remove PrimitiveRenderer

This commit is contained in:
ZappoMan 2014-12-11 14:13:44 -08:00
parent 208d3c8413
commit 3eb7314c98
4 changed files with 61 additions and 1733 deletions

View file

@ -1,742 +0,0 @@
//
// PrimitiveRenderer.cpp
// interface/src/voxels
//
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <QMutexLocker>
#include "InterfaceConfig.h"
#include "OctreeElement.h"
#include "PrimitiveRenderer.h"
Primitive::Primitive() {
}
Primitive::~Primitive() {
}
// Simple dispatch between API and SPI
const VertexElementList& Primitive::vertexElements() const {
return vVertexElements();
}
VertexElementIndexList& Primitive::vertexElementIndices() {
return vVertexElementIndices();
}
TriElementList& Primitive::triElements() {
return vTriElements();
}
void Primitive::releaseVertexElements() {
vReleaseVertexElements();
}
unsigned long Primitive::getMemoryUsage() {
return vGetMemoryUsage();
}
Cube::Cube(
float x,
float y,
float z,
float s,
unsigned char r,
unsigned char g,
unsigned char b,
unsigned char faceExclusions
) :
_cpuMemoryUsage(0) {
init(x, y, z, s, r, g, b, faceExclusions);
}
Cube::~Cube() {
terminate();
}
void Cube::init(
float x,
float y,
float z,
float s,
unsigned char r,
unsigned char g,
unsigned char b,
unsigned char faceExclusions
) {
initializeVertices(x, y, z, s, r, g, b, faceExclusions);
initializeTris(faceExclusions);
}
void Cube::terminate() {
terminateTris();
terminateVertices();
}
void Cube::initializeVertices(
float x,
float y,
float z,
float s,
unsigned char r,
unsigned char g,
unsigned char b,
unsigned char faceExclusions
) {
for (int i = 0; i < _sNumVerticesPerCube; i++) {
// Check whether the vertex is necessary for the faces indicated by faceExclusions bit mask.
// uncomment this line to load all faces: if (~0x00 & _sFaceIndexToHalfSpaceMask[i >> 2]) {
// uncomment this line to include shared faces: if (faceExclusions & _sFaceIndexToHalfSpaceMask[i >> 2]) {
// uncomment this line to exclude shared faces:
if (~faceExclusions & _sFaceIndexToHalfSpaceMask[i >> 2]) {
VertexElement* v = new VertexElement();
if (v) {
// Construct vertex position
v->position.x = x + s * _sVertexIndexToConstructionVector[i][0];
v->position.y = y + s * _sVertexIndexToConstructionVector[i][1];
v->position.z = z + s * _sVertexIndexToConstructionVector[i][2];
// Construct vertex normal
v->normal.x = _sVertexIndexToNormalVector[i >> 2][0];
v->normal.y = _sVertexIndexToNormalVector[i >> 2][1];
v->normal.z = _sVertexIndexToNormalVector[i >> 2][2];
// Construct vertex color
//#define FALSE_COLOR
#ifndef FALSE_COLOR
v->color.r = r;
v->color.g = g;
v->color.b = b;
v->color.a = 255;
#else
static unsigned char falseColor[6][3] = {
192, 0, 0, // Bot
0, 192, 0, // Top
0, 0, 192, // Right
192, 0, 192, // Left
192, 192, 0, // Near
192, 192, 192 // Far
};
v->color.r = falseColor[i >> 2][0];
v->color.g = falseColor[i >> 2][1];
v->color.b = falseColor[i >> 2][2];
v->color.a = 255;
#endif
// Add vertex element to list
_vertices.push_back(v);
_cpuMemoryUsage += sizeof(VertexElement);
_cpuMemoryUsage += sizeof(VertexElement*);
}
}
}
}
void Cube::terminateVertices() {
for (VertexElementList::iterator it = _vertices.begin(); it != _vertices.end(); ++it) {
delete *it;
}
_cpuMemoryUsage -= _vertices.size() * (sizeof(VertexElement) + sizeof(VertexElement*));
_vertices.clear();
}
void Cube::initializeTris(
unsigned char faceExclusions
) {
int index = 0;
for (int i = 0; i < _sNumFacesPerCube; i++) {
// Check whether the vertex is necessary for the faces indicated by faceExclusions bit mask.
// uncomment this line to load all faces: if (~0x00 & _sFaceIndexToHalfSpaceMask[i]) {
// uncomment this line to include shared faces: if (faceExclusions & _sFaceIndexToHalfSpaceMask[i]) {
// uncomment this line to exclude shared faces:
if (~faceExclusions & _sFaceIndexToHalfSpaceMask[i]) {
int start = index;
// Create the triangulated face, two tris, six indices referencing four vertices, both
// with cw winding order, such that:
// A-B
// |\|
// D-C
// Store triangle ABC
TriElement* tri = new TriElement();
if (tri) {
tri->indices[0] = index++;
tri->indices[1] = index++;
tri->indices[2] = index;
// Add tri element to list
_tris.push_back(tri);
_cpuMemoryUsage += sizeof(TriElement);
_cpuMemoryUsage += sizeof(TriElement*);
}
// Now store triangle ACD
tri = new TriElement();
if (tri) {
tri->indices[0] = start;
tri->indices[1] = index++;
tri->indices[2] = index++;
// Add tri element to list
_tris.push_back(tri);
_cpuMemoryUsage += sizeof(TriElement);
_cpuMemoryUsage += sizeof(TriElement*);
}
}
}
}
void Cube::terminateTris() {
for (TriElementList::iterator it = _tris.begin(); it != _tris.end(); ++it) {
delete *it;
}
_cpuMemoryUsage -= _tris.size() * (sizeof(TriElement) + sizeof(TriElement*));
_tris.clear();
}
const VertexElementList& Cube::vVertexElements() const {
return _vertices;
}
VertexElementIndexList& Cube::vVertexElementIndices() {
return _vertexIndices;
}
TriElementList& Cube::vTriElements() {
return _tris;
}
void Cube::vReleaseVertexElements() {
terminateVertices();
}
unsigned long Cube::vGetMemoryUsage() {
return _cpuMemoryUsage;
}
unsigned char Cube::_sFaceIndexToHalfSpaceMask[6] = {
OctreeElement::HalfSpace::Bottom,
OctreeElement::HalfSpace::Top,
OctreeElement::HalfSpace::Right,
OctreeElement::HalfSpace::Left,
OctreeElement::HalfSpace::Near,
OctreeElement::HalfSpace::Far,
};
// Construction vectors ordered such that the vertices of each face are
// clockwise in a right-handed coordinate system with B-L-N at 0,0,0.
