v3 procedurals and shader fixes

This commit is contained in:
SamGondelman 2018-11-28 16:00:29 -08:00
parent fd87aad3c2
commit 2acb6b6857
9 changed files with 249 additions and 140 deletions

View file

@ -38,18 +38,10 @@ ShapeEntityRenderer::ShapeEntityRenderer(const EntityItemPointer& entity) : Pare
// FIXME: Setup proper uniform slots and use correct pipelines for forward rendering
_procedural._opaqueFragmentSource = gpu::Shader::Source::get(shader::render_utils::fragment::simple);
_procedural._transparentFragmentSource = gpu::Shader::Source::get(shader::render_utils::fragment::simple_transparent);
_procedural._opaqueState->setCullMode(gpu::State::CULL_NONE);
_procedural._opaqueState->setDepthTest(true, true, gpu::LESS_EQUAL);
// TODO: move into Procedural.cpp
PrepareStencil::testMaskDrawShape(*_procedural._opaqueState);
_procedural._opaqueState->setBlendFunction(false,
gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA,
gpu::State::FACTOR_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::ONE);
_procedural._transparentState->setCullMode(gpu::State::CULL_BACK);
_procedural._transparentState->setDepthTest(true, true, gpu::LESS_EQUAL);
PrepareStencil::testMask(*_procedural._transparentState);
_procedural._transparentState->setBlendFunction(true,
gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA,
gpu::State::FACTOR_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::ONE);
}
bool ShapeEntityRenderer::needsRenderUpdate() const {
@ -212,7 +204,10 @@ ShapeKey ShapeEntityRenderer::getShapeKey() {
return builder.build();
} else {
ShapeKey::Builder builder;
if (_procedural.isReady()) {
bool proceduralReady = resultWithReadLock<bool>([&] {
return _procedural.isReady();
});
if (proceduralReady) {
builder.withOwnPipeline();
}
if (isTransparent()) {
@ -242,7 +237,7 @@ void ShapeEntityRenderer::doRender(RenderArgs* args) {
if (_procedural.isReady()) {
outColor = _procedural.getColor(outColor);
outColor.a *= _procedural.isFading() ? Interpolate::calculateFadeRatio(_procedural.getFadeStartTime()) : 1.0f;
_procedural.prepare(batch, _position, _dimensions, _orientation, outColor);
_procedural.prepare(batch, _position, _dimensions, _orientation, ProceduralProgramKey(outColor.a < 1.0f));
proceduralRender = true;
}
}

View file

@ -38,8 +38,6 @@ protected:
StatePointer _state;
Pipeline();
Pipeline(const Pipeline& pipeline); // deep copy of the sysmem shader
Pipeline& operator=(const Pipeline& pipeline); // deep copy of the sysmem texture
};
typedef Pipeline::Pointer PipelinePointer;

