voxel element with an operation function
void Octree::recurseElementWithOperation(const OctreeElementPointer& element, const RecurseOctreeOperation& operation, void* extraData,
int recursionCount) {
@ -129,71 +86,53 @@ void Octree::recurseElementWithOperation(const OctreeElementPointer& element, co
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
OctreeElementPointer child = element->getChildAtIndex(i);
if (child) {
recurseElementWithOperation(child, operation, extraData, recursionCount+1);
recurseElementWithOperation(child, operation, extraData, recursionCount + 1);
}
}
}
}
// Recurses voxel element with an operation function
void Octree::recurseElementWithPostOperation(const OctreeElementPointer& element, const RecurseOctreeOperation& operation,
void* extraData, int recursionCount) {
void Octree::recurseTreeWithOperationSorted(const RecurseOctreeOperation& operation, const RecurseOctreeSortingOperation& sortingOperation, void* extraData) {
recurseElementWithOperationSorted(_rootElement, operation, sortingOperation, extraData);
}
// Recurses voxel element with an operation function, calling operation on its children in a specific order
bool Octree::recurseElementWithOperationSorted(const OctreeElementPointer& element, const RecurseOctreeOperation& operation,
const RecurseOctreeSortingOperation& sortingOperation, void* extraData, int recursionCount) {
if (recursionCount > DANGEROUSLY_DEEP_RECURSION) {
HIFI_FCDEBUG(octree(), "Octree::recurseElementWithPostOperation() reached DANGEROUSLY_DEEP_RECURSION, bailing!");
return;
HIFI_FCDEBUG(octree(), "Octree::recurseElementWithOperationSorted() reached DANGEROUSLY_DEEP_RECURSION, bailing!");
// If we go too deep, we want to keep searching other paths
return true;
}
bool keepSearching = operation(element, extraData);
std::vector<SortedChild> sortedChildren;
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
OctreeElementPointer child = element->getChildAtIndex(i);
if (child) {
recurseElementWithPostOperation(child, operation, extraData, recursionCount+1);
}
}
operation(element, extraData);
}
// Recurses voxel tree calling the RecurseOctreeOperation function for each element.
// stops recursion if operation function returns false.
void Octree::recurseTreeWithOperationDistanceSorted(const RecurseOctreeOperation& operation,
const glm::vec3& point, void* extraData) {
recurseElementWithOperationDistanceSorted(_rootElement, operation, point, extraData);
}
// Recurses voxel element with an operation function
void Octree::recurseElementWithOperationDistanceSorted(const OctreeElementPointer& element, const RecurseOctreeOperation& operation,
const glm::vec3& point, void* extraData, int recursionCount) {
if (recursionCount > DANGEROUSLY_DEEP_RECURSION) {
HIFI_FCDEBUG(octree(), "Octree::recurseElementWithOperationDistanceSorted() reached DANGEROUSLY_DEEP_RECURSION, bailing!");
return;
}
if (operation(element, extraData)) {
// determine the distance sorted order of our children
OctreeElementPointer sortedChildren[NUMBER_OF_CHILDREN] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL };
float distancesToChildren[NUMBER_OF_CHILDREN] = { 0, 0, 0, 0, 0, 0, 0, 0 };
int indexOfChildren[NUMBER_OF_CHILDREN] = { 0, 0, 0, 0, 0, 0, 0, 0 };
int currentCount = 0;
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
OctreeElementPointer childElement = element->getChildAtIndex(i);
if (childElement) {
// chance to optimize, doesn't need to be actual distance!! Could be distance squared
float distanceSquared = childElement->distanceSquareToPoint(point);
currentCount = insertOctreeElementIntoSortedArrays(childElement, distanceSquared, i,
sortedChildren, (float*)&distancesToChildren,
(int*)&indexOfChildren, currentCount, NUMBER_OF_CHILDREN);
}
}
for (int i = 0; i < currentCount; i++) {
OctreeElementPointer childElement = sortedChildren[i];
if (childElement) {
recurseElementWithOperationDistanceSorted(childElement, operation, point, extraData);
float priority = sortingOperation(child, extraData);
if (priority < FLT_MAX) {
sortedChildren.emplace_back(priority, child);
}
}
}
if (sortedChildren.size() > 1) {
static auto comparator = [](const SortedChild& left, const SortedChild& right) { return left.first < right.first; };
std::sort(sortedChildren.begin(), sortedChildren.end(), comparator);
}
for (auto it = sortedChildren.begin(); it != sortedChildren.end(); ++it) {
const SortedChild& sortedChild = *it;
// Our children were sorted, so if one hits something, we don't need to check the others
if (!recurseElementWithOperationSorted(sortedChild.second, operation, sortingOperation, extraData, recursionCount + 1)) {
return false;
}
}
// We checked all our children and didn't find anything.
// Stop if we hit something in this element. Continue if we didn't.
return keepSearching;
}
void Octree::recurseTreeWithOperator(RecurseOctreeOperator* operatorObject) {

View file

@ -49,6 +49,9 @@ public:
// Callback function, for recuseTreeWithOperation
using RecurseOctreeOperation = std::function<bool(const OctreeElementPointer&, void*)>;
// Function for sorting octree children during recursion. If return value == FLT_MAX, child is discarded
using RecurseOctreeSortingOperation = std::function<float(const OctreeElementPointer&, void*)>;
using SortedChild = std::pair<float, OctreeElementPointer>;
typedef QHash<uint, AACube> CubeList;
const bool NO_EXISTS_BITS = false;
@ -163,17 +166,10 @@ public:
OctreeElementPointer getOrCreateChildElementContaining(const AACube& box);
void recurseTreeWithOperation(const RecurseOctreeOperation& operation, void* extraData = NULL);
void recurseTreeWithPostOperation(const RecurseOctreeOperation& operation, void* extraData = NULL);
/// \param operation type of operation
/// \param point point in world-frame (meters)
/// \param extraData hook for user data to be interpreted by special context
void recurseTreeWithOperationDistanceSorted(const RecurseOctreeOperation& operation,
const glm::vec3& point, void* extraData = NULL);
void recurseTreeWithOperationSorted(const RecurseOctreeOperation& operation, const RecurseOctreeSortingOperation& sortingOperation, void* extraData = NULL);
void recurseTreeWithOperator(RecurseOctreeOperator* operatorObject);
bool isDirty() const { return _isDirty; }
void clearDirtyBit() { _isDirty = false; }
void setDirtyBit() { _isDirty = true; }
@ -227,14 +223,8 @@ public:
void recurseElementWithOperation(const OctreeElementPointer& element, const RecurseOctreeOperation& operation,
void* extraData, int recursionCount = 0);
/// Traverse child nodes of node applying operation in post-fix order
///
void recurseElementWithPostOperation(const OctreeElementPointer& element, const RecurseOctreeOperation& operation,
void* extraData, int recursionCount = 0);
void recurseElementWithOperationDistanceSorted(const OctreeElementPointer& element, const RecurseOctreeOperation& operation,
const glm::vec3& point, void* extraData, int recursionCount = 0);
bool recurseElementWithOperationSorted(const OctreeElementPointer& element, const RecurseOctreeOperation& operation,
const RecurseOctreeSortingOperation& sortingOperation, void* extraData, int recursionCount = 0);
bool recurseElementWithOperator(const OctreeElementPointer& element, RecurseOctreeOperator* operatorObject, int recursionCount = 0);