float Cube::_sVertexIndexToConstructionVector[24][3] = {
// Bottom
{ 0,0,0 },
{ 1,0,0 },
{ 1,0,1 },
{ 0,0,1 },
// Top
{ 0,1,0 },
{ 0,1,1 },
{ 1,1,1 },
{ 1,1,0 },
// Right
{ 1,0,0 },
{ 1,1,0 },
{ 1,1,1 },
{ 1,0,1 },
// Left
{ 0,0,0 },
{ 0,0,1 },
{ 0,1,1 },
{ 0,1,0 },
// Near
{ 0,0,0 },
{ 0,1,0 },
{ 1,1,0 },
{ 1,0,0 },
// Far
{ 0,0,1 },
{ 1,0,1 },
{ 1,1,1 },
{ 0,1,1 },
};
// Normals for a right-handed coordinate system
float Cube::_sVertexIndexToNormalVector[6][3] = {
{ 0,-1, 0 }, // Bottom
{ 0, 1, 0 }, // Top
{ 1, 0, 0 }, // Right
{ -1, 0, 0 }, // Left
{ 0, 0,-1 }, // Near
{ 0, 0, 1 }, // Far
};
Renderer::Renderer() {
}
Renderer::~Renderer() {
}
// Simple dispatch between API and SPI
int Renderer::add(
Primitive* primitive
) {
return vAdd(primitive);
}
void Renderer::remove(
int id
) {
vRemove(id);
}
void Renderer::release() {
vRelease();
}
void Renderer::render() {
vRender();
}
unsigned long Renderer::getMemoryUsage() {
return vGetMemoryUsage();
}
unsigned long Renderer::getMemoryUsageGPU() {
return vGetMemoryUsageGPU();
}
PrimitiveRenderer::PrimitiveRenderer(
int maxCount
) :
_maxCount(maxCount),
_triBufferId(0),
_vertexBufferId(0),
_vertexElementCount(0),
_maxVertexElementCount(0),
_triElementCount(0),
_maxTriElementCount(0),
_primitives(),
_primitiveCount(0),
_gpuMemoryUsage(0),
_cpuMemoryUsage(0)
{
init();
}
PrimitiveRenderer::~PrimitiveRenderer() {
terminate();
}
void PrimitiveRenderer::init() {
initializeGL();
initializeBookkeeping();
}
void PrimitiveRenderer::initializeGL() {
glGenBuffers(1, &_triBufferId);
glGenBuffers(1, &_vertexBufferId);
// Set up the element array buffer containing the index ids
_maxTriElementCount = _maxCount * 2;
int size = _maxTriElementCount * _sIndicesPerTri * sizeof(GLint);
_gpuMemoryUsage += size;
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _triBufferId);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// Set up the array buffer in the form of array of structures
// I chose AOS because it maximizes the amount of data tranferred
// by a single glBufferSubData call.
_maxVertexElementCount = _maxCount * 8;
size = _maxVertexElementCount * sizeof(VertexElement);
_gpuMemoryUsage += size;
glBindBuffer(GL_ARRAY_BUFFER, _vertexBufferId);
glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
// Initialize the first tri element in the buffer to all zeros, the
// degenerate case
deconstructTriElement(0);
// Initialize the first vertex element in the buffer to all zeros, the
// degenerate case
deconstructVertexElement(0);
}
void PrimitiveRenderer::initializeBookkeeping() {
// Start primitive count at one, because zero is reserved for the degenerate triangle
_primitives.resize(_maxCount + 1);
// Set the counters
_primitiveCount = 1;
_vertexElementCount = 1;
_triElementCount = 1;
// Guesstimate the memory consumption
_cpuMemoryUsage = sizeof(PrimitiveRenderer);
_cpuMemoryUsage += _availablePrimitiveIndex.capacity() * sizeof(int);
_cpuMemoryUsage += _availableVertexElementIndex.capacity() * sizeof(int);
_cpuMemoryUsage += _availableTriElementIndex.capacity() * sizeof(int);
_cpuMemoryUsage += _deconstructTriElementIndex.capacity() * sizeof(int);
_cpuMemoryUsage += _constructPrimitiveIndex.capacity() * sizeof(int);
}
void PrimitiveRenderer::terminate() {
terminateBookkeeping();
terminateGL();
}
void PrimitiveRenderer::terminateGL() {
if (_vertexBufferId) {
glDeleteBuffers(1, &_vertexBufferId);
_vertexBufferId = 0;
}
if (_triBufferId) {
glDeleteBuffers(1, &_triBufferId);
_triBufferId = 0;
}
}
void PrimitiveRenderer::terminateBookkeeping() {
// Delete all of the primitives
for (int i = _primitiveCount + 1; --i > 0; ) {
Primitive* primitive = _primitives[i];
if (primitive) {
_cpuMemoryUsage -= primitive->getMemoryUsage();
_primitives[i] = 0;
delete primitive;
}
}
// Drain the queues
_availablePrimitiveIndex.clear();
_availableVertexElementIndex.clear();
_availableTriElementIndex.clear();
_deconstructTriElementIndex.clear();
_constructPrimitiveIndex.clear();
_cpuMemoryUsage = sizeof(PrimitiveRenderer) + _primitives.size() * sizeof(Primitive *);
}
void PrimitiveRenderer::constructElements(
Primitive* primitive
) {
// Load vertex elements
VertexElementIndexList& vertexElementIndexList = primitive->vertexElementIndices();
const VertexElementList& vertices = primitive->vertexElements();
{
for (VertexElementList::const_iterator it = vertices.begin(); it != vertices.end(); ++it ) {
int index = getAvailableVertexElementIndex();
if (index != 0) {
// Store the vertex element index in the primitive's
// vertex element index list
vertexElementIndexList.push_back(index);
VertexElement* vertex = *it;
transferVertexElement(index, vertex);
} else {
break;
}
}
}
// Load tri elements
if (vertexElementIndexList.size() == vertices.size()) {
TriElementList& tris = primitive->triElements();
for (TriElementList::iterator it = tris.begin(); it != tris.end(); ++it) {
TriElement* tri = *it;
int index = getAvailableTriElementIndex();
if (index != 0) {
int k;
k = tri->indices[0];
tri->indices[0] = vertexElementIndexList[k];
k = tri->indices[1];
tri->indices[1] = vertexElementIndexList[k];
k = tri->indices[2];
tri->indices[2] = vertexElementIndexList[k];
tri->id = index;
transferTriElement(index, tri->indices);
} else {
break;
}
}
} else {
// TODO: failure mode
}
}
void PrimitiveRenderer::deconstructElements(
Primitive* primitive
) {
// Schedule the tri elements of the face for deconstruction
{
TriElementList& tris = primitive->triElements();
for (TriElementList::const_iterator it = tris.begin(); it != tris.end(); ++it) {
const TriElement* tri = *it;
if (tri->id) {
// Put the tri element index into decon queue
_deconstructTriElementIndex.push(tri->id);
}
}
}
// Return the vertex element index to the available queue, it is not necessary
// to zero the data
{
VertexElementIndexList& vertexIndexList = primitive->vertexElementIndices();
for (VertexElementIndexList::const_iterator it = vertexIndexList.begin(); it != vertexIndexList.end(); ++it) {
int index = *it;
if (index) {
// Put the vertex element index into the available queue
_availableVertexElementIndex.push(index);
}
}
}
delete primitive;
}
int PrimitiveRenderer::getAvailablePrimitiveIndex() {
int index;
// Check the available primitive index queue first for an available index.