View file

@ -39,8 +39,10 @@ static const std::string PROCEDURAL_BLOCK = "//PROCEDURAL_BLOCK";
static const std::string PROCEDURAL_VERSION = "//PROCEDURAL_VERSION";
bool operator==(const ProceduralData& a, const ProceduralData& b) {
return ((a.version == b.version) && (a.shaderUrl == b.shaderUrl) && (a.uniforms == b.uniforms) &&
(a.channels == b.channels));
return ((a.version == b.version) &&
(a.shaderUrl == b.shaderUrl) &&
(a.uniforms == b.uniforms) &&
(a.channels == b.channels));
}
QJsonValue ProceduralData::getProceduralData(const QString& proceduralJson) {
@ -57,9 +59,9 @@ QJsonValue ProceduralData::getProceduralData(const QString& proceduralJson) {
return doc.object()[PROCEDURAL_USER_DATA_KEY];
}
ProceduralData ProceduralData::parse(const QString& userDataJson) {
ProceduralData ProceduralData::parse(const QString& proceduralData) {
ProceduralData result;
result.parse(getProceduralData(userDataJson).toObject());
result.parse(getProceduralData(proceduralData).toObject());
return result;
}
@ -73,7 +75,7 @@ void ProceduralData::parse(const QJsonObject& proceduralData) {
if (versionJson.isDouble()) {
version = (uint8_t)(floor(versionJson.toDouble()));
// invalid version
if (!(version == 1 || version == 2)) {
if (!(version == 1 || version == 2 || version == 3)) {
return;
}
} else {
@ -102,20 +104,27 @@ void ProceduralData::parse(const QJsonObject& proceduralData) {
//}
Procedural::Procedural() {
_transparentState->setCullMode(gpu::State::CULL_NONE);
_opaqueState->setCullMode(gpu::State::CULL_BACK);
_opaqueState->setDepthTest(true, true, gpu::LESS_EQUAL);
_opaqueState->setBlendFunction(false,
gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA,
gpu::State::FACTOR_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::ONE);
_transparentState->setCullMode(gpu::State::CULL_BACK);
_transparentState->setDepthTest(true, true, gpu::LESS_EQUAL);
_transparentState->setBlendFunction(true, gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA,
_transparentState->setBlendFunction(true,
gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA,
gpu::State::FACTOR_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::ONE);
_standardInputsBuffer = std::make_shared<gpu::Buffer>(sizeof(StandardInputs), nullptr);
}
void Procedural::setProceduralData(const ProceduralData& proceduralData) {
std::lock_guard<std::mutex> lock(_mutex);
if (proceduralData == _data) {
return;
}
_dirty = true;
_enabled = false;
if (proceduralData.version != _data.version) {
@ -124,6 +133,10 @@ void Procedural::setProceduralData(const ProceduralData& proceduralData) {
}
if (proceduralData.uniforms != _data.uniforms) {
// If the uniform keys changed, we need to recreate the whole shader to handle the reflection
if (proceduralData.uniforms.keys() != _data.uniforms.keys()) {
_shaderDirty = true;
}
_data.uniforms = proceduralData.uniforms;
_uniformsDirty = true;
}
@ -147,16 +160,14 @@ void Procedural::setProceduralData(const ProceduralData& proceduralData) {
if (proceduralData.shaderUrl != _data.shaderUrl) {
_data.shaderUrl = proceduralData.shaderUrl;
_shaderDirty = true;
const auto& shaderUrl = _data.shaderUrl;
_shaderDirty = true;
_networkShader.reset();
_shaderPath.clear();
_shaderSource.clear();
if (shaderUrl.isEmpty()) {
return;
}
if (!shaderUrl.isValid()) {
if (shaderUrl.isEmpty() || !shaderUrl.isValid()) {
return;
}
@ -180,6 +191,8 @@ bool Procedural::isReady() const {
return false;
#endif
std::lock_guard<std::mutex> lock(_mutex);
if (!_enabled) {
return false;
}
@ -209,10 +222,11 @@ bool Procedural::isReady() const {
}
void Procedural::prepare(gpu::Batch& batch,
const glm::vec3& position,
const glm::vec3& size,
const glm::quat& orientation,
const glm::vec4& color) {
const glm::vec3& position,
const glm::vec3& size,
const glm::quat& orientation,
const ProceduralProgramKey key) {
std::lock_guard<std::mutex> lock(_mutex);
_entityDimensions = size;
_entityPosition = position;
_entityOrientation = glm::mat3_cast(orientation);
@ -225,62 +239,56 @@ void Procedural::prepare(gpu::Batch& batch,
_shaderDirty = true;
_shaderModified = lastModified;
}
} else if (_networkShader && _networkShader->isLoaded()) {
} else if (_shaderSource.isEmpty() && _networkShader && _networkShader->isLoaded()) {
_shaderSource = _networkShader->_source;
_shaderDirty = true;
}
if (!_opaquePipeline || !_transparentPipeline || _shaderDirty) {
if (_shaderDirty) {
_proceduralPipelines.clear();
}
auto& pipeline = _proceduralPipelines.find(key);
bool recompiledShader = false;
if (pipeline == _proceduralPipelines.end()) {
if (!_vertexShader) {
_vertexShader = gpu::Shader::createVertex(_vertexSource);
}