View file

@ -778,8 +778,10 @@ void EntityMotionState::computeCollisionGroupAndMask(int32_t& group, int32_t& ma
bool EntityMotionState::shouldSendBid() const {
// NOTE: this method is only ever called when the entity's simulation is NOT locally owned
return _body->isActive() && (_region == workload::Region::R1) &&
glm::max(glm::max(VOLUNTEER_SIMULATION_PRIORITY, _bumpedPriority), _entity->getScriptSimulationPriority()) >= _entity->getSimulationPriority();
return _body->isActive()
&& (_region == workload::Region::R1)
&& glm::max(glm::max(VOLUNTEER_SIMULATION_PRIORITY, _bumpedPriority), _entity->getScriptSimulationPriority()) >= _entity->getSimulationPriority()
&& !_entity->getLocked();
}
uint8_t EntityMotionState::computeFinalBidPriority() const {

View file

@ -898,11 +898,12 @@ void PhysicsEngine::setShowBulletConstraintLimits(bool value) {
}
struct AllContactsCallback : public btCollisionWorld::ContactResultCallback {
AllContactsCallback(int32_t mask, int32_t group, const ShapeInfo& shapeInfo, const Transform& transform, btCollisionObject* myAvatarCollisionObject) :
AllContactsCallback(int32_t mask, int32_t group, const ShapeInfo& shapeInfo, const Transform& transform, btCollisionObject* myAvatarCollisionObject, float threshold) :
btCollisionWorld::ContactResultCallback(),
collisionObject(),
contacts(),
myAvatarCollisionObject(myAvatarCollisionObject) {
myAvatarCollisionObject(myAvatarCollisionObject),
threshold(threshold) {
const btCollisionShape* collisionShape = ObjectMotionState::getShapeManager()->getShape(shapeInfo);
collisionObject.setCollisionShape(const_cast<btCollisionShape*>(collisionShape));
@ -924,8 +925,13 @@ struct AllContactsCallback : public btCollisionWorld::ContactResultCallback {
btCollisionObject collisionObject;
std::vector<ContactTestResult> contacts;
btCollisionObject* myAvatarCollisionObject;
btScalar threshold;
btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0, int partId0, int index0, const btCollisionObjectWrapper* colObj1, int partId1, int index1) override {
if (cp.m_distance1 > -threshold) {
return 0;
}
const btCollisionObject* otherBody;
btVector3 penetrationPoint;
btVector3 otherPenetrationPoint;
@ -968,14 +974,14 @@ protected:
}
};
std::vector<ContactTestResult> PhysicsEngine::contactTest(uint16_t mask, const ShapeInfo& regionShapeInfo, const Transform& regionTransform, uint16_t group) const {
std::vector<ContactTestResult> PhysicsEngine::contactTest(uint16_t mask, const ShapeInfo& regionShapeInfo, const Transform& regionTransform, uint16_t group, float threshold) const {
// TODO: Give MyAvatar a motion state so we don't have to do this
btCollisionObject* myAvatarCollisionObject = nullptr;
if ((mask & USER_COLLISION_GROUP_MY_AVATAR) && _myAvatarController) {
myAvatarCollisionObject = _myAvatarController->getCollisionObject();
}
auto contactCallback = AllContactsCallback((int32_t)mask, (int32_t)group, regionShapeInfo, regionTransform, myAvatarCollisionObject);
auto contactCallback = AllContactsCallback((int32_t)mask, (int32_t)group, regionShapeInfo, regionTransform, myAvatarCollisionObject, threshold);
_dynamicsWorld->contactTest(&contactCallback.collisionObject, contactCallback);
return contactCallback.contacts;

View file

@ -142,7 +142,7 @@ public:
// Function for getting colliding objects in the world of specified type
// See PhysicsCollisionGroups.h for mask flags.
std::vector<ContactTestResult> contactTest(uint16_t mask, const ShapeInfo& regionShapeInfo, const Transform& regionTransform, uint16_t group = USER_COLLISION_GROUP_DYNAMIC) const;
std::vector<ContactTestResult> contactTest(uint16_t mask, const ShapeInfo& regionShapeInfo, const Transform& regionTransform, uint16_t group = USER_COLLISION_GROUP_DYNAMIC, float threshold = 0.0f) const;
private:
QList<EntityDynamicPointer> removeDynamicsForBody(btRigidBody* body);

View file

@ -72,11 +72,15 @@ PickResultPointer PickQuery::getPrevPickResult() const {
void PickQuery::setIgnoreItems(const QVector<QUuid>& ignoreItems) {
withWriteLock([&] {
_ignoreItems = ignoreItems;
// We sort these items here so the PickCacheOptimizer can catch cases where two picks have the same ignoreItems in a different order
std::sort(_ignoreItems.begin(), _ignoreItems.end(), std::less<QUuid>());
});
}
void PickQuery::setIncludeItems(const QVector<QUuid>& includeItems) {
withWriteLock([&] {
_includeItems = includeItems;
// We sort these items here so the PickCacheOptimizer can catch cases where two picks have the same includeItems in a different order
std::sort(_includeItems.begin(), _includeItems.end(), std::less<QUuid>());
});
}

View file

@ -17,6 +17,7 @@
#include <QVariant>
#include <shared/ReadWriteLockable.h>
#include <TransformNode.h>
enum IntersectionType {
NONE = 0,
@ -213,6 +214,10 @@ public:
virtual bool isRightHand() const { return false; }
virtual bool isMouse() const { return false; }
virtual Transform getResultTransform() const = 0;
std::shared_ptr<TransformNode> parentTransform;
private:
PickFilter _filter;
const float _maxDistance;