if (!_availablePrimitiveIndex.isEmpty()) {
index = _availablePrimitiveIndex.pop();
} else if (_primitiveCount < _maxCount) {
// There are no primitive indices available from the queue,
// make one up
index = _primitiveCount++;
} else {
index = 0;
}
return index;
}
int PrimitiveRenderer::getAvailableVertexElementIndex() {
int index;
// Check the available vertex element queue first for an available index.
if (!_availableVertexElementIndex.isEmpty()) {
index = _availableVertexElementIndex.pop();
} else if (_vertexElementCount < _maxVertexElementCount) {
// There are no vertex elements available from the queue,
// grab one from the end of the list
index = _vertexElementCount++;
} else {
index = 0;
}
return index;
}
int PrimitiveRenderer::getAvailableTriElementIndex() {
int index;
// Check the tri elements scheduled for deconstruction queue first to
// intercept and reuse an index without it having to be destroyed
if (!_deconstructTriElementIndex.isEmpty()) {
index = _deconstructTriElementIndex.pop();
} else if (!_availableTriElementIndex.isEmpty()) {
// Nothing available in the deconstruction queue, now
// check the available tri element queue for an available index.
index = _availableTriElementIndex.pop();
} else if (_triElementCount < _maxTriElementCount) {
// There are no reusable tri elements available from the queue,
// grab one from the end of the list
index = _triElementCount++;
} else {
index = 0;
}
return index;
}
void PrimitiveRenderer::deconstructTriElement(
int idx
) {
// Set the tri element to the degenerate case.
static int degenerate[3] = { 0, 0, 0 };
transferTriElement(idx, degenerate);
}
void PrimitiveRenderer::deconstructVertexElement(
int idx
) {
// Set the vertex element to the degenerate case.
VertexElement degenerate;
memset(&degenerate, 0, sizeof(degenerate));
transferVertexElement(idx, &degenerate);
}
void PrimitiveRenderer::transferVertexElement(
int idx,
VertexElement* vertex
) {
glBindBuffer(GL_ARRAY_BUFFER, _vertexBufferId);
glBufferSubData(GL_ARRAY_BUFFER, idx * sizeof(VertexElement), sizeof(VertexElement), vertex);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void PrimitiveRenderer::transferTriElement(
int idx,
int tri[3]
) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _triBufferId);
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, idx * _sBytesPerTriElement, _sBytesPerTriElement, tri);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
int PrimitiveRenderer::vAdd(
Primitive* primitive
) {
QMutexLocker lock(&_guard);
int id = getAvailablePrimitiveIndex();
if (id != 0) {
// Take ownership of primitive, including responsibility
// for destruction
_primitives[id] = primitive;
_constructPrimitiveIndex.push(id);
_cpuMemoryUsage += primitive->getMemoryUsage();
}
return id;
}
void PrimitiveRenderer::vRemove(
int id
) {
if (id != 0) {
QMutexLocker lock(&_guard);
// Locate and remove the primitive by id in the vector map
Primitive* primitive = _primitives[id];
if (primitive) {
_primitives[id] = 0;
_cpuMemoryUsage -= primitive->getMemoryUsage();
deconstructElements(primitive);
// Queue the index onto the available primitive stack.
_availablePrimitiveIndex.push(id);
}
}
}
void PrimitiveRenderer::vRelease() {
QMutexLocker lock(&_guard);
terminateBookkeeping();
initializeBookkeeping();
}
void PrimitiveRenderer::vRender() {
int id;
QMutexLocker lock(&_guard);
// Iterate over the set of triangle element array buffer ids scheduled for
// destruction. Set the triangle element to the degenerate case. Queue the id
// onto the available tri element stack.
while (!_deconstructTriElementIndex.isEmpty()) {
id = _deconstructTriElementIndex.pop();
deconstructTriElement(id);
_availableTriElementIndex.push(id);
}
// Iterate over the set of primitive ids scheduled for construction. Transfer
// primitive data to the GPU.
while (!_constructPrimitiveIndex.isEmpty()) {
id = _constructPrimitiveIndex.pop();
Primitive* primitive = _primitives[id];
if (primitive) {
constructElements(primitive);
// No need to keep an extra copy of the vertices
_cpuMemoryUsage -= primitive->getMemoryUsage();
primitive->releaseVertexElements();
_cpuMemoryUsage += primitive->getMemoryUsage();
}
}
// The application uses clockwise winding for the definition of front face, this renderer
// aalso uses clockwise (that is the gl default) to construct the triangulation
// so...
//glFrontFace(GL_CW);
glEnable(GL_CULL_FACE);
glBindBuffer(GL_ARRAY_BUFFER, _vertexBufferId);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(VertexElement), 0);
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, sizeof(VertexElement), (const GLvoid*)12);
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(VertexElement), (const GLvoid*)24);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _triBufferId);
glDrawElements(GL_TRIANGLES, 3 * _triElementCount, GL_UNSIGNED_INT, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glDisable(GL_CULL_FACE);
}
unsigned long PrimitiveRenderer::vGetMemoryUsage() {
return _cpuMemoryUsage;
}
unsigned long PrimitiveRenderer::vGetMemoryUsageGPU() {
return _gpuMemoryUsage;
}

View file

@ -1,503 +0,0 @@
//
// PrimitiveRenderer.h
// interface/src/voxels
//
// Created by Norman Craft.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_PrimitiveRenderer_h
#define hifi_PrimitiveRenderer_h
#include <QStack>
#include <QVector>
#include <QMutex>
/// Vertex element structure.
/// Using the array of structures approach to specifying
/// vertex data to GL cuts down on the calls to glBufferSubData
///
typedef
struct __VertexElement {
struct __position {
float x;
float y;
float z;
} position;
struct __normal {
float x;
float y;
float z;
} normal;
struct __color {
unsigned char r;
unsigned char g;
unsigned char b;
unsigned char a;
} color;
} VertexElement;
/// Triangle element index structure.
/// Specify the vertex indices of the triangle and its element index.
///
typedef
struct __TriElement {
int indices[3];
int id;
} TriElement;
/// Vertex element list container.
///
typedef QVector<VertexElement *> VertexElementList;
/// Vertex element index list container.
///
typedef QVector<int> VertexElementIndexList;
/// Triangle element list container
///
typedef QVector<TriElement *> TriElementList;
///
/// @class Primitive
/// Primitive Interface class.
/// Abstract class for accessing vertex and tri elements of geometric primitives
///
///
class Primitive {
public:
virtual ~Primitive();
// API methods go here
/// Vertex element accessor.
/// @return A list of vertex elements of the primitive
///
const VertexElementList& vertexElements() const;
/// Vertex element index accessor.
/// @return A list of vertex element indices of the primitive
///
VertexElementIndexList& vertexElementIndices();
/// Tri element accessor.
/// @return A list of tri elements of the primitive
///
TriElementList& triElements();
/// Release vertex elements.
///
void releaseVertexElements();
/// Get memory usage.
///
unsigned long getMemoryUsage();
protected:
/// Default constructor prohibited to API user, restricted to service implementer.