gpu::Shader::Source& fragmentSource = (key.isTransparent() && _transparentFragmentSource.valid()) ? _transparentFragmentSource : _opaqueFragmentSource;
// Build the fragment shader
_opaqueFragmentSource.replacements.clear();
if (_data.version == 1) {
_opaqueFragmentSource.replacements[PROCEDURAL_VERSION] = "#define PROCEDURAL_V1 1";
} else if (_data.version == 2) {
_opaqueFragmentSource.replacements[PROCEDURAL_VERSION] = "#define PROCEDURAL_V2 1";
}
_opaqueFragmentSource.replacements[PROCEDURAL_BLOCK] = _shaderSource.toStdString();
_transparentFragmentSource.replacements = _opaqueFragmentSource.replacements;
fragmentSource.replacements.clear();
fragmentSource.replacements[PROCEDURAL_VERSION] = "#define PROCEDURAL_V" + std::to_string(_data.version);
fragmentSource.replacements[PROCEDURAL_BLOCK] = _shaderSource.toStdString();
// Set any userdata specified uniforms
int customSlot = procedural::slot::uniform::Custom;
for (const auto& key : _data.uniforms.keys()) {
std::string uniformName = key.toLocal8Bit().data();
_opaqueFragmentSource.reflection.uniforms[uniformName] = customSlot;
_transparentFragmentSource.reflection.uniforms[uniformName] = customSlot;
fragmentSource.reflection.uniforms[uniformName] = customSlot;
++customSlot;
}
// Leave this here for debugging
// qCDebug(procedural) << "FragmentShader:\n" << fragmentShaderSource.c_str();
//qCDebug(proceduralLog) << "FragmentShader:\n" << fragmentSource.getSource(shader::Dialect::glsl450, shader::Variant::Mono).c_str();
gpu::ShaderPointer fragmentShader = gpu::Shader::createPixel(fragmentSource);
gpu::ShaderPointer program = gpu::Shader::createProgram(_vertexShader, fragmentShader);
_proceduralPipelines[key] = gpu::Pipeline::create(program, key.isTransparent() ? _transparentState : _opaqueState);
// TODO: THis is a simple fix, we need a cleaner way to provide the "hosting" program for procedural custom shaders to be defined together with the required bindings.
_opaqueFragmentShader = gpu::Shader::createPixel(_opaqueFragmentSource);
_opaqueShader = gpu::Shader::createProgram(_vertexShader, _opaqueFragmentShader);
_opaquePipeline = gpu::Pipeline::create(_opaqueShader, _opaqueState);
if (_transparentFragmentSource.valid()) {
_transparentFragmentShader = gpu::Shader::createPixel(_transparentFragmentSource);
_transparentShader = gpu::Shader::createProgram(_vertexShader, _transparentFragmentShader);
_transparentPipeline = gpu::Pipeline::create(_transparentShader, _transparentState);
} else {
_transparentFragmentShader = _opaqueFragmentShader;
_transparentShader = _opaqueShader;
_transparentPipeline = _opaquePipeline;
}
_start = usecTimestampNow();
_frameCount = 0;
recompiledShader = true;
}
bool transparent = color.a < 1.0f;
batch.setPipeline(transparent ? _transparentPipeline : _opaquePipeline);
batch.setPipeline(_proceduralPipelines[key]);
if (_shaderDirty || _uniformsDirty || _prevTransparent != transparent) {
setupUniforms(transparent);
if (_shaderDirty || _uniformsDirty) {
setupUniforms();
}
_prevTransparent = transparent;
_shaderDirty = _uniformsDirty = false;
for (auto lambda : _uniforms) {
@ -290,8 +298,7 @@ void Procedural::prepare(gpu::Batch& batch,
static gpu::Sampler sampler;
static std::once_flag once;
std::call_once(once, [&] {
gpu::Sampler::Desc desc;
desc._filter = gpu::Sampler::FILTER_MIN_MAG_MIP_LINEAR;
sampler = gpu::Sampler(gpu::Sampler::FILTER_MIN_MAG_MIP_LINEAR);
});
for (size_t i = 0; i < MAX_PROCEDURAL_TEXTURE_CHANNELS; ++i) {
@ -301,19 +308,17 @@ void Procedural::prepare(gpu::Batch& batch,
gpuTexture->setSampler(sampler);
gpuTexture->setAutoGenerateMips(true);
}
batch.setResourceTexture((gpu::uint32)i, gpuTexture);
batch.setResourceTexture(procedural::slot::texture::Channel0 + i, gpuTexture);
}
}
}
void Procedural::setupUniforms(bool transparent) {
void Procedural::setupUniforms() {
_uniforms.clear();
auto customUniformCount = _data.uniforms.keys().size();
// Set any userdata specified uniforms
for (int i = 0; i < customUniformCount; ++i) {
int slot = procedural::slot::uniform::Custom + i;
QString key = _data.uniforms.keys().at(i);
int slot = procedural::slot::uniform::Custom;
for (const auto& key : _data.uniforms.keys()) {
std::string uniformName = key.toLocal8Bit().data();
QJsonValue value = _data.uniforms[key];
if (value.isDouble()) {
@ -360,6 +365,7 @@ void Procedural::setupUniforms(bool transparent) {
}
}
}
slot++;
}
_uniforms.push_back([=](gpu::Batch& batch) {
@ -398,7 +404,7 @@ void Procedural::setupUniforms(bool transparent) {
});
}
glm::vec4 Procedural::getColor(const glm::vec4& entityColor) {
glm::vec4 Procedural::getColor(const glm::vec4& entityColor) const {
if (_data.version == 1) {
return glm::vec4(1);
}