View file

@ -37,7 +37,7 @@ template<typename T>
class PickCacheOptimizer {
public:
void update(std::unordered_map<uint32_t, std::shared_ptr<PickQuery>>& picks, uint32_t& nextToUpdate, uint64_t expiry, bool shouldPickHUD);
QVector4D update(std::unordered_map<uint32_t, std::shared_ptr<PickQuery>>& picks, uint32_t& nextToUpdate, uint64_t expiry, bool shouldPickHUD);
protected:
typedef std::unordered_map<T, std::unordered_map<PickCacheKey, PickResultPointer>> PickCache;
@ -57,8 +57,8 @@ bool PickCacheOptimizer<T>::checkAndCompareCachedResults(T& pick, PickCache& cac
}
template<typename T>
void PickCacheOptimizer<T>::cacheResult(const bool intersects, const PickResultPointer& resTemp, const PickCacheKey& key, PickResultPointer& res, T& mathPick, PickCache& cache, const std::shared_ptr<Pick<T>> pick) {
if (intersects) {
void PickCacheOptimizer<T>::cacheResult(const bool needToCompareResults, const PickResultPointer& resTemp, const PickCacheKey& key, PickResultPointer& res, T& mathPick, PickCache& cache, const std::shared_ptr<Pick<T>> pick) {
if (needToCompareResults) {
cache[mathPick][key] = resTemp;
res = res->compareAndProcessNewResult(resTemp);
} else {
@ -67,8 +67,9 @@ void PickCacheOptimizer<T>::cacheResult(const bool intersects, const PickResultP
}
template<typename T>
void PickCacheOptimizer<T>::update(std::unordered_map<uint32_t, std::shared_ptr<PickQuery>>& picks,
QVector4D PickCacheOptimizer<T>::update(std::unordered_map<uint32_t, std::shared_ptr<PickQuery>>& picks,
uint32_t& nextToUpdate, uint64_t expiry, bool shouldPickHUD) {
QVector4D numIntersectionsComputed;
PickCache results;
const uint32_t INVALID_PICK_ID = 0;
auto itr = picks.begin();
@ -91,6 +92,7 @@ void PickCacheOptimizer<T>::update(std::unordered_map<uint32_t, std::shared_ptr<
PickCacheKey entityKey = { pick->getFilter().getEntityFlags(), pick->getIncludeItems(), pick->getIgnoreItems() };
if (!checkAndCompareCachedResults(mathematicalPick, results, res, entityKey)) {
PickResultPointer entityRes = pick->getEntityIntersection(mathematicalPick);
numIntersectionsComputed[0]++;
if (entityRes) {
cacheResult(entityRes->doesIntersect(), entityRes, entityKey, res, mathematicalPick, results, pick);
}
@ -101,6 +103,7 @@ void PickCacheOptimizer<T>::update(std::unordered_map<uint32_t, std::shared_ptr<
PickCacheKey overlayKey = { pick->getFilter().getOverlayFlags(), pick->getIncludeItems(), pick->getIgnoreItems() };
if (!checkAndCompareCachedResults(mathematicalPick, results, res, overlayKey)) {
PickResultPointer overlayRes = pick->getOverlayIntersection(mathematicalPick);
numIntersectionsComputed[1]++;
if (overlayRes) {
cacheResult(overlayRes->doesIntersect(), overlayRes, overlayKey, res, mathematicalPick, results, pick);
}
@ -111,6 +114,7 @@ void PickCacheOptimizer<T>::update(std::unordered_map<uint32_t, std::shared_ptr<
PickCacheKey avatarKey = { pick->getFilter().getAvatarFlags(), pick->getIncludeItems(), pick->getIgnoreItems() };
if (!checkAndCompareCachedResults(mathematicalPick, results, res, avatarKey)) {
PickResultPointer avatarRes = pick->getAvatarIntersection(mathematicalPick);
numIntersectionsComputed[2]++;
if (avatarRes) {
cacheResult(avatarRes->doesIntersect(), avatarRes, avatarKey, res, mathematicalPick, results, pick);
}
@ -122,6 +126,7 @@ void PickCacheOptimizer<T>::update(std::unordered_map<uint32_t, std::shared_ptr<
PickCacheKey hudKey = { pick->getFilter().getHUDFlags(), QVector<QUuid>(), QVector<QUuid>() };
if (!checkAndCompareCachedResults(mathematicalPick, results, res, hudKey)) {
PickResultPointer hudRes = pick->getHUDIntersection(mathematicalPick);
numIntersectionsComputed[3]++;
if (hudRes) {
cacheResult(true, hudRes, hudKey, res, mathematicalPick, results, pick);
}
@ -145,6 +150,7 @@ void PickCacheOptimizer<T>::update(std::unordered_map<uint32_t, std::shared_ptr<
break;
}
}
return numIntersectionsComputed;
}
#endif // hifi_PickCacheOptimizer_h

View file

@ -20,6 +20,7 @@ unsigned int PickManager::addPick(PickQuery::PickType type, const std::shared_pt
id = _nextPickID++;
_picks[type][id] = pick;
_typeMap[id] = type;
_totalPickCounts[type]++;
}
});
return id;
@ -41,6 +42,7 @@ void PickManager::removePick(unsigned int uid) {
if (type != _typeMap.end()) {
_picks[type->second].erase(uid);
_typeMap.erase(uid);
_totalPickCounts[type->second]--;
}
});
}
@ -88,6 +90,14 @@ void PickManager::setIncludeItems(unsigned int uid, const QVector<QUuid>& includ
}
}
Transform PickManager::getResultTransform(unsigned int uid) const {
auto pick = findPick(uid);
if (pick) {
return pick->getResultTransform();
}
return Transform();
}
void PickManager::update() {
uint64_t expiry = usecTimestampNow() + _perFrameTimeBudget;
std::unordered_map<PickQuery::PickType, std::unordered_map<unsigned int, std::shared_ptr<PickQuery>>> cachedPicks;
@ -96,12 +106,12 @@ void PickManager::update() {
});
bool shouldPickHUD = _shouldPickHUDOperator();
// we pass the same expiry to both updates, but the stylus updates are relatively cheap
// and the rayPicks updae will ALWAYS update at least one ray even when there is no budget
_stylusPickCacheOptimizer.update(cachedPicks[PickQuery::Stylus], _nextPickToUpdate[PickQuery::Stylus], expiry, false);
_rayPickCacheOptimizer.update(cachedPicks[PickQuery::Ray], _nextPickToUpdate[PickQuery::Ray], expiry, shouldPickHUD);
_parabolaPickCacheOptimizer.update(cachedPicks[PickQuery::Parabola], _nextPickToUpdate[PickQuery::Parabola], expiry, shouldPickHUD);
_collisionPickCacheOptimizer.update(cachedPicks[PickQuery::Collision], _nextPickToUpdate[PickQuery::Collision], expiry, false);
// FIXME: give each type its own expiry
// Each type will update at least one pick, regardless of the expiry
_updatedPickCounts[PickQuery::Stylus] = _stylusPickCacheOptimizer.update(cachedPicks[PickQuery::Stylus], _nextPickToUpdate[PickQuery::Stylus], expiry, false);
_updatedPickCounts[PickQuery::Ray] = _rayPickCacheOptimizer.update(cachedPicks[PickQuery::Ray], _nextPickToUpdate[PickQuery::Ray], expiry, shouldPickHUD);
_updatedPickCounts[PickQuery::Parabola] = _parabolaPickCacheOptimizer.update(cachedPicks[PickQuery::Parabola], _nextPickToUpdate[PickQuery::Parabola], expiry, shouldPickHUD);
_updatedPickCounts[PickQuery::Collision] = _collisionPickCacheOptimizer.update(cachedPicks[PickQuery::Collision], _nextPickToUpdate[PickQuery::Collision], expiry, false);
}
bool PickManager::isLeftHand(unsigned int uid) {

View file

@ -16,7 +16,10 @@
#include <NumericalConstants.h>
class PickManager : public Dependency, protected ReadWriteLockable {
#include <QObject>
class PickManager : public QObject, public Dependency, protected ReadWriteLockable {
Q_OBJECT
SINGLETON_DEPENDENCY
public:
@ -40,6 +43,8 @@ public:
void setIgnoreItems(unsigned int uid, const QVector<QUuid>& ignore) const;
void setIncludeItems(unsigned int uid, const QVector<QUuid>& include) const;
Transform getResultTransform(unsigned int uid) const;
bool isLeftHand(unsigned int uid);
bool isRightHand(unsigned int uid);
bool isMouse(unsigned int uid);
@ -53,7 +58,19 @@ public:
unsigned int getPerFrameTimeBudget() const { return _perFrameTimeBudget; }
void setPerFrameTimeBudget(unsigned int numUsecs) { _perFrameTimeBudget = numUsecs; }
bool getForceCoarsePicking() { return _forceCoarsePicking; }
const std::vector<QVector4D>& getUpdatedPickCounts() { return _updatedPickCounts; }
const std::vector<int>& getTotalPickCounts() { return _totalPickCounts; }
public slots:
void setForceCoarsePicking(bool forceCoarsePicking) { _forceCoarsePicking = forceCoarsePicking; }
protected:
std::vector<QVector4D> _updatedPickCounts { PickQuery::NUM_PICK_TYPES };
std::vector<int> _totalPickCounts { 0, 0, 0, 0 };
bool _forceCoarsePicking { false };
std::function<bool()> _shouldPickHUDOperator;
std::function<glm::vec2(const glm::vec3&)> _calculatePos2DFromHUDOperator;

