Trying to create the SH from the skybox cubemap

This commit is contained in:
Sam Cake 2015-05-12 23:11:52 -07:00
parent 81e9918a4c
commit 536fff4502
6 changed files with 265 additions and 2 deletions

View file

@ -3357,7 +3357,7 @@ void Application::displaySide(Camera& theCamera, bool selfAvatarOnly, RenderArgs
auto skyStage = DependencyManager::get<SceneScriptingInterface>()->getSkyStage();
DependencyManager::get<DeferredLightingEffect>()->setGlobalLight(skyStage->getSunLight()->getDirection(), skyStage->getSunLight()->getColor(), skyStage->getSunLight()->getIntensity(), skyStage->getSunLight()->getAmbientIntensity());
DependencyManager::get<DeferredLightingEffect>()->setGlobalAtmosphere(skyStage->getAtmosphere());
// NOt yet DependencyManager::get<DeferredLightingEffect>()->setGlobalSkybox(skybox);
DependencyManager::get<DeferredLightingEffect>()->setGlobalSkybox(skybox);
PROFILE_RANGE("DeferredLighting");
PerformanceTimer perfTimer("lighting");

View file

@ -127,7 +127,7 @@ public:
CUBE_FACE_LEFT_NEG_X,
CUBE_FACE_TOP_POS_Y,
CUBE_FACE_BOTTOM_NEG_Y,
CUBE_FACE_BACK_POS_X,
CUBE_FACE_BACK_POS_Z,
CUBE_FACE_FRONT_NEG_Z,
NUM_CUBE_FACES, // Not a valid vace index

View file

@ -99,3 +99,6 @@ void Light::setShowContour(float show) {
}
editSchema()._control.w = show;
}

View file

@ -180,6 +180,7 @@ public:
}
}
};
typedef std::shared_ptr< SphericalHarmonics > SHPointer;
class Light {
public:

