starfield and numerous utility components, initial checkin

This commit is contained in:
tosh 2013-03-24 05:50:07 +01:00
parent f8f098cf2c
commit 4444bcf26e
10 changed files with 1603 additions and 0 deletions

View file

@ -0,0 +1,20 @@
from random import random,randint
from sys import argv
n = 1000
if len(argv) > 1:
n = int(argv[1])
for i in range(n):
# color
w = randint(30,randint(40,255))
r = max(0,min(255,w + randint(-10,70)))
g = max(0,min(255,w + randint(-20,60)))
b = max(0,min(255,w + randint(-10,100)))
# position
azi = random() * 360
alt = random() * 90
print "%f %f #%02x%02x%02x" % (azi,alt,r,g,b)

View file

@ -0,0 +1,130 @@
//
// FieldOfView.cpp
// interface
//
// Created by Tobias Schwinger on 3/21/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#include "FieldOfView.h"
#include <math.h>
#include <algorithm>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/matrix_inverse.hpp>
using namespace glm;
FieldOfView::FieldOfView()
: mat_orientation(mat4(1.0f)),
vec_frustum_low(vec3(-1.0f,-1.0f,-1.0f)),
vec_frustum_high(vec3(1.0f,1.0f,1.0f)),
val_width(256.0f),
val_height(256.0f),
val_angle(0.61),
val_zoom(1.0f),
enm_aspect_balancing(expose_less)
{
}
mat4 FieldOfView::getViewerScreenXform() const
{
mat4 projection;
vec3 low, high;
calcGlFrustum(low, high);
// perspective projection? determine correct near distance
if (val_angle != 0.0f)
{
projection = translate(
frustum(low.x, high.x, low.y, high.y, low.z, high.z),
vec3(0.f, 0.f, -low.z) );
}
else
{
projection = ortho(low.x, high.x, low.y, high.y, low.z, high.z);
}
return projection;
}
mat4 FieldOfView::getWorldViewerXform() const
{
return translate(affineInverse(mat_orientation),
vec3(0.0f, 0.0f, -vec_frustum_high.z) );
}
mat4 FieldOfView::getWorldScreenXform() const
{
return translate(
getViewerScreenXform() * affineInverse(mat_orientation),
vec3(0.0f, 0.0f, -vec_frustum_high.z) );
}
mat4 FieldOfView::getViewerWorldXform() const
{
vec3 n_translate = vec3(0.0f, 0.0f, vec_frustum_high.z);
return translate(
translate(mat4(1.0f), n_translate)
* mat_orientation, -n_translate );
}
float FieldOfView::getPixelSize() const
{
vec3 low, high;
calcGlFrustum(low, high);
return std::min(
abs(high.x - low.x) / val_width,
abs(high.y - low.y) / val_height);
}
void FieldOfView::calcGlFrustum(vec3& low, vec3& high) const
{
low = vec_frustum_low;
high = vec_frustum_high;
// apply zoom
float inv_zoom = 1.0f / val_zoom;
float ax = (low.x + high.x) / 2.0f, ay = (low.y + high.y) / 2.0f;
low.x = (low.x - ax) * inv_zoom + ax;
high.x = (high.x - ax) * inv_zoom + ax;
low.y = (low.y - ay) * inv_zoom + ay;
high.y = (high.y - ay) * inv_zoom + ay;
low.z = (low.z - high.z) * inv_zoom + high.z;
// balance aspect
if (enm_aspect_balancing != stretch)
{
float f_aspect = (high.x - low.x) / (high.y - low.y);
float vp_aspect = val_width / val_height;
float adj;
if ((enm_aspect_balancing == expose_more)
!= (f_aspect > vp_aspect))
{
// expose_more -> f_aspect <= vp_aspect <=> adj >= 1
// expose_less -> f_aspect > vp_aspect <=> adj < 1
adj = vp_aspect / f_aspect;
low.x *= adj;
high.x *= adj;
}
else
{
// expose_more -> f_aspect > vp_aspect <=> adj > 1
// expose_less -> f_aspect <= vp_aspect <=> adj <= 1
adj = f_aspect / vp_aspect;
low.y *= adj;
high.y *= adj;
}
}
float w = high.x - low.x, h = high.y - low.y;
high.z -= low.z;
low.z = val_angle == 0.0f ? 0.0f :
sqrt(w*w+h*h) * 0.5f / tan(val_angle * 0.5f);
high.z += low.z;
}