View file

@ -0,0 +1,26 @@
//
// Created by Sabrina Shanman 8/22/2018
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "PickTransformNode.h"
#include "DependencyManager.h"
#include "PickManager.h"
PickTransformNode::PickTransformNode(unsigned int uid) :
_uid(uid)
{
}
Transform PickTransformNode::getTransform() {
auto pickManager = DependencyManager::get<PickManager>();
if (!pickManager) {
return Transform();
}
return pickManager->getResultTransform(_uid);
}

View file

@ -0,0 +1,23 @@
//
// Created by Sabrina Shanman 8/22/2018
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_PickTransformNode_h
#define hifi_PickTransformNode_h
#include "TransformNode.h"
// TODO: Remove this class when Picks are converted to SpatiallyNestables
class PickTransformNode : public TransformNode {
public:
PickTransformNode(unsigned int uid);
Transform getTransform() override;
protected:
unsigned int _uid;
};
#endif // hifi_PickTransformNode_h

View file

@ -50,6 +50,8 @@ public:
virtual void setRenderState(const std::string& state) = 0;
virtual void editRenderState(const std::string& state, const QVariant& startProps, const QVariant& pathProps, const QVariant& endProps) = 0;
virtual QVariantMap toVariantMap() const = 0;
virtual void setPrecisionPicking(bool precisionPicking);
virtual void setIgnoreItems(const QVector<QUuid>& ignoreItems) const;
virtual void setIncludeItems(const QVector<QUuid>& includeItems) const;

View file

@ -77,6 +77,15 @@ PickResultPointer PointerManager::getPrevPickResult(unsigned int uid) const {
return result;
}
QVariantMap PointerManager::getPointerProperties(unsigned int uid) const {
auto pointer = find(uid);
if (pointer) {
return pointer->toVariantMap();
} else {
return QVariantMap();
}
}
void PointerManager::update() {
auto cachedPointers = resultWithReadLock<std::unordered_map<unsigned int, std::shared_ptr<Pointer>>>([&] {
return _pointers;

View file

@ -30,6 +30,7 @@ public:
void setRenderState(unsigned int uid, const std::string& renderState) const;
void editRenderState(unsigned int uid, const std::string& state, const QVariant& startProps, const QVariant& pathProps, const QVariant& endProps) const;
PickResultPointer getPrevPickResult(unsigned int uid) const;
QVariantMap getPointerProperties(unsigned int uid) const;
void setPrecisionPicking(unsigned int uid, bool precisionPicking) const;
void setIgnoreItems(unsigned int uid, const QVector<QUuid>& ignoreEntities) const;

View file

@ -86,9 +86,8 @@ void CauterizedModel::createRenderItemSet() {
// Create the render payloads
int numParts = (int)mesh->getNumParts();
for (int partIndex = 0; partIndex < numParts; partIndex++) {
if (!fbxGeometry.meshes[i].blendshapes.empty() && !_blendedVertexBuffers[i]) {
_blendedVertexBuffers[i] = std::make_shared<gpu::Buffer>();
_blendedVertexBuffers[i]->resize(fbxGeometry.meshes[i].vertices.size() * (sizeof(glm::vec3) + 2 * sizeof(NormalType)));
if (!fbxGeometry.meshes[i].blendshapes.empty()) {
initializeBlendshapes(fbxGeometry.meshes[i], i);
}
auto ptr = std::make_shared<CauterizedMeshPartPayload>(shared_from_this(), i, partIndex, shapeID, transform, offset);
_modelMeshRenderItems << std::static_pointer_cast<ModelMeshPartPayload>(ptr);
@ -103,7 +102,7 @@ void CauterizedModel::createRenderItemSet() {
}
}
void CauterizedModel::updateClusterMatrices() {
void CauterizedModel::updateClusterMatrices(bool triggerBlendshapes) {
PerformanceTimer perfTimer("CauterizedModel::updateClusterMatrices");
if (!_needsUpdateClusterMatrices || !isLoaded()) {
@ -176,7 +175,7 @@ void CauterizedModel::updateClusterMatrices() {
// post the blender if we're not currently waiting for one to finish
auto modelBlender = DependencyManager::get<ModelBlender>();
if (modelBlender->shouldComputeBlendshapes() && geometry.hasBlendedMeshes() && _blendshapeCoefficients != _blendedBlendshapeCoefficients) {
if (triggerBlendshapes && modelBlender->shouldComputeBlendshapes() && geometry.hasBlendedMeshes() && _blendshapeCoefficients != _blendedBlendshapeCoefficients) {
_blendedBlendshapeCoefficients = _blendshapeCoefficients;
modelBlender->noteRequiresBlend(getThisPointer());
}

View file

@ -33,7 +33,7 @@ public:
void createRenderItemSet() override;
virtual void updateClusterMatrices() override;
virtual void updateClusterMatrices(bool triggerBlendshapes = true) override;
void updateRenderItems() override;
const Model::MeshState& getCauterizeMeshState(int index) const;