///
Primitive();
private:
/// Copy constructor prohibited.
///
Primitive(
const Primitive& copy
);
// SPI methods are defined here
/// Vertex element accessor.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual const VertexElementList& vVertexElements() const = 0;
/// Vertex element index accessor.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual VertexElementIndexList& vVertexElementIndices() = 0;
/// Tri element accessor.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual TriElementList& vTriElements() = 0;
/// Release vertex elements.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual void vReleaseVertexElements() = 0;
/// Get memory usage.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual unsigned long vGetMemoryUsage() = 0;
};
///
/// @class Cube
/// Class for accessing the vertex and triangle elements of a cube
///
class Cube: public Primitive {
public:
/// Configuration dependency injection constructor.
///
Cube(
float x, ///< Cube location on X-axis
float y, ///< Cube location on Y-axis
float z, ///< Cube location on Z-axis
float s, ///< Cube size
unsigned char r, ///< Cube red color component
unsigned char g, ///< Cube green color component
unsigned char b, ///< Cube blue color component
unsigned char faces ///< Bitmask of faces of cube excluded from construction
);
~Cube();
private:
/// Copy constructor prohibited.
///
Cube (
const Cube& cube
);
/// Cube initialization
///
void init(
float x, ///< Cube location on X-axis
float y, ///< Cube location on Y-axis
float z, ///< Cube location on Z-axis
float s, ///< Cube size
unsigned char r, ///< Cube red color component
unsigned char g, ///< Cube green color component
unsigned char b, ///< Cube blue color component
unsigned char faceExclusions ///< Bitmask of faces of cube excluded from construction
);
/// Cube termination
///
void terminate();
/// Initialize cube's vertex list
///
void initializeVertices(
float x, ///< Cube location on X-axis
float y, ///< Cube location on Y-axis
float z, ///< Cube location on Z-axis
float s, ///< Cube size
unsigned char r, ///< Cube red color component
unsigned char g, ///< Cube green color component
unsigned char b, ///< Cube blue color component
unsigned char faceExclusions ///< Bitmask of faces of cube excluded from construction
);
/// Terminate cube's vertex list
///
void terminateVertices();
/// Initialize cube's triangle list
///
void initializeTris(
unsigned char faceExclusions
);
/// Terminate cube's triangle list
///
void terminateTris();
// SPI virtual override methods go here
const VertexElementList& vVertexElements() const;
VertexElementIndexList& vVertexElementIndices();
TriElementList& vTriElements();
void vReleaseVertexElements();
unsigned long vGetMemoryUsage();
private:
VertexElementList _vertices; ///< Vertex element list
VertexElementIndexList _vertexIndices; ///< Vertex element index list
TriElementList _tris; ///< Tri element list
unsigned long _cpuMemoryUsage; ///< Memory allocation of object
static const int _sNumFacesPerCube = 6; ///< Number of faces per cube
static const int _sNumVerticesPerCube = 24; ///< Number of vertices per cube
static unsigned char _sFaceIndexToHalfSpaceMask[6]; ///< index to bitmask map
static float _sVertexIndexToConstructionVector[24][3]; ///< Vertex index to construction vector map
static float _sVertexIndexToNormalVector[6][3]; ///< Vertex index to normal vector map
};
///
/// @class Renderer
/// GL renderer interface class.
/// Abstract class for rendering geometric primitives in GL
///
class Renderer {
public:
virtual ~Renderer();
// API methods go here
/// Add primitive to renderer database.
///
int add(
Primitive* primitive ///< Primitive instance to be added
);
/// Remove primitive from renderer database.
///
void remove(
int id ///< Primitive id to be removed
);
/// Clear all primitives from renderer database
///
void release();
/// Render primitive database.
/// The render method assumes appropriate GL context and state has
/// already been provided for
///
void render();
/// Get memory usage.
///
unsigned long getMemoryUsage();
/// Get GPU memory usage.
///
unsigned long getMemoryUsageGPU();
protected:
/// Default constructor prohibited to API user, restricted to service implementer.
///
Renderer();
private:
/// Copy constructor prohibited.
///
Renderer(
const Renderer& copy
);
// SPI methods are defined here
/// Add primitive to renderer database.
/// Service implementer to provide private override for this method
/// in derived class
/// @return Primitive id
///
virtual int vAdd(
Primitive* primitive ///< Primitive instance to be added
) = 0;
/// Remove primitive from renderer database.
/// Service implementer to provide private override for this method
/// in derived class
///
virtual void vRemove(
int id ///< Primitive id
) = 0;
/// Clear all primitives from renderer database
/// Service implementer to provide private override for this method
/// in derived class
///
virtual void vRelease() = 0;
/// Render primitive database.
/// Service implementer to provide private virtual override for this method
/// in derived class
///
virtual void vRender() = 0;
/// Get memory usage.
///
virtual unsigned long vGetMemoryUsage() = 0;
/// Get GPU memory usage.
///
virtual unsigned long vGetMemoryUsageGPU() = 0;
};
///
/// @class PrimitiveRenderer
/// Renderer implementation class for the rendering of geometric primitives
/// using GL element array and GL array buffers
///
class PrimitiveRenderer : public Renderer {
public:
/// Configuration dependency injection constructor.
///
PrimitiveRenderer(
int maxCount ///< Max count
);
~PrimitiveRenderer();
private:
/// Default constructor prohibited.
///
PrimitiveRenderer();
/// Copy constructor prohibited.
///
PrimitiveRenderer(
const PrimitiveRenderer& renderer
);
void init();
void terminate();
/// Allocate and initialize GL buffers.
///
void initializeGL();
/// Terminate and deallocate GL buffers.
///
void terminateGL();
void initializeBookkeeping();
void terminateBookkeeping();
/// Construct the elements of the faces of the primitive.
///
void constructElements(
Primitive* primitive ///< Primitive instance
);
/// Deconstruct the elements of the faces of the primitive.
///
void deconstructElements(
Primitive* primitive ///< Primitive instance
);
/// Deconstruct the triangle element from the GL buffer.
///
void deconstructTriElement(
int idx ///< Triangle element index
);
/// Deconstruct the vertex element from the GL buffer.
///
void deconstructVertexElement(
int idx ///< Vertex element index
);
/// Transfer the vertex element to the GL buffer.
///
void transferVertexElement(
int idx, ///< Vertex element index
VertexElement *vertex ///< Vertex element instance
);
/// Transfer the triangle element to the GL buffer.
///
void transferTriElement(
int idx, ///< Triangle element index
int tri[3] ///< Triangle element data
);
/// Get available primitive index.
/// Get an available primitive index from either the recycling
/// queue or incrementing the counter
///
int getAvailablePrimitiveIndex();
/// Get available vertex element index.
/// Get an available vertex element index from either the recycling
/// queue or incrementing the counter
///
int getAvailableVertexElementIndex();
/// Get available triangle element index.
/// Get an available triangle element index from either the elements
/// scheduled for deconstruction queue, the recycling
/// queue or incrementing the counter
///
int getAvailableTriElementIndex();
// SPI virtual override methods go here
/// Add primitive to renderer database.