View file

@ -7,8 +7,6 @@
//
#pragma once
#ifndef hifi_RenderableProcedrualItem_h
#define hifi_RenderableProcedrualItem_h
#include <atomic>
@ -32,7 +30,6 @@ const size_t MAX_PROCEDURAL_TEXTURE_CHANNELS{ 4 };
struct ProceduralData {
static QJsonValue getProceduralData(const QString& proceduralJson);
static ProceduralData parse(const QString& userDataJson);
// This should only be called from the render thread, as it shares data with Procedural::prepare
void parse(const QJsonObject&);
// Rendering object descriptions, from userData
@ -42,10 +39,40 @@ struct ProceduralData {
QJsonArray channels;
};
class ProceduralProgramKey {
public:
enum FlagBit {
IS_TRANSPARENT = 0,
NUM_FLAGS
};
typedef std::bitset<NUM_FLAGS> Flags;
Flags _flags;
bool isTransparent() const { return _flags[IS_TRANSPARENT]; }
ProceduralProgramKey(bool transparent = false) {
if (transparent) {
_flags.set(IS_TRANSPARENT);
}
}
};
namespace std {
template <>
struct hash<ProceduralProgramKey> {
size_t operator()(const ProceduralProgramKey& key) const {
return std::hash<std::bitset<ProceduralProgramKey::FlagBit::NUM_FLAGS>>()(key._flags);
}
};
}
inline bool operator==(const ProceduralProgramKey& a, const ProceduralProgramKey& b) {
return a._flags == b._flags;
}
inline bool operator!=(const ProceduralProgramKey& a, const ProceduralProgramKey& b) {
return a._flags != b._flags;
}
// WARNING with threaded rendering it is the RESPONSIBILITY OF THE CALLER to ensure that
// calls to `setProceduralData` happen on the main thread and that calls to `ready` and `prepare`
// are treated atomically, and that they cannot happen concurrently with calls to `setProceduralData`
// FIXME better encapsulation
// FIXME better mechanism for extending to things rendered using shaders other than simple.slv
struct Procedural {
@ -55,10 +82,9 @@ public:
bool isReady() const;
bool isEnabled() const { return _enabled; }
void prepare(gpu::Batch& batch, const glm::vec3& position, const glm::vec3& size, const glm::quat& orientation, const glm::vec4& color = glm::vec4(1));
const gpu::ShaderPointer& getOpaqueShader() const { return _opaqueShader; }
void prepare(gpu::Batch& batch, const glm::vec3& position, const glm::vec3& size, const glm::quat& orientation, const ProceduralProgramKey key = ProceduralProgramKey());
glm::vec4 getColor(const glm::vec4& entityColor);
glm::vec4 getColor(const glm::vec4& entityColor) const;
quint64 getFadeStartTime() const { return _fadeStartTime; }
bool isFading() const { return _doesFade && _isFading; }
void setIsFading(bool isFading) { _isFading = isFading; }
@ -108,22 +134,19 @@ protected:
QString _shaderPath;
quint64 _shaderModified { 0 };
NetworkShaderPointer _networkShader;
bool _dirty { false };
bool _shaderDirty { true };
bool _uniformsDirty { true };
// Rendering objects
UniformLambdas _uniforms;
NetworkTexturePointer _channels[MAX_PROCEDURAL_TEXTURE_CHANNELS];
gpu::PipelinePointer _opaquePipeline;
gpu::PipelinePointer _transparentPipeline;
std::unordered_map<ProceduralProgramKey, gpu::PipelinePointer> _proceduralPipelines;
gpu::ShaderPointer _vertexShader;
StandardInputs _standardInputs;
gpu::BufferPointer _standardInputsBuffer;
gpu::ShaderPointer _vertexShader;
gpu::ShaderPointer _opaqueFragmentShader;
gpu::ShaderPointer _transparentFragmentShader;
gpu::ShaderPointer _opaqueShader;
gpu::ShaderPointer _transparentShader;
// Entity metadata
glm::vec3 _entityDimensions;
@ -131,14 +154,11 @@ protected:
glm::mat3 _entityOrientation;
private:
// This should only be called from the render thread, as it shares data with Procedural::prepare
void setupUniforms(bool transparent);
void setupUniforms();
mutable quint64 _fadeStartTime { 0 };
mutable bool _hasStartedFade { false };
mutable bool _isFading { false };
bool _doesFade { true };
bool _prevTransparent { false };
mutable std::mutex _mutex;
};
#endif