View file

@ -302,52 +302,11 @@ bool Model::updateGeometry() {
assert(_meshStates.empty());
const FBXGeometry& fbxGeometry = getFBXGeometry();
int i = 0;
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
MeshState state;
state.clusterDualQuaternions.resize(mesh.clusters.size());
state.clusterMatrices.resize(mesh.clusters.size());
_meshStates.push_back(state);
if (!mesh.blendshapes.isEmpty()) {
if (!_blendedVertexBuffers[i]) {
_blendedVertexBuffers[i] = std::make_shared<gpu::Buffer>();
}
const auto& buffer = _blendedVertexBuffers[i];
QVector<NormalType> normalsAndTangents;
normalsAndTangents.resize(2 * mesh.normals.size());
// Interleave normals and tangents
// Parallel version for performance
tbb::parallel_for(tbb::blocked_range<int>(0, mesh.normals.size()), [&](const tbb::blocked_range<int>& range) {
auto normalsRange = std::make_pair(mesh.normals.begin() + range.begin(), mesh.normals.begin() + range.end());
auto tangentsRange = std::make_pair(mesh.tangents.begin() + range.begin(), mesh.tangents.begin() + range.end());
auto normalsAndTangentsIt = normalsAndTangents.begin() + 2 * range.begin();
for (auto normalIt = normalsRange.first, tangentIt = tangentsRange.first;
normalIt != normalsRange.second;
++normalIt, ++tangentIt) {
#if FBX_PACK_NORMALS
glm::uint32 finalNormal;
glm::uint32 finalTangent;
buffer_helpers::packNormalAndTangent(*normalIt, *tangentIt, finalNormal, finalTangent);
#else
const auto& finalNormal = *normalIt;
const auto& finalTangent = *tangentIt;
#endif
*normalsAndTangentsIt = finalNormal;
++normalsAndTangentsIt;
*normalsAndTangentsIt = finalTangent;
++normalsAndTangentsIt;
}
});
const auto verticesSize = mesh.vertices.size() * sizeof(glm::vec3);
buffer->resize(mesh.vertices.size() * sizeof(glm::vec3) + normalsAndTangents.size() * sizeof(NormalType));
buffer->setSubData(0, verticesSize, (const gpu::Byte*) mesh.vertices.constData());
buffer->setSubData(verticesSize, 2 * mesh.normals.size() * sizeof(NormalType), (const gpu::Byte*) normalsAndTangents.data());
mesh.normalsAndTangents = normalsAndTangents;
}
i++;
}
needFullUpdate = true;
emit rigReady();
@ -388,17 +347,20 @@ bool Model::findRayIntersectionAgainstSubMeshes(const glm::vec3& origin, const g
// we can use the AABox's intersection by mapping our origin and direction into the model frame
// and testing intersection there.
if (modelFrameBox.findRayIntersection(modelFrameOrigin, modelFrameDirection, distance, face, surfaceNormal)) {
if (modelFrameBox.findRayIntersection(modelFrameOrigin, modelFrameDirection, 1.0f / modelFrameDirection, distance, face, surfaceNormal)) {
QMutexLocker locker(&_mutex);
float bestDistance = std::numeric_limits<float>::max();
float bestDistance = FLT_MAX;
BoxFace bestFace;
Triangle bestModelTriangle;
Triangle bestWorldTriangle;
glm::vec3 bestWorldIntersectionPoint;
glm::vec3 bestMeshIntersectionPoint;
int bestPartIndex = 0;
int bestShapeID = 0;
int bestSubMeshIndex = 0;
int subMeshIndex = 0;
const FBXGeometry& geometry = getFBXGeometry();
if (!_triangleSetsValid) {
calculateTriangleSets(geometry);
}
@ -409,41 +371,78 @@ bool Model::findRayIntersectionAgainstSubMeshes(const glm::vec3& origin, const g
glm::vec3 meshFrameOrigin = glm::vec3(worldToMeshMatrix * glm::vec4(origin, 1.0f));
glm::vec3 meshFrameDirection = glm::vec3(worldToMeshMatrix * glm::vec4(direction, 0.0f));
glm::vec3 meshFrameInvDirection = 1.0f / meshFrameDirection;
int shapeID = 0;
int subMeshIndex = 0;
std::vector<SortedTriangleSet> sortedTriangleSets;
for (auto& meshTriangleSets : _modelSpaceMeshTriangleSets) {
int partIndex = 0;
for (auto &partTriangleSet : meshTriangleSets) {
float triangleSetDistance;
BoxFace triangleSetFace;
Triangle triangleSetTriangle;
if (partTriangleSet.findRayIntersection(meshFrameOrigin, meshFrameDirection, triangleSetDistance, triangleSetFace, triangleSetTriangle, pickAgainstTriangles, allowBackface)) {
glm::vec3 meshIntersectionPoint = meshFrameOrigin + (meshFrameDirection * triangleSetDistance);
glm::vec3 worldIntersectionPoint = glm::vec3(meshToWorldMatrix * glm::vec4(meshIntersectionPoint, 1.0f));
float worldDistance = glm::distance(origin, worldIntersectionPoint);
if (worldDistance < bestDistance) {
bestDistance = worldDistance;
intersectedSomething = true;
face = triangleSetFace;
bestModelTriangle = triangleSetTriangle;
bestWorldTriangle = triangleSetTriangle * meshToWorldMatrix;
extraInfo["worldIntersectionPoint"] = vec3toVariant(worldIntersectionPoint);
extraInfo["meshIntersectionPoint"] = vec3toVariant(meshIntersectionPoint);
extraInfo["partIndex"] = partIndex;
extraInfo["shapeID"] = shapeID;
bestSubMeshIndex = subMeshIndex;
for (auto& partTriangleSet : meshTriangleSets) {
float priority = FLT_MAX;
if (partTriangleSet.getBounds().contains(meshFrameOrigin)) {
priority = 0.0f;
} else {
float partBoundDistance = FLT_MAX;
BoxFace partBoundFace;
glm::vec3 partBoundNormal;
if (partTriangleSet.getBounds().findRayIntersection(meshFrameOrigin, meshFrameDirection, meshFrameInvDirection,
partBoundDistance, partBoundFace, partBoundNormal)) {
priority = partBoundDistance;
}
}
if (priority < FLT_MAX) {
sortedTriangleSets.emplace_back(priority, &partTriangleSet, partIndex, shapeID, subMeshIndex);
}
partIndex++;
shapeID++;
}
subMeshIndex++;
}
if (sortedTriangleSets.size() > 1) {
static auto comparator = [](const SortedTriangleSet& left, const SortedTriangleSet& right) { return left.distance < right.distance; };
std::sort(sortedTriangleSets.begin(), sortedTriangleSets.end(), comparator);
}
for (auto it = sortedTriangleSets.begin(); it != sortedTriangleSets.end(); ++it) {
const SortedTriangleSet& sortedTriangleSet = *it;
// We can exit once triangleSetDistance > bestDistance
if (sortedTriangleSet.distance > bestDistance) {
break;
}
float triangleSetDistance = FLT_MAX;
BoxFace triangleSetFace;
Triangle triangleSetTriangle;
if (sortedTriangleSet.triangleSet->findRayIntersection(meshFrameOrigin, meshFrameDirection, meshFrameInvDirection, triangleSetDistance, triangleSetFace,
triangleSetTriangle, pickAgainstTriangles, allowBackface)) {
if (triangleSetDistance < bestDistance) {
bestDistance = triangleSetDistance;
intersectedSomething = true;
bestFace = triangleSetFace;
bestModelTriangle = triangleSetTriangle;
bestWorldTriangle = triangleSetTriangle * meshToWorldMatrix;
glm::vec3 meshIntersectionPoint = meshFrameOrigin + (meshFrameDirection * triangleSetDistance);
glm::vec3 worldIntersectionPoint = glm::vec3(meshToWorldMatrix * glm::vec4(meshIntersectionPoint, 1.0f));
bestWorldIntersectionPoint = worldIntersectionPoint;
bestMeshIntersectionPoint = meshIntersectionPoint;
bestPartIndex = sortedTriangleSet.partIndex;
bestShapeID = sortedTriangleSet.shapeID;
bestSubMeshIndex = sortedTriangleSet.subMeshIndex;
}
}
}
if (intersectedSomething) {
distance = bestDistance;
face = bestFace;
surfaceNormal = bestWorldTriangle.getNormal();
extraInfo["worldIntersectionPoint"] = vec3toVariant(bestWorldIntersectionPoint);
extraInfo["meshIntersectionPoint"] = vec3toVariant(bestMeshIntersectionPoint);
extraInfo["partIndex"] = bestPartIndex;
extraInfo["shapeID"] = bestShapeID;
if (pickAgainstTriangles) {
extraInfo["subMeshIndex"] = bestSubMeshIndex;
extraInfo["subMeshName"] = geometry.getModelNameOfMesh(bestSubMeshIndex);
@ -495,13 +494,16 @@ bool Model::findParabolaIntersectionAgainstSubMeshes(const glm::vec3& origin, co
QMutexLocker locker(&_mutex);
float bestDistance = FLT_MAX;
BoxFace bestFace;
Triangle bestModelTriangle;
Triangle bestWorldTriangle;
glm::vec3 bestWorldIntersectionPoint;
glm::vec3 bestMeshIntersectionPoint;
int bestPartIndex = 0;
int bestShapeID = 0;
int bestSubMeshIndex = 0;
int subMeshIndex = 0;
const FBXGeometry& geometry = getFBXGeometry();
if (!_triangleSetsValid) {
calculateTriangleSets(geometry);
}
@ -515,40 +517,79 @@ bool Model::findParabolaIntersectionAgainstSubMeshes(const glm::vec3& origin, co
glm::vec3 meshFrameAcceleration = glm::vec3(worldToMeshMatrix * glm::vec4(acceleration, 0.0f));
int shapeID = 0;
int subMeshIndex = 0;
std::vector<SortedTriangleSet> sortedTriangleSets;
for (auto& meshTriangleSets : _modelSpaceMeshTriangleSets) {
int partIndex = 0;
for (auto &partTriangleSet : meshTriangleSets) {
float triangleSetDistance;
BoxFace triangleSetFace;
Triangle triangleSetTriangle;
if (partTriangleSet.findParabolaIntersection(meshFrameOrigin, meshFrameVelocity, meshFrameAcceleration,
triangleSetDistance, triangleSetFace, triangleSetTriangle, pickAgainstTriangles, allowBackface)) {
if (triangleSetDistance < bestDistance) {