///
int vAdd(
Primitive* primitive ///< Primitive instance to be added
);
/// Remove primitive from renderer database.
///
void vRemove(
int id ///< Primitive id to be removed
);
/// Clear all primitives from renderer database
///
void vRelease();
/// Render triangle database.
///
void vRender();
/// Get memory usage.
///
unsigned long vGetMemoryUsage();
/// Get gpu memory usage.
///
unsigned long vGetMemoryUsageGPU();
private:
int _maxCount; ///< Maximum count of tris
// GL related parameters
GLuint _triBufferId; ///< GL element array buffer id
GLuint _vertexBufferId; ///< GL vertex array buffer id
// Book keeping parameters
int _vertexElementCount; ///< Count of vertices
int _maxVertexElementCount; ///< Max count of vertices
int _triElementCount; ///< Count of triangles
int _maxTriElementCount; ///< Max count of triangles
QVector<Primitive *> _primitives; ///< Vector of primitive
int _primitiveCount; ///< Count of primitives
QStack<int> _availablePrimitiveIndex; ///< Queue of primitive indices available
QStack<int> _availableVertexElementIndex; ///< Queue of vertex element indices available
QStack<int> _availableTriElementIndex; ///< Queue of triangle element indices available
QStack<int> _deconstructTriElementIndex; ///< Queue of triangle element indices requiring deletion from GL
QStack<int> _constructPrimitiveIndex; ///< Queue of primitives requiring addition to GL
QMutex _guard;
// Statistics parameters, not necessary for proper operation
unsigned long _gpuMemoryUsage; ///< GPU memory used by this instance
unsigned long _cpuMemoryUsage; ///< CPU memory used by this instance
static const int _sIndicesPerTri = 3;
static const int _sBytesPerTriElement = sizeof(GLint) * _sIndicesPerTri;
};
#endif // hifi_PrimitiveRenderer_h

View file

@ -68,10 +68,6 @@ VoxelSystem::VoxelSystem(float treeScale, int maxVoxels, VoxelTree* tree)
_initialized(false),
_writeArraysLock(QReadWriteLock::Recursive),
_readArraysLock(QReadWriteLock::Recursive),
_inOcclusions(false),
_showCulledSharedFaces(false),
_usePrimitiveRenderer(false),
_renderer(0),
_drawHaze(false),
_farHazeDistance(300.0f),
_hazeColor(grayColor)
@ -112,7 +108,7 @@ VoxelSystem::VoxelSystem(float treeScale, int maxVoxels, VoxelTree* tree)
void VoxelSystem::elementDeleted(OctreeElement* element) {
VoxelTreeElement* voxel = (VoxelTreeElement*)element;
if (voxel->getVoxelSystem() == this) {
if ((_voxelsInWriteArrays != 0) || _usePrimitiveRenderer) {
if ((_voxelsInWriteArrays != 0)) {
forceRemoveNodeFromArrays(voxel);
} else {
if (Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings)) {
@ -288,9 +284,6 @@ void VoxelSystem::cleanupVoxelMemory() {
_readColorsArray = NULL;
_writeColorsArray = NULL;
delete _renderer;
_renderer = 0;
delete[] _writeVoxelDirtyArray;
delete[] _readVoxelDirtyArray;
_writeVoxelDirtyArray = _readVoxelDirtyArray = NULL;
@ -384,8 +377,6 @@ void VoxelSystem::initVoxelMemory() {
Application::resourcesPath() + "shaders/voxel.frag");
_program.link();
}
_renderer = new PrimitiveRenderer(_maxVoxels);
_initialized = true;
_writeArraysLock.unlock();
@ -511,10 +502,6 @@ void VoxelSystem::setupNewVoxelsForDrawing() {
_callsToTreesToArrays++;
if (_writeRenderFullVBO) {
if (_usePrimitiveRenderer) {
_renderer->release();
clearAllNodesBufferIndex();
}
clearFreeBufferIndexes();
}
_voxelsUpdated = newTreeToArrays(_tree->getRoot());
@ -525,24 +512,17 @@ void VoxelSystem::setupNewVoxelsForDrawing() {
_voxelsUpdated = 0;
}
if (_usePrimitiveRenderer) {
if (_voxelsUpdated) {
_voxelsDirty=true;
}
} else {
// lock on the buffer write lock so we can't modify the data when the GPU is reading it
_readArraysLock.lockForWrite();
if (_voxelsUpdated) {
_voxelsDirty=true;
}
// copy the newly written data to the arrays designated for reading, only does something if _voxelsDirty && _voxelsUpdated
copyWrittenDataToReadArrays(didWriteFullVBO);
_readArraysLock.unlock();
// lock on the buffer write lock so we can't modify the data when the GPU is reading it
_readArraysLock.lockForWrite();
if (_voxelsUpdated) {
_voxelsDirty=true;
}
// copy the newly written data to the arrays designated for reading, only does something if _voxelsDirty && _voxelsUpdated
copyWrittenDataToReadArrays(didWriteFullVBO);
_readArraysLock.unlock();
quint64 end = usecTimestampNow();
int elapsedmsec = (end - start) / 1000;
_setupNewVoxelsForDrawingLastFinished = end;
@ -569,26 +549,22 @@ void VoxelSystem::setupNewVoxelsForDrawingSingleNode(bool allowBailEarly) {
return; // bail early, it hasn't been long enough since the last time we ran
}
if (_usePrimitiveRenderer) {
_voxelsDirty = true; // if we got this far, then we can assume some voxels are dirty
_voxelsUpdated = 0;
} else {
// lock on the buffer write lock so we can't modify the data when the GPU is reading it
{
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings),
"setupNewVoxelsForDrawingSingleNode()... _bufferWriteLock.lock();" );
_readArraysLock.lockForWrite();
}
_voxelsDirty = true; // if we got this far, then we can assume some voxels are dirty
// copy the newly written data to the arrays designated for reading, only does something if _voxelsDirty && _voxelsUpdated
copyWrittenDataToReadArrays(_writeRenderFullVBO);
// after...
_voxelsUpdated = 0;
_readArraysLock.unlock();
// lock on the buffer write lock so we can't modify the data when the GPU is reading it
{
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings),
"setupNewVoxelsForDrawingSingleNode()... _bufferWriteLock.lock();" );
_readArraysLock.lockForWrite();
}
_voxelsDirty = true; // if we got this far, then we can assume some voxels are dirty
// copy the newly written data to the arrays designated for reading, only does something if _voxelsDirty && _voxelsUpdated
copyWrittenDataToReadArrays(_writeRenderFullVBO);
// after...