115
interface/src/FieldOfView.h Normal file
View file

@ -0,0 +1,115 @@
//
// FieldOfView.cpp
// interface
//
// Created by Tobias Schwinger on 3/21/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__FieldOfView__
#define __interface__FieldOfView__
#include <glm/glm.hpp>
/**
* Viewing parameter encapsulation.
*/
class FieldOfView
{
glm::mat4 mat_orientation;
glm::vec3 vec_frustum_low;
glm::vec3 vec_frustum_high;
float val_width;
float val_height;
float val_angle;
float val_zoom;
int enm_aspect_balancing;
public:
FieldOfView();
// mutators
FieldOfView& setFrustum(glm::vec3 const& low, glm::vec3 const& high)
{ vec_frustum_low = low; vec_frustum_high = high; return *this; }
FieldOfView& setOrientation(glm::mat4 const& matrix)
{ mat_orientation = matrix; return *this; }
FieldOfView& setPerspective(float angle)
{ val_angle = angle; return *this; }
FieldOfView& setResolution(unsigned width, unsigned height)
{ val_width = width; val_height = height; return *this; }
FieldOfView& setZoom(float factor)
{ val_zoom = factor; return *this; }
enum aspect_balancing
{
expose_more,
expose_less,
stretch
};
FieldOfView& setAspectBalancing(aspect_balancing v)
{ enm_aspect_balancing = v; return *this; }
// dumb accessors
glm::vec3 const& getFrustumLow() const { return vec_frustum_low; }
glm::vec3 const& getFrustumHigh() const { return vec_frustum_high; }
glm::mat4 const& getOrientation() const { return mat_orientation; }
float getWidthInPixels() const { return val_width; }
float getHeightInPixels() const { return val_height; }
float getPerspective() const { return val_angle; }
// matrices
/**
* Returns a full transformation matrix to project world coordinates
* onto the screen.
*/
glm::mat4 getWorldScreenXform() const;
/**
* Transforms world coordinates to viewer-relative coordinates.
*
* This matrix can be used as the modelview matrix in legacy GL code
* where the projection matrix is kept separately.
*/
glm::mat4 getWorldViewerXform() const;
/**
* Returns the transformation to of viewer-relative coordinates back
* to world space.
*
* This matrix can be used to set up a coordinate system for avatar
* rendering.
*/
glm::mat4 getViewerWorldXform() const;
/**
* Returns the transformation of viewer-relative coordinates to the
* screen.
*
* This matrix can be used as the projection matrix in legacy GL code.
*/
glm::mat4 getViewerScreenXform() const;
// other useful information
/**
* Returns the size of a pixel in world space, that is the minimum
* in respect to x/y screen directions.
*/
float getPixelSize() const;
private:
void calcGlFrustum(glm::vec3& low, glm::vec3& high) const;
};
#endif