View file

@ -8,11 +8,8 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
<@include gpu/Transform.slh@>
<@include gpu/Noise.slh@>
<@include procedural/ShaderConstants.h@>
<$declareStandardCameraTransform()$>
LAYOUT(binding=PROCEDURAL_TEXTURE_CHANNEL0) uniform sampler2D iChannel0;
LAYOUT(binding=PROCEDURAL_TEXTURE_CHANNEL1) uniform sampler2D iChannel1;
@ -59,6 +56,19 @@ LAYOUT_STD140(binding=0) uniform standardInputsBuffer {
#define iChannelResolution standardInputs.channelResolution
#define iWorldOrientation standardInputs.worldOrientation
struct ProceduralFragmentData {
vec3 position;
vec3 normal;
vec3 diffuse;
vec3 specular;
vec3 emissive;
float alpha;
float roughness;
float metallic;
float occlusion;
float scattering;
};
// Unimplemented uniforms
// Resolution doesn't make sense in the VR context
const vec3 iResolution = vec3(1.0);
@ -69,8 +79,6 @@ const float iSampleRate = 1.0;
// No support for video input
const vec4 iChannelTime = vec4(0.0);
#define PROCEDURAL 1
//PROCEDURAL_VERSION
// hack comment for extra whitespace

View file

@ -35,7 +35,6 @@ bool ProceduralSkybox::empty() {
void ProceduralSkybox::clear() {
// Parse and prepare a procedural with no shaders to release textures
parse(QString());
_procedural.isReady();
Skybox::clear();
}

View file

@ -14,9 +14,9 @@
<@include DefaultMaterials.slh@>
<@include ForwardGlobalLight.slh@>
<@include gpu/Transform.slh@>
<$declareEvalSkyboxGlobalColor()$>
<@include gpu/Transform.slh@>
<$declareStandardCameraTransform()$>
// the interpolated normal