_voxelsUpdated = 0;
_readArraysLock.unlock();
quint64 end = usecTimestampNow();
int elapsedmsec = (end - start) / 1000;
_setupNewVoxelsForDrawingLastFinished = end;
@ -862,22 +838,13 @@ int VoxelSystem::forceRemoveNodeFromArrays(VoxelTreeElement* node) {
return 0;
}
if (_usePrimitiveRenderer) {
if (node->isKnownBufferIndex()) {
int primitiveIndex = node->getBufferIndex();
_renderer->remove(primitiveIndex);
node->setBufferIndex(GLBUFFER_INDEX_UNKNOWN);
return 1;
}
} else {
// if the node is not in the VBOs then we have nothing to do!
if (node->isKnownBufferIndex()) {
// If this node has not yet been written to the array, then add it to the end of the array.
glBufferIndex nodeIndex = node->getBufferIndex();
node->setBufferIndex(GLBUFFER_INDEX_UNKNOWN);
freeBufferIndex(nodeIndex); // NOTE: This will make the node invisible!
return 1; // updated!
}
// if the node is not in the VBOs then we have nothing to do!
if (node->isKnownBufferIndex()) {
// If this node has not yet been written to the array, then add it to the end of the array.
glBufferIndex nodeIndex = node->getBufferIndex();
node->setBufferIndex(GLBUFFER_INDEX_UNKNOWN);
freeBufferIndex(nodeIndex); // NOTE: This will make the node invisible!
return 1; // updated!
}
return 0; // not-updated
}
@ -909,43 +876,17 @@ int VoxelSystem::updateNodeInArrays(VoxelTreeElement* node, bool reuseIndex, boo
float voxelScale = node->getScale();
nodeColor const & color = node->getColor();
if (_usePrimitiveRenderer) {
if (node->isKnownBufferIndex()) {
int primitiveIndex = node->getBufferIndex();
_renderer->remove(primitiveIndex);
node->setBufferIndex(GLBUFFER_INDEX_UNKNOWN);
} else {
node->setVoxelSystem(this);
}
unsigned char occlusions;
if (_showCulledSharedFaces) {
occlusions = ~node->getInteriorOcclusions();
} else {
occlusions = node->getInteriorOcclusions();
}
if (occlusions != OctreeElement::HalfSpace::All) {
Cube* cube = new Cube(
startVertex.x, startVertex.y, startVertex.z, voxelScale,
color[RED_INDEX], color[GREEN_INDEX], color[BLUE_INDEX],
occlusions);
if (cube) {
int primitiveIndex = _renderer->add(cube);
node->setBufferIndex(primitiveIndex);
}
}
glBufferIndex nodeIndex = GLBUFFER_INDEX_UNKNOWN;
if (reuseIndex && node->isKnownBufferIndex()) {
nodeIndex = node->getBufferIndex();
} else {
glBufferIndex nodeIndex = GLBUFFER_INDEX_UNKNOWN;
if (reuseIndex && node->isKnownBufferIndex()) {
nodeIndex = node->getBufferIndex();
} else {
nodeIndex = getNextBufferIndex();
node->setBufferIndex(nodeIndex);
node->setVoxelSystem(this);
}
// populate the array with points for the 8 vertices and RGB color for each added vertex
updateArraysDetails(nodeIndex, startVertex, voxelScale, node->getColor());
nodeIndex = getNextBufferIndex();
node->setBufferIndex(nodeIndex);
node->setVoxelSystem(this);
}
// populate the array with points for the 8 vertices and RGB color for each added vertex
updateArraysDetails(nodeIndex, startVertex, voxelScale, node->getColor());
return 1; // updated!
} else {
// If we shouldn't render, and we're in reuseIndex mode, then free our index, this only operates
@ -1072,24 +1013,22 @@ void VoxelSystem::updateVBOs() {
};
// would like to include _callsToTreesToArrays
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings), buffer);
if (! _usePrimitiveRenderer) {
if (_voxelsDirty) {
// attempt to lock the read arrays, to for copying from them to the actual GPU VBOs.
// if we fail to get the lock, that's ok, our VBOs will update on the next frame...
const int WAIT_FOR_LOCK_IN_MS = 5;
if (_readArraysLock.tryLockForRead(WAIT_FOR_LOCK_IN_MS)) {
if (_readRenderFullVBO) {
updateFullVBOs();
} else {
updatePartialVBOs();
}
_voxelsDirty = false;
_readRenderFullVBO = false;
_readArraysLock.unlock();
if (_voxelsDirty) {
// attempt to lock the read arrays, to for copying from them to the actual GPU VBOs.
// if we fail to get the lock, that's ok, our VBOs will update on the next frame...
const int WAIT_FOR_LOCK_IN_MS = 5;
if (_readArraysLock.tryLockForRead(WAIT_FOR_LOCK_IN_MS)) {
if (_readRenderFullVBO) {
updateFullVBOs();
} else {
qDebug() << "updateVBOs().... couldn't get _readArraysLock.tryLockForRead()";
updatePartialVBOs();
}
_voxelsDirty = false;
_readRenderFullVBO = false;
_readArraysLock.unlock();
} else {
qDebug() << "updateVBOs().... couldn't get _readArraysLock.tryLockForRead()";
}
}
_callsToTreesToArrays = 0; // clear it
@ -1143,11 +1082,11 @@ void VoxelSystem::render() {
updateVBOs();
if (!_usePrimitiveRenderer) {
if (_drawHaze) {
glEnable(GL_FOG);
}
if (_drawHaze) {
glEnable(GL_FOG);
}
{
PerformanceWarning warn(showWarnings, "render().. TRIANGLES...");
{
@ -1223,16 +1162,10 @@ void VoxelSystem::render() {
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
if (_drawHaze) {
glDisable(GL_FOG);
}
}
else {
applyScaleAndBindProgram(texture);
_renderer->render();
removeScaleAndReleaseProgram(texture);
if (_drawHaze) {
glDisable(GL_FOG);
}
}
@ -1275,12 +1208,6 @@ void VoxelSystem::killLocalVoxels() {
_tree->getRoot()->setVoxelSystem(voxelSystem);
_tree->unlock();
clearFreeBufferIndexes();
if (_usePrimitiveRenderer) {
if (_renderer) {
_renderer->release();
}
clearAllNodesBufferIndex();
}
_voxelsInReadArrays = 0; // do we need to do this?
setupNewVoxelsForDrawing();
}
@ -1308,178 +1235,6 @@ void VoxelSystem::clearAllNodesBufferIndex() {
}
}
bool VoxelSystem::inspectForInteriorOcclusionsOperation(OctreeElement* element, void* extraData) {
_nodeCount++;
VoxelTreeElement* voxel = (VoxelTreeElement*)element;
// Nothing to do at the leaf level
if (voxel->isLeaf()) {
return false;
}
// Bit mask of occluded shared faces indexed by child
unsigned char occludedSharedFace[NUMBER_OF_CHILDREN] = { 0, 0, 0, 0, 0, 0, 0, 0 };
// Traverse all pair combinations of children
for (int i = NUMBER_OF_CHILDREN; --i >= 0; ) {
VoxelTreeElement* childA = voxel->getChildAtIndex(i);
if (childA) {
// Get the child A's occluding faces, for a leaf that will be
// all six voxel faces, and for a non leaf, that will be
// all faces which are completely covered by four child octants.
unsigned char exteriorOcclusionsA = childA->getExteriorOcclusions();
for (int j = i; --j >= 0; ) {
VoxelTreeElement* childB = voxel->getChildAtIndex(j);
if (childB) {
// Get child B's occluding faces
unsigned char exteriorOcclusionsB = childB->getExteriorOcclusions();
// Determine the shared halfspace partition between siblings A and B,
// i.e., near/far, left/right, or top/bottom
unsigned char partitionA = _sOctantIndexToSharedBitMask[i][j] &
exteriorOcclusionsA;
unsigned char partitionB = _sOctantIndexToSharedBitMask[i][j] &
exteriorOcclusionsB;
// Determine which face of each sibling is occluded.