679
interface/src/Stars.cpp Normal file
View file

@ -0,0 +1,679 @@
//
// Stars.cpp
// interface
//
// Created by Tobias Schwinger on 3/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#include "InterfaceConfig.h"
#include "Stars.h"
#include "UrlReader.h"
#include "FieldOfView.h"
#include "AngleUtils.h"
#include "Radix2InplaceSort.h"
#include "Radix2IntegerScanner.h"
#include <stddef.h>
#include <stdint.h>
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <ctype.h>
#include <new>
#include <vector>
#include <memory>
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#define DEG2RAD 0.017453292519f
/* Data pipeline
* -------------
*
* ->> readInput -(load)--+---- (get brightness & sort) ---> brightness LUT
* | |
* ->> setResolution --+ | >extractBrightnessLevels<
* V |
* (sort by (tile,brightness))
* | |
* ->> setLOD ---+ | >retile< ->> setLOD --> (just parameterize
* V V renderer when on-GPU
* (filter by max-LOD brightness, data suffices)
* build tile info for rendering)
* | |
* V >recreateRenderer<
* (set new renderer)/
*
*
* (process), ->> entry point, ---> data flow, >internal routine<
*
*
* Open issues
* -----------
*
* o FOV culling is too eager - gotta revisit
* o LOD adjustment in a living renderer still needs to be coded (planned)
* o input limit (while keeping the brightest) needs to be coded (planned)
* o atomics/mutexes need to be added as annotated in the source to allow
* concurrent threads to pull the strings to e.g. have a low priority
* thread run the data pipeline for update -- rendering is wait-free
*/
namespace
{
using std::swap;
using std::min;
using std::max;
using glm::mat4;
using glm::value_ptr;
class InputVertex
{
unsigned val_color;
float val_azimuth;
float val_altitude;
public:
InputVertex(float azimuth, float altitude, unsigned color)
{
val_color = color >> 16 & 0xffu | color & 0xff00u |
color << 16 & 0xff0000u | 0xff000000u;
angleHorizontalPolar<Degrees>(azimuth, altitude);
val_azimuth = azimuth;
val_altitude = altitude;
}
float getAzimuth() const { return val_azimuth; }
float getAltitude() const { return val_altitude; }
unsigned getColor() const { return val_color; }
};
typedef std::vector<InputVertex> InputVertices;
class Loader : UrlReader
{
InputVertices* ptr_vertices;
unsigned val_limit;
unsigned val_lineno;
char const* str_actual_url;
public:
bool loadVertices(
InputVertices& destination, char const* url, unsigned limit)
{
ptr_vertices = & destination;
val_limit = limit;
str_actual_url = url; // in case we fail early
if (! UrlReader::readUrl(url, *this))
{
fprintf(stderr, "%s:%d: %s\n",
str_actual_url, val_lineno, getError());
return false;
}
return true;
}
protected:
friend class UrlReader;
void begin(char const* url,
char const* type, int64_t size, int64_t stardate)
{
val_lineno = 0u;
str_actual_url = url; // new value in http redirect
ptr_vertices->clear();
ptr_vertices->reserve(val_limit);
}
size_t transfer(char* input, size_t bytes)
{
size_t consumed = 0u;
char const* end = input + bytes;
char* line, * next = input;
for (;;)
{
// advance to next line
for (; next != end && isspace(*next); ++next);
consumed = next - input;
line = next;
++val_lineno;
for (; next != end && *next != '\n' && *next != '\r'; ++next);
if (next == end)
return consumed;
*next++ = '\0';
// skip comments
if (*line == '\\' || *line == '/' || *line == ';')
continue;
// parse
float azi, alt;
unsigned c;
if (sscanf(line, "%f %f #%x", & azi, & alt, & c) == 3)
{
if (ptr_vertices->size() < val_limit)
ptr_vertices->push_back( InputVertex(azi, alt, c) );
// TODO handle limit by switching to a minheap when
// buffer is full
}
else
{
fprintf(stderr, "Stars.cpp:%d: Bad input from %s\n",
val_lineno, str_actual_url);
}
}
return consumed;
}
void end(bool ok)
{
}
};
typedef uint16_t BrightnessLevel;
typedef std::vector<BrightnessLevel> BrightnessLevels;
const unsigned BrightnessBits = 16u;
template< class Vertex >
BrightnessLevel getBrightness(Vertex const& v)
{
unsigned c = v.getColor();
unsigned r = (c >> 16) & 0xff;
unsigned g = (c >> 8) & 0xff;
unsigned b = c & 0xff;
return BrightnessLevel((r*r+g*g+b*b) >> 1);
}
struct BrightnessSortScanner : Radix2IntegerScanner<BrightnessLevel>
{
typedef Radix2IntegerScanner<BrightnessLevel> Base;
BrightnessSortScanner() : Base(BrightnessBits) { }
bool bit(BrightnessLevel const& k, state_type& s)
{ return ! Base::bit(k,s); }
};
void extractBrightnessLevels(BrightnessLevels& dst, InputVertices const& src)
{
dst.clear();
dst.reserve(src.size());
for (InputVertices::const_iterator i =
src.begin(), e = src.end(); i != e; ++i)
dst.push_back( getBrightness(*i) );
radix2InplaceSort(dst.begin(), dst.end(), BrightnessSortScanner());
}
template< class Unit >
class HorizontalTiling
{
unsigned val_k;
float val_rcp_slice;
unsigned val_bits;
public:
HorizontalTiling(unsigned k)
: val_k(k), val_rcp_slice(k / Unit::twice_pi())
{
val_bits = ceil(log2(getTileCount() ));
}
unsigned getAzimuthalTiles() const { return val_k; }
unsigned getAltitudinalTiles() const { return val_k / 2 + 1; }
unsigned getTileIndexBits() const { return val_bits; }
unsigned getTileCount() const
{
return getAzimuthalTiles() * getAltitudinalTiles();
}
unsigned getTileIndex(float azimuth, float altitude) const
{
unsigned result;
return discreteAngle(azimuth) % val_k +
discreteAngle(altitude + Unit::half_pi()) * val_k;
}
unsigned getTileIndex(InputVertex const& v) const
{
return getTileIndex(v.getAzimuth(), v.getAltitude());
}
unsigned discreteAngle(float unsigned_angle) const
{
return unsigned(round(unsigned_angle * val_rcp_slice));
}
};
class TileSortScanner : public Radix2IntegerScanner<unsigned>
{
HorizontalTiling<Degrees> obj_tiling;
typedef Radix2IntegerScanner<unsigned> Base;
public:
explicit TileSortScanner(HorizontalTiling<Degrees> const& tiling)
: Base(tiling.getTileIndexBits() + BrightnessBits),
obj_tiling(tiling)
{ }
bool bit(InputVertex const& v, state_type const& s) const
{
// inspect (tile_index, brightness) tuples
unsigned key = getBrightness(v);
key |= obj_tiling.getTileIndex(v) << BrightnessBits;
return Base::bit(key, s);
}
};
struct Tile
{
uint16_t offset;
uint16_t count; // according to previous lod setting
};
struct GpuVertex
{
unsigned val_color;
float val_x;
float val_y;
float val_z;
//
GpuVertex() { }
GpuVertex(InputVertex const& in)
{
val_color = in.getColor();
float azimuth = in.getAzimuth() * DEG2RAD;
float altitude = in.getAltitude() * DEG2RAD;
// ground vector in x/z plane...
float gx = sin(azimuth);
float gz = -cos(azimuth);
// ...elevated in y direction by altitude
float exz = cos(altitude);
val_x = gx * exz;
val_y = sin(altitude);
val_z = gz * exz;
//fprintf(stderr, "Stars.cpp: GpuVertex created (%x,%f,%f,%f)\n", val_color, val_x, val_y, val_z);
}
unsigned getColor() const { return val_color; }
};
class Renderer
{
GpuVertex* ptr_data;
Tile* ptr_tiles;
BrightnessLevel val_brightness;
unsigned val_tile_resolution;
GLint* ptr_batch_offs;
GLsizei* ptr_batch_count;
GLuint hnd_vao;
public:
Renderer(InputVertices const& src, size_t n,
unsigned k, BrightnessLevel b, BrightnessLevel b_max)
: ptr_data(0l), ptr_tiles(0l),
val_brightness(b), val_tile_resolution(k)
{
HorizontalTiling<Degrees> tiling(k);
size_t n_tiles = tiling.getTileCount();
ptr_data = new GpuVertex[n];
ptr_tiles = new Tile[n_tiles];
// TODO tighten bounds and save some memory
ptr_batch_offs = new GLint[n_tiles];
ptr_batch_count = new GLsizei[n_tiles];
size_t vertex_index = 0u, curr_tile_index = 0u, count_active = 0u;
for (InputVertices::const_iterator i =
src.begin(), e = src.end(); i != e; ++i)
{
BrightnessLevel bv = getBrightness(*i);