View file

@ -49,6 +49,9 @@ void Skybox::clearCubemap() {
void Skybox::render(gpu::Batch& batch, const ViewFrustum& viewFrustum, const Skybox& skybox) {
if (skybox.getCubemap() && skybox.getCubemap()->isDefined()) {
skybox.getAmbientSH();
static gpu::PipelinePointer thePipeline;
static gpu::BufferPointer theBuffer;
static gpu::Stream::FormatPointer theFormat;
@ -113,3 +116,252 @@ void Skybox::render(gpu::Batch& batch, const ViewFrustum& viewFrustum, const Sky
batch.clearFramebuffer(gpu::Framebuffer::BUFFER_COLOR0, glm::vec4(skybox.getColor(),1.0f), 0.f, 0);
}
}
void sphericalHarmonicsAdd(float * result, int order,
const float * inputA, const float * inputB)
{
const int numCoeff = order * order;
for(int i=0; i < numCoeff; i++)
{
result[i] = inputA[i] + inputB[i];
}
}
void sphericalHarmonicsScale(float * result, int order,
const float * input, float scale)
{
const int numCoeff = order * order;
for(int i=0; i < numCoeff; i++)
{
result[i] = input[i] * scale;
}
}
void sphericalHarmonicsEvaluateDirection(float * result, int order,
const glm::vec3 & dir)
{
// calculate coefficients for first 3 bands of spherical harmonics
double p_0_0 = 0.282094791773878140;
double p_1_0 = 0.488602511902919920 * dir.z;
double p_1_1 = -0.488602511902919920;
double p_2_0 = 0.946174695757560080 * dir.z * dir.z - 0.315391565252520050;
double p_2_1 = -1.092548430592079200 * dir.z;
double p_2_2 = 0.546274215296039590;
result[0] = p_0_0;
result[1] = p_1_1 * dir.y;
result[2] = p_1_0;
result[3] = p_1_1 * dir.x;
result[4] = p_2_2 * (dir.x * dir.y + dir.y * dir.x);
result[5] = p_2_1 * dir.y;
result[6] = p_2_0;
result[7] = p_2_1 * dir.x;
result[8] = p_2_2 * (dir.x * dir.x - dir.y * dir.y);
}
void sphericalHarmonicsFromTexture(const gpu::Texture& cubeTexture,
std::vector<glm::vec3> & output, const uint order)
{
const uint sqOrder = order*order;
// allocate memory for calculations
output.resize(sqOrder);
std::vector<float> resultR(sqOrder);
std::vector<float> resultG(sqOrder);
std::vector<float> resultB(sqOrder);
// variables that describe current face of cube texture
//std::unique_ptr data;
GLint width, height;
GLint internalFormat;
GLint numComponents;
// initialize values
float fWt = 0.0f;
for(uint i=0; i < sqOrder; i++)
{
output[i].x = 0;
output[i].y = 0;
output[i].z = 0;
resultR[i] = 0;
resultG[i] = 0;
resultB[i] = 0;
}
std::vector<float> shBuff(sqOrder);
std::vector<float> shBuffB(sqOrder);
// bind current texture
// glBindTexture(GL_TEXTURE_CUBE_MAP, cubeTexture->texture());
// for each face of cube texture
for(int face=0; face < 6; face++)
{
// get width and height
// glGetTexLevelParameteriv(cubeSides[face], 0, GL_TEXTURE_WIDTH, &width);
// glGetTexLevelParameteriv(cubeSides[face], 0, GL_TEXTURE_HEIGHT, &height);
width = height = cubeTexture.getWidth();
if(width != height)
{
return;
}
numComponents = cubeTexture.accessStoredMipFace(0,face)->_format.getDimensionCount();
auto data = cubeTexture.accessStoredMipFace(0,face)->_sysmem.readData();
// step between two texels for range [0, 1]
float invWidth = 1.0f / float(width);
// initial negative bound for range [-1, 1]
float negativeBound = -1.0f + invWidth;
// step between two texels for range [-1, 1]
float invWidthBy2 = 2.0f / float(width);
for(int y=0; y < width; y++)
{
// texture coordinate V in range [-1 to 1]
const float fV = negativeBound + float(y) * invWidthBy2;
for(int x=0; x < width; x++)
{
// texture coordinate U in range [-1 to 1]
const float fU = negativeBound + float(x) * invWidthBy2;
// determine direction from center of cube texture to current texel
glm::vec3 dir;
switch(face)
{
case gpu::Texture::CUBE_FACE_RIGHT_POS_X:
dir.x = 1.0f;
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = 1.0f - (invWidthBy2 * float(x) + invWidth);
dir = -dir;
break;
case gpu::Texture::CUBE_FACE_LEFT_NEG_X:
dir.x = -1.0f;
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = -1.0f + (invWidthBy2 * float(x) + invWidth);