// The _sOctantIndexToBitMask is a partition occupancy mask. For
// example, if the near-left-top (NLT) and near-left-bottom (NLB) child voxels
// exist, the shared partition is top-bottom (TB), and thus the occluded
// shared face of the NLT voxel is its bottom face.
occludedSharedFace[i] |= (partitionB & _sOctantIndexToBitMask[i]);
occludedSharedFace[j] |= (partitionA & _sOctantIndexToBitMask[j]);
}
}
// Exchange bit pairs, left to right, vice versa, etc.
occludedSharedFace[i] = _sSwizzledOcclusionBits[occludedSharedFace[i]];
// Combine this voxel's interior excluded shared face only to those children which are coincident
// with the excluded face.
occludedSharedFace[i] |= (voxel->getInteriorOcclusions() & _sOctantIndexToBitMask[i]);
// Inform the child
childA->setInteriorOcclusions(occludedSharedFace[i]);
if (occludedSharedFace[i] != OctreeElement::HalfSpace::None) {
//const glm::vec3& v = voxel->getCorner();
//float s = voxel->getScale();
//qDebug("Child %d of voxel at %f %f %f size: %f has %02x occlusions", i, v.x, v.y, v.z, s, occludedSharedFace[i]);
}
}
}
return true;
}
bool VoxelSystem::inspectForExteriorOcclusionsOperation(OctreeElement* element, void* extraData) {
_nodeCount++;
VoxelTreeElement* voxel = (VoxelTreeElement*)element;
// Nothing to do at the leaf level
if (voxel->isLeaf()) {
// By definition the the exterior faces of a leaf voxel are
// always occluders.
voxel->setExteriorOcclusions(OctreeElement::HalfSpace::All);
// And the sibling occluders
voxel->setInteriorOcclusions(OctreeElement::HalfSpace::None);
return false;
} else {
voxel->setExteriorOcclusions(OctreeElement::HalfSpace::None);
voxel->setInteriorOcclusions(OctreeElement::HalfSpace::None);
}
// Count of exterior occluding faces of this voxel element indexed
// by half space partition
unsigned int exteriorOcclusionsCt[6] = { 0, 0, 0, 0, 0, 0 };
// Traverse all children
for (int i = NUMBER_OF_CHILDREN; --i >= 0; ) {
VoxelTreeElement* child = voxel->getChildAtIndex(i);
if (child) {
// Get the child's occluding faces, for a leaf, that will be
// all six voxel faces, and for a non leaf, that will be
// all faces which are completely covered by four child octants.
unsigned char exteriorOcclusionsOfChild = child->getExteriorOcclusions();
exteriorOcclusionsOfChild &= _sOctantIndexToBitMask[i];
for (int j = 6; --j >= 0; ) {
// Determine if the halfspace partition indexed by 1 << j is
// present in the exterior occlusions of the child.
unsigned char partition = exteriorOcclusionsOfChild & (1 << j);
if (partition) {
exteriorOcclusionsCt[j]++;
}
}
}
}
{
// Derive the exterior occlusions of the voxel elements from the exclusions
// of its children
unsigned char exteriorOcclusions = OctreeElement::HalfSpace::None;
for (int i = 6; --i >= 0; ) {
if (exteriorOcclusionsCt[i] == _sNumOctantsPerHemiVoxel) {
// Exactly four octants qualify for full exterior occlusion
exteriorOcclusions |= (1 << i);
}
}
// Inform the voxel element
voxel->setExteriorOcclusions(exteriorOcclusions);
if (exteriorOcclusions == OctreeElement::HalfSpace::All) {
//const glm::vec3& v = voxel->getCorner();
//float s = voxel->getScale();
//qDebug("Completely occupied voxel at %f %f %f size: %f", v.x, v.y, v.z, s);
// All of the exterior faces of this voxel element are
// occluders, which means that this element is completely
// occupied. Hence, the subtree from this node could be
// pruned and replaced by a leaf voxel, if the visible
// properties of the children are the same
} else if (exteriorOcclusions != OctreeElement::HalfSpace::None) {
//const glm::vec3& v = voxel->getCorner();
//float s = voxel->getScale();
//qDebug("Partially occupied voxel at %f %f %f size: %f with %02x", v.x, v.y, v.z, s, exteriorOcclusions);
}
}
return true;
}
void VoxelSystem::inspectForOcclusions() {
if (_inOcclusions) {
return;
}
_inOcclusions = true;
_nodeCount = 0;
bool showDebugDetails = Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings);
PerformanceWarning warn(showDebugDetails, "inspectForOcclusions()");
_tree->lockForRead();
_tree->recurseTreeWithPostOperation(inspectForExteriorOcclusionsOperation);
_nodeCount = 0;
_tree->recurseTreeWithOperation(inspectForInteriorOcclusionsOperation);
_tree->unlock();
if (showDebugDetails) {
qDebug("inspecting all occlusions of %d nodes", _nodeCount);
}
_inOcclusions = false;
}
bool VoxelSystem::forceRedrawEntireTreeOperation(OctreeElement* element, void* extraData) {
_nodeCount++;
element->setDirtyBit();
@ -1904,170 +1659,3 @@ void VoxelSystem::bindPerlinModulateProgram() {
}
}
// Swizzle value of bit pairs of the value of index
unsigned short VoxelSystem::_sSwizzledOcclusionBits[64] = {
0x0000, // 00000000
0x0002, // 00000001
0x0001, // 00000010
0x0003, // 00000011
0x0008, // 00000100
0x000a, // 00000101
0x0009, // 00000110
0x000b, // 00000111
0x0004, // 00001000
0x0006, // 00001001
0x0005, // 00001010
0x0007, // 00001011
0x000c, // 00001100
0x000e, // 00001101
0x000d, // 00001110
0x000f, // 00001111
0x0020, // 00010000
0x0022, // 00010001
0x0021, // 00010010
0x0023, // 00010011
0x0028, // 00010100
0x002a, // 00010101
0x0029, // 00010110
0x002b, // 00010111
0x0024, // 00011000
0x0026, // 00011001
0x0025, // 00011010
0x0027, // 00011011
0x002c, // 00011100
0x002e, // 00011101
0x002d, // 00011110
0x002f, // 00011111
0x0010, // 00100000
0x0012, // 00100001
0x0011, // 00100010
0x0013, // 00100011
0x0018, // 00100100
0x001a, // 00100101
0x0019, // 00100110
0x001b, // 00100111
0x0014, // 00101000
0x0016, // 00101001
0x0015, // 00101010
0x0017, // 00101011
0x001c, // 00101100
0x001e, // 00101101
0x001d, // 00101110
0x001f, // 00101111
0x0030, // 00110000
0x0032, // 00110001
0x0031, // 00110010
0x0033, // 00110011
0x0038, // 00110100
0x003a, // 00110101
0x0039, // 00110110
0x003b, // 00110111
0x0034, // 00111000
0x0036, // 00111001
0x0035, // 00111010
0x0037, // 00111011
0x003c, // 00111100
0x003e, // 00111101
0x003d, // 00111110
0x003f, // 00111111
};