// filter by alloc brightness
if (bv >= b_max)
{
size_t tile_index = tiling.getTileIndex(*i);
assert(tile_index >= curr_tile_index);
// moved to another tile?
if (tile_index != curr_tile_index)
{
Tile* t = ptr_tiles + curr_tile_index;
Tile* t_last = ptr_tiles + tile_index;
// set count of active vertices (upcoming lod)
t->count = count_active;
// generate skipped entries
for(size_t offs = t_last->offset; ++t != t_last ;)
t->offset = offs, t->count = 0u;
// set offset of the beginning tile`
t_last->offset = vertex_index;
curr_tile_index = tile_index;
count_active = 0u;
}
if (bv >= b)
++count_active;
//fprintf(stderr, "Stars.cpp: Vertex %d on tile #%d\n", vertex_index, tile_index);
// write converted vertex
ptr_data[vertex_index++] = *i;
}
}
assert(vertex_index == n);
// finish last tile (see above)
Tile* t = ptr_tiles + curr_tile_index;
Tile* t_last = ptr_tiles + n_tiles;
t->count = count_active;
for(; ++t != t_last ;)
t->offset = vertex_index, t->count = 0u;
// OpenGL upload
GLuint vbo;
glGenBuffers(1, & vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER,
n * sizeof(GpuVertex), ptr_data, GL_STATIC_DRAW);
glGenVertexArrays(1, & hnd_vao);
glBindVertexArray(hnd_vao);
glInterleavedArrays(GL_C4UB_V3F, sizeof(GpuVertex), 0l);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBindVertexArray(0);
}
~Renderer()
{
delete[] ptr_data;
delete[] ptr_tiles;
delete[] ptr_batch_count;
delete[] ptr_batch_offs;
glDeleteVertexArrays(1, & hnd_vao);
}
void render(FieldOfView fov, BrightnessLevel lod)
{
mat4 local_space = fov.getOrientation();
HorizontalTiling<Radians> tiling(val_tile_resolution);
// get z direction
float x = local_space[2][0];
float y = local_space[2][1];
float z = local_space[2][2];
// to polar
float azimuth = atan2(x,-z) + Radians::pi();
float altitude = atan2(y, sqrt(x*x+z*z));
fprintf(stderr, "Stars.cpp: viewer azimuth = %f, altitude = %f\n", azimuth, altitude);
// half diagonal perspective angle
float hd_pers = fov.getPerspective() * 0.5f;
unsigned azi_dim = tiling.getAzimuthalTiles();
unsigned alt_dim = tiling.getAltitudinalTiles();
// determine tile range in azimuthal direction (modulated)
unsigned azi_from = tiling.discreteAngle(
angleUnsignedNormal<Radians>(azimuth - hd_pers) ) % azi_dim;
unsigned azi_to = (1 + tiling.discreteAngle(
angleUnsignedNormal<Radians>(azimuth + hd_pers) )) % azi_dim;
// determine tile range in altitudinal direction (clamped)
unsigned alt_from = tiling.discreteAngle(
max(-Radians::half_pi(),min(Radians::half_pi(),
altitude - hd_pers)) + Radians::half_pi() );
unsigned alt_to = tiling.discreteAngle(
max(-Radians::half_pi(),min(Radians::half_pi(),
altitude + hd_pers)) + Radians::half_pi() );
// iterate the grid...
unsigned n_batches = 0u;
fprintf(stderr, "Stars.cpp: grid dimensions: %d x %d\n", azi_dim, alt_dim);
fprintf(stderr, "Stars.cpp: grid range: [%d;%d) [%d;%d]\n", azi_from, azi_to, alt_from, alt_to);
GLint* offs = ptr_batch_offs, * count = ptr_batch_count;
for (unsigned alt = alt_from; alt <= alt_to; ++alt)
{
for (unsigned azi = azi_from;
azi != azi_to; azi = (azi + 1) % azi_dim)
{
unsigned tile_index = azi + alt * azi_dim;
Tile& t = ptr_tiles[tile_index];
// TODO handle LOD changes by performing a binary
// search for the new brightness, if any
if (! t.count)
continue;
fprintf(stderr, "Stars.cpp: tile %d selected (%d vertices at offset %d)\n", tile_index, t.count, t.offset);
*offs++ = t.offset;
*count++ = t.count;
++n_batches;
}
}
fprintf(stderr, "Stars.cpp: rendering %d-multibatch\n", n_batches);
// cancel translation
local_space[3][0] = 0.0f;
local_space[3][1] = 0.0f;
local_space[3][2] = 0.0f;
// and setup modelview matrix
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadMatrixf(glm::value_ptr(
fov.setOrientation(local_space).getWorldViewerXform()));
// render
glBindVertexArray(hnd_vao);
glPointSize(1.0);
glMultiDrawArrays(GL_POINTS,
ptr_batch_offs, ptr_batch_count, n_batches);
// restore state state
glBindVertexArray(0);
glPopMatrix();
}
};
}
struct Stars::body
{
InputVertices vec_input;
unsigned val_tile_resolution;
BrightnessLevels vec_lod_brightness;
BrightnessLevel val_lod_brightness;
BrightnessLevel val_lod_max_brightness;
float val_lod_current_alloc;
float val_lod_low_water_mark;
float val_lod_high_water_mark;
Renderer* ptr_renderer;
body()
: val_tile_resolution(12), val_lod_brightness(0),
val_lod_max_brightness(0), val_lod_current_alloc(1.0f),
val_lod_low_water_mark(0.99f), val_lod_high_water_mark(1.0f),
ptr_renderer(0l)
{ }
bool readInput(const char* url, unsigned limit)
{
InputVertices new_vertices;
if (! Loader().loadVertices(new_vertices, url, limit))
return false;
BrightnessLevels new_brightness;
extractBrightnessLevels(new_brightness, new_vertices);
{
// TODO input mutex
vec_input.swap(new_vertices);
try
{
retile(val_tile_resolution);
}
catch (...)
{
// rollback transaction
new_vertices.swap(vec_input);
throw;
}
{
// TODO lod mutex
vec_lod_brightness.swap(new_brightness);
}
}
new_vertices.clear();
new_brightness.clear();
return true;
}
void setResolution(unsigned k)
{
if (k != val_tile_resolution)
{
// TODO input mutex
retile(k);
}
}
void retile(unsigned k)
{
HorizontalTiling<Degrees> tiling(k);
TileSortScanner scanner(tiling);
radix2InplaceSort(vec_input.begin(), vec_input.end(), scanner);
recreateRenderer(vec_input.size(), k,
val_lod_brightness, val_lod_max_brightness);
val_tile_resolution = k;
}
void setLOD(float fraction, float overalloc, float realloc)
{
assert(fraction >= 0.0f && fraction <= 0.0f);
assert(overalloc >= realloc && realloc >= 0.0f);
assert(overalloc <= 1.0f && realloc <= 1.0f);
float lwm, hwm;
float oa_fraction = min(fraction * (1.0f + oa_fraction), 1.0f);
size_t oa_new_size;
BrightnessLevel b, b_max;
{
// TODO lod mutex
// Or... There is just one write access, here - so LOD state
// could be CMPed as well...
lwm = val_lod_low_water_mark;
hwm = val_lod_high_water_mark;
size_t last = vec_lod_brightness.size() - 1;
val_lod_brightness = b =
vec_lod_brightness[ size_t(fraction * last) ];
oa_new_size = size_t(oa_fraction * last);
b_max = vec_lod_brightness[oa_new_size++];
}
// have to reallocate?
if (fraction < lwm || fraction > hwm)
{
// TODO input mutex
recreateRenderer(oa_new_size, val_tile_resolution, b, b_max);
{
// TODO lod mutex
val_lod_current_alloc = fraction;
val_lod_low_water_mark = fraction * (1.0f - realloc);
val_lod_high_water_mark = fraction * (1.0f + realloc);
val_lod_max_brightness = b_max;
}
}
}
void recreateRenderer(
size_t n, unsigned k, BrightnessLevel b, BrightnessLevel b_max)
{
Renderer* renderer = new Renderer(vec_input, n, k, b, b_max);
swap(ptr_renderer, renderer); // TODO make atomic
delete renderer; // will be NULL when was in use
}
void render(FieldOfView const& fov)
{
// check out renderer
Renderer* renderer = 0l;
swap(ptr_renderer, renderer); // TODO make atomic
float new_brightness = val_lod_brightness; // make atomic
// have it render
renderer->render(fov, new_brightness);
// check in - or dispose if there is a new one
// TODO make atomic (CAS)
if (! ptr_renderer)
ptr_renderer = renderer;
else delete renderer;
}
};
Stars::Stars() : ptr_body(0l) { ptr_body = new body; }
Stars::~Stars() { delete ptr_body; }
bool Stars::readInput(const char* url, unsigned limit)
{ return ptr_body->readInput(url, limit); }
void Stars::setResolution(unsigned k)
{ ptr_body->setResolution(k); }
void Stars::setLOD(float fraction, float overalloc, float realloc)
{ ptr_body->setLOD(fraction, 0.0f, 0.0f); } // TODO enable once implemented
void Stars::render(FieldOfView const& fov)
{ ptr_body->render(fov); }