bestDistance = triangleSetDistance;
intersectedSomething = true;
face = triangleSetFace;
bestModelTriangle = triangleSetTriangle;
bestWorldTriangle = triangleSetTriangle * meshToWorldMatrix;
glm::vec3 meshIntersectionPoint = meshFrameOrigin + meshFrameVelocity * triangleSetDistance +
0.5f * meshFrameAcceleration * triangleSetDistance * triangleSetDistance;
glm::vec3 worldIntersectionPoint = origin + velocity * triangleSetDistance +
0.5f * acceleration * triangleSetDistance * triangleSetDistance;
extraInfo["worldIntersectionPoint"] = vec3toVariant(worldIntersectionPoint);
extraInfo["meshIntersectionPoint"] = vec3toVariant(meshIntersectionPoint);
extraInfo["partIndex"] = partIndex;
extraInfo["shapeID"] = shapeID;
bestSubMeshIndex = subMeshIndex;
for (auto& partTriangleSet : meshTriangleSets) {
float priority = FLT_MAX;
if (partTriangleSet.getBounds().contains(meshFrameOrigin)) {
priority = 0.0f;
} else {
float partBoundDistance = FLT_MAX;
BoxFace partBoundFace;
glm::vec3 partBoundNormal;
if (partTriangleSet.getBounds().findParabolaIntersection(meshFrameOrigin, meshFrameVelocity, meshFrameAcceleration,
partBoundDistance, partBoundFace, partBoundNormal)) {
priority = partBoundDistance;
}
}
if (priority < FLT_MAX) {
sortedTriangleSets.emplace_back(priority, &partTriangleSet, partIndex, shapeID, subMeshIndex);
}
partIndex++;
shapeID++;
}
subMeshIndex++;
}
if (sortedTriangleSets.size() > 1) {
static auto comparator = [](const SortedTriangleSet& left, const SortedTriangleSet& right) { return left.distance < right.distance; };
std::sort(sortedTriangleSets.begin(), sortedTriangleSets.end(), comparator);
}
for (auto it = sortedTriangleSets.begin(); it != sortedTriangleSets.end(); ++it) {
const SortedTriangleSet& sortedTriangleSet = *it;
// We can exit once triangleSetDistance > bestDistance
if (sortedTriangleSet.distance > bestDistance) {
break;
}
float triangleSetDistance = FLT_MAX;
BoxFace triangleSetFace;
Triangle triangleSetTriangle;
if (sortedTriangleSet.triangleSet->findParabolaIntersection(meshFrameOrigin, meshFrameVelocity, meshFrameAcceleration,
triangleSetDistance, triangleSetFace, triangleSetTriangle,
pickAgainstTriangles, allowBackface)) {
if (triangleSetDistance < bestDistance) {
bestDistance = triangleSetDistance;
intersectedSomething = true;
bestFace = triangleSetFace;
bestModelTriangle = triangleSetTriangle;
bestWorldTriangle = triangleSetTriangle * meshToWorldMatrix;
glm::vec3 meshIntersectionPoint = meshFrameOrigin + meshFrameVelocity * triangleSetDistance +
0.5f * meshFrameAcceleration * triangleSetDistance * triangleSetDistance;
glm::vec3 worldIntersectionPoint = origin + velocity * triangleSetDistance +
0.5f * acceleration * triangleSetDistance * triangleSetDistance;
bestWorldIntersectionPoint = worldIntersectionPoint;
bestMeshIntersectionPoint = meshIntersectionPoint;
bestPartIndex = sortedTriangleSet.partIndex;
bestShapeID = sortedTriangleSet.shapeID;
bestSubMeshIndex = sortedTriangleSet.subMeshIndex;
// These sets can overlap, so we can't exit early if we find something
}
}
}
if (intersectedSomething) {
parabolicDistance = bestDistance;
face = bestFace;
surfaceNormal = bestWorldTriangle.getNormal();
extraInfo["worldIntersectionPoint"] = vec3toVariant(bestWorldIntersectionPoint);
extraInfo["meshIntersectionPoint"] = vec3toVariant(bestMeshIntersectionPoint);
extraInfo["partIndex"] = bestPartIndex;
extraInfo["shapeID"] = bestShapeID;
if (pickAgainstTriangles) {
extraInfo["subMeshIndex"] = bestSubMeshIndex;
extraInfo["subMeshName"] = geometry.getModelNameOfMesh(bestSubMeshIndex);
@ -935,7 +976,7 @@ bool Model::addToScene(const render::ScenePointer& scene,
render::Transaction& transaction,
render::Item::Status::Getters& statusGetters) {
if (!_addedToScene && isLoaded()) {
updateClusterMatrices();
updateClusterMatrices(false);
if (_modelMeshRenderItems.empty()) {
createRenderItemSet();
}
@ -1445,7 +1486,7 @@ void Model::computeMeshPartLocalBounds() {
}
// virtual
void Model::updateClusterMatrices() {
void Model::updateClusterMatrices(bool triggerBlendshapes) {
DETAILED_PERFORMANCE_TIMER("Model::updateClusterMatrices");
if (!_needsUpdateClusterMatrices || !isLoaded()) {
@ -1474,7 +1515,7 @@ void Model::updateClusterMatrices() {
// post the blender if we're not currently waiting for one to finish
auto modelBlender = DependencyManager::get<ModelBlender>();
if (modelBlender->shouldComputeBlendshapes() && geometry.hasBlendedMeshes() && _blendshapeCoefficients != _blendedBlendshapeCoefficients) {
if (triggerBlendshapes && modelBlender->shouldComputeBlendshapes() && geometry.hasBlendedMeshes() && _blendshapeCoefficients != _blendedBlendshapeCoefficients) {
_blendedBlendshapeCoefficients = _blendshapeCoefficients;
modelBlender->noteRequiresBlend(getThisPointer());
}
@ -1514,10 +1555,10 @@ void Model::setBlendedVertices(int blendNumber, const Geometry::WeakPointer& geo
assert(buffer);
buffer->resize(mesh.vertices.size() * sizeof(glm::vec3) + mesh.normalsAndTangents.size() * sizeof(NormalType));
buffer->setSubData(0, verticesSize, (gpu::Byte*) vertices.constData() + index * sizeof(glm::vec3));
buffer->setSubData(verticesSize, 2 * mesh.normals.size() * sizeof(NormalType), (const gpu::Byte*) normalsAndTangents.data() + normalAndTangentIndex * sizeof(NormalType));
buffer->setSubData(verticesSize, mesh.normalsAndTangents.size() * sizeof(NormalType), (const gpu::Byte*) normalsAndTangents.data() + normalAndTangentIndex * sizeof(NormalType));
index += vertexCount;
normalAndTangentIndex += 2 * mesh.normals.size();
normalAndTangentIndex += mesh.normalsAndTangents.size();
}
}
@ -1555,6 +1596,42 @@ const render::ItemIDs& Model::fetchRenderItemIDs() const {
return _modelMeshRenderItemIDs;
}
void Model::initializeBlendshapes(const FBXMesh& mesh, int index) {
QVector<NormalType> normalsAndTangents;
normalsAndTangents.resize(2 * mesh.normals.size());
// Interleave normals and tangents
// Parallel version for performance
tbb::parallel_for(tbb::blocked_range<int>(0, mesh.normals.size()), [&](const tbb::blocked_range<int>& range) {
auto normalsRange = std::make_pair(mesh.normals.begin() + range.begin(), mesh.normals.begin() + range.end());
auto tangentsRange = std::make_pair(mesh.tangents.begin() + range.begin(), mesh.tangents.begin() + range.end());
auto normalsAndTangentsIt = normalsAndTangents.begin() + 2 * range.begin();
for (auto normalIt = normalsRange.first, tangentIt = tangentsRange.first;
normalIt != normalsRange.second;
++normalIt, ++tangentIt) {
#if FBX_PACK_NORMALS
glm::uint32 finalNormal;
glm::uint32 finalTangent;
buffer_helpers::packNormalAndTangent(*normalIt, *tangentIt, finalNormal, finalTangent);
#else
const auto& finalNormal = *normalIt;
const auto& finalTangent = *tangentIt;
#endif
*normalsAndTangentsIt = finalNormal;
++normalsAndTangentsIt;
*normalsAndTangentsIt = finalTangent;
++normalsAndTangentsIt;
}
});
const auto verticesSize = mesh.vertices.size() * sizeof(glm::vec3);
_blendedVertexBuffers[index] = std::make_shared<gpu::Buffer>();
_blendedVertexBuffers[index]->resize(mesh.vertices.size() * sizeof(glm::vec3) + normalsAndTangents.size() * sizeof(NormalType));
_blendedVertexBuffers[index]->setSubData(0, verticesSize, (const gpu::Byte*) mesh.vertices.constData());
_blendedVertexBuffers[index]->setSubData(verticesSize, normalsAndTangents.size() * sizeof(NormalType), (const gpu::Byte*) normalsAndTangents.data());
mesh.normalsAndTangents = normalsAndTangents;
}
void Model::createRenderItemSet() {
assert(isLoaded());
const auto& meshes = _renderGeometry->getMeshes();
@ -1583,7 +1660,7 @@ void Model::createRenderItemSet() {
// Run through all of the meshes, and place them into their segregated, but unsorted buckets
int shapeID = 0;
uint32_t numMeshes = (uint32_t)meshes.size();
auto fbxGeometry = getFBXGeometry();
auto& fbxGeometry = getFBXGeometry();
for (uint32_t i = 0; i < numMeshes; i++) {
const auto& mesh = meshes.at(i);
if (!mesh) {
@ -1593,8 +1670,8 @@ void Model::createRenderItemSet() {
// Create the render payloads
int numParts = (int)mesh->getNumParts();
for (int partIndex = 0; partIndex < numParts; partIndex++) {
if (fbxGeometry.meshes[i].blendshapes.empty() && !_blendedVertexBuffers[i]) {
_blendedVertexBuffers[i] = std::make_shared<gpu::Buffer>();
if (!fbxGeometry.meshes[i].blendshapes.empty()) {
initializeBlendshapes(fbxGeometry.meshes[i], i);
}
_modelMeshRenderItems << std::make_shared<ModelMeshPartPayload>(shared_from_this(), i, partIndex, shapeID, transform, offset);
auto material = getGeometry()->getShapeMaterial(shapeID);