// Octant bitmask array indexed by octant. The mask value indicates the octant's halfspace partitioning. The index
// value corresponds to the voxel's octal code derived in "pointToVoxel" in SharedUtil.cpp, which, BTW, does *not*
// correspond to the "ChildIndex" enum value in OctreeElement.h
unsigned char VoxelSystem::_sOctantIndexToBitMask[8] = {
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Left | OctreeElement::HalfSpace::Near,
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Left | OctreeElement::HalfSpace::Far,
OctreeElement::HalfSpace::Top | OctreeElement::HalfSpace::Left | OctreeElement::HalfSpace::Near,
OctreeElement::HalfSpace::Top | OctreeElement::HalfSpace::Left | OctreeElement::HalfSpace::Far,
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Near,
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Far,
OctreeElement::HalfSpace::Top | OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Near,
OctreeElement::HalfSpace::Top | OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Far,
};
// Two dimensional array map indexed by octant row and column. The mask value
// indicates the two faces shared by the octants
unsigned char VoxelSystem::_sOctantIndexToSharedBitMask[8][8] = {
{ // Index 0: Bottom-Left-Near
0, // Bottom-Left-Near
OctreeElement::HalfSpace::Near | OctreeElement::HalfSpace::Far, // Bottom-Left-Far
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Top, // Top-Left-Near
0, // Top-Left-Far
OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Left, // Bottom-Right-Near
0, // Bottom-Right-Far
0, // Top-Right-Near
0, // Top-Right-Far
},
{ // Index 1: Bottom-Left-Far
OctreeElement::HalfSpace::Near | OctreeElement::HalfSpace::Far, // Bottom-Left-Near
0, // Bottom-Left-Far
0, // Top-Left-Near
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Top, // Top-Left-Far
0, // Bottom-Right-Near
OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Left, // Bottom-Right-Far
0, // Top-Right-Near
0, // Top-Right-Far
},
{ // Index 2: Top-Left-Near
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Top, // Bottom-Left-Near
0, // Bottom-Left-Far
0, // Top-Left-Near
OctreeElement::HalfSpace::Near | OctreeElement::HalfSpace::Far, // Top-Left-Far
0, // Bottom-Right-Near
0, // Bottom-Right-Far
OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Left, // Top-Right-Near
0, // Top-Right-Far
},
{ // Index 3: Top-Left-Far
0, // Bottom-Left-Near
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Top, // Bottom-Left-Far
OctreeElement::HalfSpace::Near | OctreeElement::HalfSpace::Far, // Top-Left-Near
0, // Top-Left-Far
0, // Bottom-Right-Near
0, // Bottom-Right-Far
0, // Top-Right-Near
OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Left, // Top-Right-Far
},
{ // Index 4: Bottom-Right-Near
OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Left, // Bottom-Left-Near
0, // Bottom-Left-Far
0, // Top-Left-Near
0, // Top-Left-Far
0, // Bottom-Right-Near
OctreeElement::HalfSpace::Near | OctreeElement::HalfSpace::Far, // Bottom-Right-Far
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Top, // Top-Right-Near
0, // Top-Right-Far
},
{ // Index 5: Bottom-Right-Far
0, // Bottom-Left-Near
OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Left, // Bottom-Left-Far
0, // Top-Left-Near
0, // Top-Left-Far
OctreeElement::HalfSpace::Near | OctreeElement::HalfSpace::Far, // Bottom-Right-Near
0, // Bottom-Right-Far
0, // Top-Right-Near
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Top, // Top-Right-Far
},
{ // Index 6: Top-Right-Near
0, // Bottom-Left-Near
0, // Bottom-Left-Far
OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Left, // Top-Left-Near
0, // Top-Left-Far
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Top, // Bottom-Right-Near
0, // Bottom-Right-Far
0, // Top-Right-Near
OctreeElement::HalfSpace::Near | OctreeElement::HalfSpace::Far, // Top-Right-Far
},
{ // Index 7: Top-Right-Far
0, // Bottom-Left-Near
0, // Bottom-Left-Far
0, // Top-Left-Near
OctreeElement::HalfSpace::Right | OctreeElement::HalfSpace::Left, // Top-Left-Far
0, // Bottom-Right-Near
OctreeElement::HalfSpace::Bottom | OctreeElement::HalfSpace::Top, // Bottom-Right-Far
OctreeElement::HalfSpace::Near | OctreeElement::HalfSpace::Far, // Top-Right-Near
0, // Top-Right-Far
},
};

View file

@ -25,7 +25,6 @@
#include "Camera.h"
#include "Util.h"
#include "world.h"
#include "PrimitiveRenderer.h"
class ProgramObject;
@ -71,7 +70,6 @@ public:
void killLocalVoxels();
virtual void hideOutOfView(bool forceFullFrustum = false);
void inspectForOcclusions();
bool hasViewChanged();
bool isViewChanging();
@ -129,8 +127,6 @@ private:
static bool killSourceVoxelsOperation(OctreeElement* element, void* extraData);
static bool forceRedrawEntireTreeOperation(OctreeElement* element, void* extraData);
static bool clearAllNodesBufferIndexOperation(OctreeElement* element, void* extraData);
static bool inspectForExteriorOcclusionsOperation(OctreeElement* element, void* extraData);
static bool inspectForInteriorOcclusionsOperation(OctreeElement* element, void* extraData);
static bool hideOutOfViewOperation(OctreeElement* element, void* extraData);
static bool hideAllSubTreeOperation(OctreeElement* element, void* extraData);
static bool showAllSubTreeOperation(OctreeElement* element, void* extraData);
@ -241,17 +237,6 @@ private:
float _lastKnownVoxelSizeScale;
int _lastKnownBoundaryLevelAdjust;
bool _inOcclusions;
bool _showCulledSharedFaces; ///< Flag visibility of culled faces
bool _usePrimitiveRenderer; ///< Flag primitive renderer for use
PrimitiveRenderer* _renderer; ///< Voxel renderer
static const unsigned int _sNumOctantsPerHemiVoxel = 4;
static int _sCorrectedChildIndex[8];
static unsigned short _sSwizzledOcclusionBits[64]; ///< Swizzle value of bit pairs of the value of index
static unsigned char _sOctantIndexToBitMask[8]; ///< Map octant index to partition mask
static unsigned char _sOctantIndexToSharedBitMask[8][8]; ///< Map octant indices to shared partition mask
// haze
bool _drawHaze;
float _farHazeDistance;