76
interface/src/Stars.h Normal file
View file

@ -0,0 +1,76 @@
//
// Stars.h
// interface
//
// Created by Tobias Schwinger on 3/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __interface__Stars__
#define __interface__Stars__
#include "FieldOfView.h"
/**
* Starfield rendering component.
*/
class Stars
{
struct body;
body* ptr_body;
public:
Stars();
~Stars();
/**
* Reads input file from URL. Returns true upon success.
*
* The limit parameter allows to reduce the number of stars
* that are loaded, keeping the brightest ones.
*/
bool readInput(const char* url, unsigned limit = 50000);
/**
* Renders the starfield from a local viewer's perspective.
* The parameter specifies the field of view.
*/
void render(FieldOfView const& fov);
/**
* Sets the resolution for FOV culling.
*
* The parameter determines the number of tiles in azimuthal
* and altitudinal directions.
*
* GPU resources are updated upon change.
*/
void setResolution(unsigned k);
/**
* Allows to reduce the number of stars to be rendered given a
* fractional LOD value. The least brightest ones are omitted
* first.
*
* The further parameters determine when GPU resources should
* be reallocated. Its value is fractional in respect to the
* last number of stars 'n' that caused 'n * (1+overalloc)' to
* be allocated. When the next call to setLOD causes the total
* number of stars that could be rendered to drop below 'n *
* (1-realloc)' or rises above 'n * (1+realloc)' GPU resources
* are updated. Note that all parameters must be fractions,
* that is within the range [0;1] and that 'overalloc' must be
* greater than or equal to 'realloc'.
*/
void setLOD(float fraction,
float overalloc = 0.25, float realloc = 0.15);
private:
// don't copy/assign
Stars(Stars const&); // = delete;
Stars& operator=(Stars const&); // delete;
};
#endif