View file

@ -64,6 +64,16 @@ class Model;
using ModelPointer = std::shared_ptr<Model>;
using ModelWeakPointer = std::weak_ptr<Model>;
struct SortedTriangleSet {
SortedTriangleSet(float distance, TriangleSet* triangleSet, int partIndex, int shapeID, int subMeshIndex) :
distance(distance), triangleSet(triangleSet), partIndex(partIndex), shapeID(shapeID), subMeshIndex(subMeshIndex) {}
float distance;
TriangleSet* triangleSet;
int partIndex;
int shapeID;
int subMeshIndex;
};
/// A generic 3D model displaying geometry loaded from a URL.
class Model : public QObject, public std::enable_shared_from_this<Model>, public scriptable::ModelProvider {
@ -149,7 +159,7 @@ public:
bool getSnapModelToRegistrationPoint() { return _snapModelToRegistrationPoint; }
virtual void simulate(float deltaTime, bool fullUpdate = true);
virtual void updateClusterMatrices();
virtual void updateClusterMatrices(bool triggerBlendshapes = true);
/// Returns a reference to the shared geometry.
const Geometry::Pointer& getGeometry() const { return _renderGeometry; }
@ -482,6 +492,8 @@ protected:
bool shouldInvalidatePayloadShapeKey(int meshIndex);
void initializeBlendshapes(const FBXMesh& mesh, int index);
private:
float _loadingPriority { 0.0f };

View file

@ -33,6 +33,7 @@ void PickItemsJob::run(const render::RenderContextPointer& renderContext, const
render::ItemBound PickItemsJob::findNearestItem(const render::RenderContextPointer& renderContext, const render::ItemBounds& inputs, float& minIsectDistance) const {
const glm::vec3 rayOrigin = renderContext->args->getViewFrustum().getPosition();
const glm::vec3 rayDirection = renderContext->args->getViewFrustum().getDirection();
const glm::vec3 rayInvDirection = 1.0f / rayDirection;
BoxFace face;
glm::vec3 normal;
float isectDistance;
@ -42,7 +43,7 @@ render::ItemBound PickItemsJob::findNearestItem(const render::RenderContextPoint
render::ItemKey itemKey;
for (const auto& itemBound : inputs) {
if (!itemBound.bound.contains(rayOrigin) && itemBound.bound.findRayIntersection(rayOrigin, rayDirection, isectDistance, face, normal)) {
if (!itemBound.bound.contains(rayOrigin) && itemBound.bound.findRayIntersection(rayOrigin, rayDirection, rayInvDirection, isectDistance, face, normal)) {
auto& item = renderContext->_scene->getItem(itemBound.id);
itemKey = item.getKey();
if (itemKey.isWorldSpace() && isectDistance>minDistance && isectDistance < minIsectDistance && isectDistance<maxDistance