dir = -dir;
break;
case gpu::Texture::CUBE_FACE_TOP_POS_Y:
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
dir.y = 1.0f;
dir.z = - 1.0f + (invWidthBy2 * float(y) + invWidth);
dir = -dir;
break;
case gpu::Texture::CUBE_FACE_BOTTOM_NEG_Y:
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
dir.y = - 1.0f;
dir.z = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir = -dir;
break;
case gpu::Texture::CUBE_FACE_BACK_POS_Z:
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = 1.0f;
break;
case gpu::Texture::CUBE_FACE_FRONT_NEG_Z:
dir.x = 1.0f - (invWidthBy2 * float(x) + invWidth);
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
dir.z = - 1.0f;
break;
default:
return;
}
// normalize direction
dir = glm::normalize(dir);
// scale factor depending on distance from center of the face
const float fDiffSolid = 4.0f / ((1.0f + fU*fU + fV*fV) *
sqrtf(1.0f + fU*fU + fV*fV));
fWt += fDiffSolid;
// calculate coefficients of spherical harmonics for current direction
sphericalHarmonicsEvaluateDirection(shBuff.data(), order, dir);
// index of texel in texture
uint pixOffsetIndex = (x + y * width) * numComponents;
// get color from texture and map to range [0, 1]
glm::vec3 clr(
float(data[pixOffsetIndex]) / 255,
float(data[pixOffsetIndex+1]) / 255,
float(data[pixOffsetIndex+2]) / 255
);
// scale color and add to previously accumulated coefficients
sphericalHarmonicsScale(shBuffB.data(), order,
shBuff.data(), clr.r * fDiffSolid);
sphericalHarmonicsAdd(resultR.data(), order,
resultR.data(), shBuffB.data());
sphericalHarmonicsScale(shBuffB.data(), order,
shBuff.data(), clr.g * fDiffSolid);
sphericalHarmonicsAdd(resultG.data(), order,
resultG.data(), shBuffB.data());
sphericalHarmonicsScale(shBuffB.data(), order,
shBuff.data(), clr.b * fDiffSolid);
sphericalHarmonicsAdd(resultB.data(), order,
resultB.data(), shBuffB.data());
}
}
}
// final scale for coefficients
const float fNormProj = (4.0f * glm::pi<float>()) / fWt;
sphericalHarmonicsScale(resultR.data(), order, resultR.data(), fNormProj);
sphericalHarmonicsScale(resultG.data(), order, resultG.data(), fNormProj);
sphericalHarmonicsScale(resultB.data(), order, resultB.data(), fNormProj);
// save result
for(uint i=0; i < sqOrder; i++)
{
output[i].r = resultR[i];
output[i].g = resultG[i];
output[i].b = resultB[i];
}
}
/*
glm::vec3 sphericalHarmonicsFromTexture(glm::vec3 & N, std::vector & coef)
{
return
// constant term, lowest frequency //////
C4 * coef[0] +
// axis aligned terms ///////////////////
2.0 * C2 * coef[1] * N.y +
2.0 * C2 * coef[2] * N.z +
2.0 * C2 * coef[3] * N.x +
// band 2 terms /////////////////////////
2.0 * C1 * coef[4] * N.x * N.y +
2.0 * C1 * coef[5] * N.y * N.z +
C3 * coef[6] * N.z * N.z - C5 * coef[6] +
2.0 * C1 * coef[7] * N.x * N.z +
C1 * coef[8] * (N.x * N.x - N.y * N.y);
}
*/
const SphericalHarmonics& Skybox::getAmbientSH() const {
if (!_isSHValid) {
if (_cubemap && _cubemap->isDefined()) {
std::vector< glm::vec3 > coefs(10, glm::vec3(0.0f));
sphericalHarmonicsFromTexture(*_cubemap, coefs, 2);
_ambientSH.L00 = coefs[0];
_ambientSH.L1m1 = coefs[1];
_ambientSH.L10 = coefs[2];
_ambientSH.L11 = coefs[3];
_ambientSH.L2m2 = coefs[4];
_ambientSH.L2m1 = coefs[5];
_ambientSH.L20 = coefs[6];
_ambientSH.L21 = coefs[7];
_ambientSH.L22 = coefs[8];
_isSHValid = true;
}
}
return _ambientSH;
}

View file

@ -13,6 +13,8 @@
#include "gpu/Texture.h"
#include "Light.h"
class ViewFrustum;
//class Transform;
namespace gpu { class Batch; }
@ -34,11 +36,16 @@ public:
const gpu::TexturePointer& getCubemap() const { return _cubemap; }
void clearCubemap();
const SphericalHarmonics& getAmbientSH() const;
static void render(gpu::Batch& batch, const ViewFrustum& frustum, const Skybox& skybox);
protected:
gpu::TexturePointer _cubemap;
mutable SphericalHarmonics _ambientSH;
mutable bool _isSHValid = false;
Color _color{1.0f, 1.0f, 1.0f};
};
typedef std::shared_ptr< Skybox > SkyboxPointer;