82
shared/src/AngleUtils.h Normal file
View file

@ -0,0 +1,82 @@
//
// AngleUtils.h
// hifi
//
// Created by Tobias Schwinger on 3/23/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __hifi__AngleUtils__
#define __hifi__AngleUtils__
#include <math.h>
struct Degrees
{
static float pi() { return 180.0f; }
static float twice_pi() { return 360.0f; }
static float half_pi() { return 90.0f; }
};
struct Radians
{
static float pi() { return 3.141592653589793f; }
static float twice_pi() { return 6.283185307179586f; }
static float half_pi() { return 1.5707963267948966; }
};
struct Rotations
{
static float pi() { return 0.5f; }
static float twice_pi() { return 1.0f; }
static float half_pi() { return 0.25f; }
};
/**
* Clamps an angle to the range of [-180; 180) degrees.
*/
template< class Unit >
float angleSignedNormal(float a)
{
float result = remainder(a, Unit::twice_pi());
if (result == Unit::pi())
result = -Unit::pi();
return result;
}
/**
* Clamps an angle to the range of [0; 360) degrees.
*/
template< class Unit >
float angleUnsignedNormal(float a)
{
return angleSignedNormal<Unit>(a - Unit::pi()) + Unit::pi();
}
/**
* Clamps a polar direction so that azimuth is in the range of [0; 360)
* degrees and altitude is in the range of [-90; 90] degrees.
*
* The so normalized angle still contains ambiguity due to gimbal lock:
* Both poles can be reached from any azimuthal direction.
*/
template< class Unit >
void angleHorizontalPolar(float& azimuth, float& altitude)
{
altitude = angleSignedNormal<Unit>(altitude);
if (altitude > Unit::half_pi())
{
altitude = Unit::pi() - altitude;
azimuth = -azimuth;
}
else if (altitude < -Unit::half_pi())
{
altitude = -Unit::pi() - altitude;
azimuth = -azimuth;
}
azimuth = angleUnsignedNormal<Unit>(azimuth);
}
#endif

View file

@ -0,0 +1,92 @@
//
// Radix2InplaceSort.h
// hifi
//
// Created by Tobias Schwinger on 3/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __hifi__Radix2InplaceSort__
#define __hifi__Radix2InplaceSort__
#include <algorithm>
/**
* Sorts the range between two iterators in linear time.
*
* A Radix2Scanner must be provided to decompose the sorting
* criterion into a fixed number of bits.
*/
template< class Radix2Scanner, typename BidiIterator >
void radix2InplaceSort( BidiIterator from, BidiIterator to,
Radix2Scanner const& scanner = Radix2Scanner() );
template< class S, typename I > struct radix2InplaceSort_impl : private S
{
radix2InplaceSort_impl(S const& scanner) : S(scanner) { }
void go(I& from, I& to, typename S::state_type s)
{
I l(from), r(to);
unsigned cl, cr;
using std::swap;
for (;;)
{
// scan from left for set bit
for (cl = cr = 0u; l != r ; ++l, ++cl)
if (S::bit(*l, s))
{
// scan from the right for unset bit
for (++cr; --r != l ;++cr)
if (! S::bit(*r, s))
{
// swap, continue scanning from left
swap(*l, *r);
break;
}
if (l == r)
break;
}
// on to the next digit, if any
if (! S::advance(s))
return;
// recurse into smaller branch and prepare iterative
// processing of the other
if (cl < cr)
{
if (cl > 1u) go(from, l, s);
else if (cr <= 1u)
return;
l = from = r;
r = to;
}
else
{
if (cr > 1u) go(r, to, s);
else if (cl <= 1u)
return;
r = to = l;
l = from;
}
}
}
};
template< class Radix2Scanner, typename BidiIterator >
void radix2InplaceSort( BidiIterator from, BidiIterator to,
Radix2Scanner const& scanner = Radix2Scanner() )
{
radix2InplaceSort_impl<Radix2Scanner, BidiIterator>(scanner)
.go(from, to, scanner.initial_state());
}
#endif /* defined(__hifi__Radix2InplaceSort__) */