View file

@ -31,7 +31,7 @@ int SoftAttachmentModel::getJointIndexOverride(int i) const {
// virtual
// use the _rigOverride matrices instead of the Model::_rig
void SoftAttachmentModel::updateClusterMatrices() {
void SoftAttachmentModel::updateClusterMatrices(bool triggerBlendshapes) {
if (!_needsUpdateClusterMatrices) {
return;
}
@ -78,7 +78,7 @@ void SoftAttachmentModel::updateClusterMatrices() {
// post the blender if we're not currently waiting for one to finish
auto modelBlender = DependencyManager::get<ModelBlender>();
if (modelBlender->shouldComputeBlendshapes() && geometry.hasBlendedMeshes() && _blendshapeCoefficients != _blendedBlendshapeCoefficients) {
if (triggerBlendshapes && modelBlender->shouldComputeBlendshapes() && geometry.hasBlendedMeshes() && _blendshapeCoefficients != _blendedBlendshapeCoefficients) {
_blendedBlendshapeCoefficients = _blendshapeCoefficients;
modelBlender->noteRequiresBlend(getThisPointer());
}

View file

@ -27,7 +27,7 @@ public:
~SoftAttachmentModel();
void updateRig(float deltaTime, glm::mat4 parentTransform) override;
void updateClusterMatrices() override;
void updateClusterMatrices(bool triggerBlendshapes = true) override;
protected:
int getJointIndexOverride(int i) const;

View file

@ -192,9 +192,9 @@ bool AABox::expandedIntersectsSegment(const glm::vec3& start, const glm::vec3& e
isWithin(start.x + axisDistance*direction.x, expandedCorner.x, expandedSize.x));
}
bool AABox::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance,
BoxFace& face, glm::vec3& surfaceNormal) const {
return findRayAABoxIntersection(origin, direction, _corner, _scale, distance, face, surfaceNormal);
bool AABox::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, const glm::vec3& invDirection,
float& distance, BoxFace& face, glm::vec3& surfaceNormal) const {
return findRayAABoxIntersection(origin, direction, invDirection, _corner, _scale, distance, face, surfaceNormal);
}
bool AABox::findParabolaIntersection(const glm::vec3& origin, const glm::vec3& velocity, const glm::vec3& acceleration,

View file

@ -69,7 +69,7 @@ public:
bool expandedContains(const glm::vec3& point, float expansion) const;
bool expandedIntersectsSegment(const glm::vec3& start, const glm::vec3& end, float expansion) const;
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance,
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, const glm::vec3& invDirection, float& distance,
BoxFace& face, glm::vec3& surfaceNormal) const;
bool findParabolaIntersection(const glm::vec3& origin, const glm::vec3& velocity, const glm::vec3& acceleration,
float& parabolicDistance, BoxFace& face, glm::vec3& surfaceNormal) const;

View file

@ -187,9 +187,9 @@ bool AACube::expandedIntersectsSegment(const glm::vec3& start, const glm::vec3&
isWithin(start.x + axisDistance*direction.x, expandedCorner.x, expandedSize.x));
}
bool AACube::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance,
BoxFace& face, glm::vec3& surfaceNormal) const {
return findRayAABoxIntersection(origin, direction, _corner, glm::vec3(_scale), distance, face, surfaceNormal);
bool AACube::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, const glm::vec3& invDirection,
float& distance, BoxFace& face, glm::vec3& surfaceNormal) const {
return findRayAABoxIntersection(origin, direction, invDirection, _corner, glm::vec3(_scale), distance, face, surfaceNormal);
}
bool AACube::findParabolaIntersection(const glm::vec3& origin, const glm::vec3& velocity, const glm::vec3& acceleration,

View file

@ -56,10 +56,10 @@ public:
bool touches(const AABox& otherBox) const;
bool expandedContains(const glm::vec3& point, float expansion) const;
bool expandedIntersectsSegment(const glm::vec3& start, const glm::vec3& end, float expansion) const;
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance,
BoxFace& face, glm::vec3& surfaceNormal) const;
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, const glm::vec3& invDirection,
float& distance, BoxFace& face, glm::vec3& surfaceNormal) const;
bool findParabolaIntersection(const glm::vec3& origin, const glm::vec3& velocity, const glm::vec3& acceleration,
float& parabolicDistance, BoxFace& face, glm::vec3& surfaceNormal) const;
float& parabolicDistance, BoxFace& face, glm::vec3& surfaceNormal) const;
bool touchesSphere(const glm::vec3& center, float radius) const;
bool findSpherePenetration(const glm::vec3& center, float radius, glm::vec3& penetration) const;
bool findCapsulePenetration(const glm::vec3& start, const glm::vec3& end, float radius, glm::vec3& penetration) const;

View file

@ -34,7 +34,7 @@ const float DEFAULT_HANDS_ANGULAR_VELOCITY_STEPPING_THRESHOLD = 3.3f;
const float DEFAULT_HEAD_VELOCITY_STEPPING_THRESHOLD = 0.18f;
const float DEFAULT_HEAD_PITCH_STEPPING_TOLERANCE = 7.0f;
const float DEFAULT_HEAD_ROLL_STEPPING_TOLERANCE = 7.0f;
const float DEFAULT_AVATAR_SPINE_STRETCH_LIMIT = 0.07f;
const float DEFAULT_AVATAR_SPINE_STRETCH_LIMIT = 0.04f;
const float DEFAULT_AVATAR_FORWARD_DAMPENING_FACTOR = 0.5f;
const float DEFAULT_AVATAR_LATERAL_DAMPENING_FACTOR = 2.0f;
const float DEFAULT_AVATAR_HIPS_MASS = 40.0f;

View file

@ -458,11 +458,6 @@ vec4 toGlm(const glm::u8vec3& color, float alpha) {
return vec4(glm::vec3(color) / MAX_COLOR, alpha);
}
glm::u8vec3 vec3UCharFromGlm(const glm::vec3 & color) {
static const float MAX_COLOR = 255.0f;
return { (uint8_t)(color.x * MAX_COLOR), (uint8_t)(color.y * MAX_COLOR), (uint8_t)(color.z * MAX_COLOR) };
}
glm::vec4 toGlm(const QColor& color) {
return glm::vec4(color.redF(), color.greenF(), color.blueF(), color.alphaF());
}

View file

@ -180,8 +180,6 @@ vec4 toGlm(const QColor& color);
ivec4 toGlm(const QRect& rect);
vec4 toGlm(const glm::u8vec3& color, float alpha);
glm::u8vec3 vec3UCharFromGlm(const glm::vec3 & c);
QSize fromGlm(const glm::ivec2 & v);
QMatrix4x4 fromGlm(const glm::mat4 & m);

Some files were not shown because too many files have changed in this diff Show more