View file

@ -0,0 +1,82 @@
//
// Radix2IntegerScanner.h
// hifi
//
// Created by Tobias Schwinger on 3/23/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __hifi__Radix2IntegerScanner__
#define __hifi__Radix2IntegerScanner__
#include <stddef.h>
#include <stdint.h>
namespace type_traits // those are needed for the declaration, see below
{
// Note: There are better / more generally appicable implementations
// in C++11, make_signed is missing in TR1 too - so I just use C++98
// hacks that get the job done...
template< typename T > struct is_signed
{ static bool const value = T(-1) < T(0); };
template< typename T, size_t S = sizeof(T) > struct make_unsigned;
template< typename T > struct make_unsigned< T, 1 > { typedef uint8_t type; };
template< typename T > struct make_unsigned< T, 2 > { typedef uint16_t type; };
template< typename T > struct make_unsigned< T, 4 > { typedef uint32_t type; };
template< typename T > struct make_unsigned< T, 8 > { typedef uint64_t type; };
}
/**
* Bit decomposition facility for integers.
*/
template< typename T,
bool _Signed = type_traits::is_signed<T>::value >
class Radix2IntegerScanner;
template< typename UInt >
class Radix2IntegerScanner< UInt, false >
{
UInt msb;
public:
Radix2IntegerScanner()
: msb(~UInt(0) &~ (~UInt(0) >> 1)) { }
explicit Radix2IntegerScanner(int bits) : msb(1u << (bits - 1)) { }
typedef UInt state_type;
state_type initial_state() const { return msb; }
bool advance(state_type& s) const { return (s >>= 1) != 0u; }
bool bit(UInt const& v, state_type const& s) const { return !!(v & s); }
};
template< typename Int >
class Radix2IntegerScanner< Int, true >
{
typename type_traits::make_unsigned<Int>::type msb;
public:
Radix2IntegerScanner()
: msb(~state_type(0) &~ (~state_type(0) >> 1)) { }
explicit Radix2IntegerScanner(int bits) : msb(1u << (bits - 1)) { }
typedef typename type_traits::make_unsigned<Int>::type state_type;
state_type initial_state() const { return msb; }
bool advance(state_type& s) const { return (s >>= 1) != 0u; }
bool bit(Int const& v, state_type const& s) const { return !!((v-msb) & s); }
};
#endif /* defined(__hifi__Radix2IntegerScanner__) */

77
shared/src/UrlReader.cpp Normal file
View file

@ -0,0 +1,77 @@
//
// UrlReader.cpp
// hifi
//
// Created by Tobias Schwinger on 3/21/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#include "UrlReader.h"
#include <new>
#include <curl/curl.h>
size_t const UrlReader::max_read_ahead = CURL_MAX_WRITE_SIZE;
char const* const UrlReader::success = "UrlReader: Success!";
char const* const UrlReader::error_init_failed = "UrlReader: Initialization failed.";
char const* const UrlReader::error_aborted = "UrlReader: Processing error.";
char const* const UrlReader::error_buffer_overflow = "UrlReader: Buffer overflow.";
char const* const UrlReader::error_leftover_input = "UrlReader: Incomplete processing.";
#define hnd_curl static_cast<CURL*>(ptr_impl)
UrlReader::UrlReader()
: ptr_impl(0l), ptr_ra(0l), str_error(0l)
{
ptr_ra = new(std::nothrow) char[max_read_ahead];
if (! ptr_ra) { str_error = error_init_failed; return; }
ptr_impl = curl_easy_init();
if (! ptr_impl) { str_error = error_init_failed; return; }
curl_easy_setopt(hnd_curl, CURLOPT_NOSIGNAL, 1l);
curl_easy_setopt(hnd_curl, CURLOPT_FAILONERROR, 1l);
curl_easy_setopt(hnd_curl, CURLOPT_FILETIME, 1l);
}
UrlReader::~UrlReader()
{
delete ptr_ra;
if (! hnd_curl) return;
curl_easy_cleanup(hnd_curl);
}
bool UrlReader::perform(char const* url, transfer_callback* cb)
{
curl_easy_setopt(hnd_curl, CURLOPT_URL, url);
curl_easy_setopt(hnd_curl, CURLOPT_WRITEFUNCTION, cb);
curl_easy_setopt(hnd_curl, CURLOPT_WRITEDATA, this);
CURLcode rc = curl_easy_perform(hnd_curl);
if (rc == CURLE_OK)
{
while (val_ra_size > 0 && str_error == success)
cb(0l, 0, 0, this);
}
else if (str_error != success)
str_error = curl_easy_strerror(rc);
return rc == CURLE_OK;
}
void UrlReader::getinfo(char const*& url,
char const*& type, int64_t& length, int64_t& stardate)
{
curl_easy_getinfo(hnd_curl, CURLINFO_EFFECTIVE_URL, & url);
curl_easy_getinfo(hnd_curl, CURLINFO_CONTENT_TYPE, & type);
double clen;
curl_easy_getinfo(hnd_curl, CURLINFO_CONTENT_LENGTH_DOWNLOAD, & clen);
length = static_cast<int64_t>(clen);
long time;
curl_easy_getinfo(hnd_curl, CURLINFO_FILETIME, & time);
stardate = time;
}

250
shared/src/UrlReader.h Normal file
View file

@ -0,0 +1,250 @@
//
// UrlReader.h
// hifi
//
// Created by Tobias Schwinger on 3/21/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __hifi__UrlReader__
#define __hifi__UrlReader__
#include <stddef.h>
#include <stdint.h>
#include <string.h>
/**
* UrlReader class that encapsulates a context for sequential data retrieval
* via URLs. Use one per thread.
*/
class UrlReader
{
void* ptr_impl;
char* ptr_ra;
char const* str_error;
void* ptr_stream;
size_t val_ra_size;
public:
/**
* Constructor - performs initialization, never throws.
*/
UrlReader();
/**
* Destructor - frees resources, never throws.
*/
~UrlReader();
/**
* Reads data from an URL and forwards it to the instance of a class
* fulfilling the ContentStream concept.
*
* The call protocol on the ContentStream is detailed as follows:
*
* 1. begin(char const* url,
* char const* content_type, uint64_t bytes, uint64_t stardate)
*
* All information except 'url' is optional; 'content_type' can
* be a null pointer - 'bytes' and 'stardate' can be equal to
* to 'unavailable'.
*
* 2. transfer(char* buffer, size_t bytes)
*
* Called until all data has been received. The number of bytes
* actually processed should be returned.
* Unprocessed data is stored in an extra buffer whose size is
* given by the constant UrlReader::max_read_ahead - it can be
* assumed to be reasonably large for on-the-fly parsing.
*
* 3. end(bool ok)
*
* Called at the end of the transfer.
*
* Returns the same success code
*/
template< class ContentStream >
bool readUrl(char const* url, ContentStream& s);
/**
* Returns a pointer to a static C-string that describes the error
* condition.
*/
inline char const* getError() const;
/**
* Can be called by the stream to set a user-defined error string.
*/
inline void setError(char const* static_c_string);
/**
* Pointer to the C-string returned by a call to 'readUrl' when no
* error occurred.
*/
static char const* const success;
/**
* Pointer to the C-string returned by a call to 'readUrl' when the
* initialization has failed.
*/
static char const* const error_init_failed;
/**
* Pointer to the C-string returned by a call to 'readUrl' when the
* transfer has been aborted by the client.
*/
static char const* const error_aborted;
/**
* Pointer to the C-string returned by a call to 'readUrl' when
* leftover input from incomplete processing caused a buffer
* overflow.
*/
static char const* const error_buffer_overflow;
/**
* Pointer to the C-string return by a call to 'readUrl' when the
* input provided was not completely consumed.
*/
static char const* const error_leftover_input;
/**
* Constant of the maximum number of bytes that are buffered
* between invocations of 'transfer'.
*/
static size_t const max_read_ahead;
/**
* Constant representing absent information in the call to the
* 'begin' member function of the target stream.
*/
static int const unavailable = -1;
/**
* Constant for requesting to abort the current transfer when
* returned by the 'transfer' member function of the target stream.
*/
static size_t const abort = ~0u;
private:
// instances of this class shall not be copied
UrlReader(UrlReader const&); // = delete;
UrlReader& operator=(UrlReader const&); // = delete;
// entrypoints to compiled code
typedef size_t transfer_callback(char*, size_t, size_t, void*);
bool perform(char const* url, transfer_callback* transfer);
void getinfo(char const*& url,
char const*& type, int64_t& length, int64_t& stardate);
// synthesized callback
template< class Stream >
static size_t callback_template(
char *input, size_t size, size_t nmemb, void* thiz);
};
template< class ContentStream >
bool UrlReader::readUrl(char const* url, ContentStream& s)
{
if (! ptr_impl) return false;
str_error = success;
ptr_stream = & s;
val_ra_size = ~size_t(0);
this->perform(url, & callback_template<ContentStream>);
s.end(str_error == success);
return str_error == success;
}
inline char const* UrlReader::getError() const { return this->str_error; }
inline void UrlReader::setError(char const* static_c_string)
{
if (this->str_error != success)
this->str_error = static_c_string;
}
template< class Stream >
size_t UrlReader::callback_template(
char *input, size_t size, size_t nmemb, void* thiz)
{
size *= nmemb;
UrlReader* me = static_cast<UrlReader*>(thiz);
Stream* stream = static_cast<Stream*>(me->ptr_stream);
// first call?
if (me->val_ra_size == ~size_t(0))
{
me->val_ra_size = 0u;
// extract meta information and call 'begin'
char const* url, * type;
int64_t length, stardate;
me->getinfo(url, type, length, stardate);
stream->begin(url, type, length, stardate);
}
size_t input_offset = 0u;
for (;;)
{
char* buffer = input + input_offset;
size_t bytes = size - input_offset;
// data in extra buffer?
if (me->val_ra_size > 0)
{
// fill extra buffer with beginning of input
size_t fill = max_read_ahead - me->val_ra_size;
if (bytes < fill) fill = bytes;
memcpy(me->ptr_ra + me->val_ra_size, buffer, fill);
// use extra buffer for next transfer
buffer = me->ptr_ra;
bytes = me->val_ra_size + fill;
input_offset += fill;
}
// call 'transfer'
size_t processed = stream->transfer(buffer, bytes);
if (processed == abort)
{
me->setError(error_aborted);
return 0u;
}
else if (! processed && ! input)
{
me->setError(error_leftover_input);
return 0u;
}
size_t unprocessed = bytes - processed;
// can switch to input buffer, now?
if (buffer == me->ptr_ra && unprocessed <= input_offset)
{
me->val_ra_size = 0u;
input_offset -= unprocessed;
}
else // no? unprocessed data -> extra buffer
{
if (unprocessed > max_read_ahead)
{
me->setError(error_buffer_overflow);
return 0;
}
me->val_ra_size = unprocessed;
memmove(me->ptr_ra, buffer + processed, unprocessed);
if (input_offset == size || buffer != me->ptr_ra)
{
return size;
}
}
} // for
}
#endif /* defined(__hifi__UrlReader__) */