View file

@ -14,6 +14,9 @@
<@include DeferredBufferWrite.slh@>
<@include gpu/Transform.slh@>
<$declareStandardCameraTransform()$>
<@include render-utils/ShaderConstants.h@>
// the interpolated normal
@ -45,27 +48,64 @@ float getProceduralColors(inout vec3 diffuse, inout vec3 specular, inout float s
return 1.0;
}
float getProceduralFragment(inout ProceduralFragmentData proceduralData) {
return 1.0;
}
//PROCEDURAL_BLOCK_END
#line 2030
void main(void) {
vec3 normal = normalize(_normalWS.xyz);
vec3 diffuse = _color.rgb;
float roughness = DEFAULT_ROUGHNESS;
float metallic = DEFAULT_METALLIC;
vec3 emissive = DEFAULT_EMISSIVE;
float occlusion = DEFAULT_OCCLUSION;
float scattering = DEFAULT_SCATTERING;
float emissiveAmount = 0.0;
#if defined(PROCEDURAL_V1)
diffuse = getProceduralColor().rgb;
emissiveAmount = 1.0;
emissive = vec3(1.0);
#elif defined(PROCEDURAL_V2)
vec3 specular = DEFAULT_SPECULAR;
float shininess = DEFAULT_SHININESS;
float emissiveAmount = 0.0;
#ifdef PROCEDURAL
#ifdef PROCEDURAL_V1
diffuse = getProceduralColor().rgb;
// Procedural Shaders are expected to be Gamma corrected so let's bring back the RGB in linear space for the rest of the pipeline
//diffuse = pow(diffuse, vec3(2.2));
emissiveAmount = 1.0;
#else
emissiveAmount = getProceduralColors(diffuse, specular, shininess);
#endif
roughness = max(0.0, 1.0 - shininess / 128.0);
metallic = length(specular);
emissive = vec3(clamp(emissiveAmount, 0.0, 1.0));
#elif defined(PROCEDURAL_V3)
TransformCamera cam = getTransformCamera();
vec4 position = cam._viewInverse * _positionES;
ProceduralFragmentData proceduralData = {
position.xyz,
normal,
vec3(0.0),
DEFAULT_SPECULAR,
DEFAULT_EMISSIVE,
1.0,
DEFAULT_ROUGHNESS,
DEFAULT_METALLIC,
DEFAULT_OCCLUSION,
DEFAULT_SCATTERING
};
emissiveAmount = getProceduralFragment(proceduralData);
normal = proceduralData.normal;
diffuse = proceduralData.diffuse;
roughness = proceduralData.roughness;
metallic = proceduralData.metallic;
emissive = proceduralData.emissive;
occlusion = proceduralData.occlusion;
scattering = proceduralData.scattering;
position = vec4(proceduralData.position, 1.0);
vec4 posClip = cam._projection * (cam._view * position);
float far = gl_DepthRange.far;
float near = gl_DepthRange.near;
gl_FragDepth = 0.5 * ((far - near) * posClip.z / posClip.w + near + far);
#endif
if (emissiveAmount > 0.0) {
@ -73,18 +113,18 @@ void main(void) {
normal,
1.0,
diffuse,
max(0.0, 1.0 - shininess / 128.0),
DEFAULT_METALLIC,
vec3(clamp(emissiveAmount, 0.0, 1.0)));
roughness,
metallic,
emissive);
} else {
packDeferredFragment(
normal,
1.0,
diffuse,
max(0.0, 1.0 - shininess / 128.0),
length(specular),
DEFAULT_EMISSIVE,
DEFAULT_OCCLUSION,
DEFAULT_SCATTERING);
roughness,
metallic,
emissive,
occlusion,
scattering);
}
}

View file

@ -16,6 +16,9 @@
<@include DeferredGlobalLight.slh@>
<$declareEvalGlobalLightingAlphaBlendedWithHaze()$>
<@include gpu/Transform.slh@>
<$declareStandardCameraTransform()$>
<@include render-utils/ShaderConstants.h@>
// the interpolated normal
@ -50,46 +53,86 @@ float getProceduralColors(inout vec3 diffuse, inout vec3 specular, inout float s
return 1.0;
}
float getProceduralFragment(inout ProceduralFragmentData proceduralData) {
return 1.0;
}
//PROCEDURAL_BLOCK_END
#line 2030
void main(void) {
vec3 normal = normalize(_normalWS.xyz);
vec3 diffuse = _color.rgb;
vec3 specular = DEFAULT_SPECULAR;
float shininess = DEFAULT_SHININESS;
float alpha = _color.a;
float occlusion = DEFAULT_OCCLUSION;
vec3 fresnel = DEFAULT_FRESNEL;
float metallic = DEFAULT_METALLIC;
vec3 emissive = DEFAULT_EMISSIVE;
float roughness = DEFAULT_ROUGHNESS;
float emissiveAmount = 0.0;
#ifdef PROCEDURAL
TransformCamera cam = getTransformCamera();
vec3 posEye = _positionES.xyz;
#ifdef PROCEDURAL_V1
diffuse = getProceduralColor().rgb;
// Procedural Shaders are expected to be Gamma corrected so let's bring back the RGB in linear space for the rest of the pipeline
//diffuse = pow(diffuse, vec3(2.2));
emissiveAmount = 1.0;
#else
emissive = vec3(1.0);
#elif defined(PROCEDURAL_V2)
vec3 specular = DEFAULT_SPECULAR;
float shininess = DEFAULT_SHININESS;
emissiveAmount = getProceduralColors(diffuse, specular, shininess);
#endif
roughness = max(0.0, 1.0 - shininess / 128.0);
metallic = length(specular);
emissive = vec3(clamp(emissiveAmount, 0.0, 1.0));
#elif defined(PROCEDURAL_V3)
vec4 position = cam._viewInverse * _positionES;
ProceduralFragmentData proceduralData = {
position.xyz,
normal,
vec3(0.0),
DEFAULT_SPECULAR,
DEFAULT_EMISSIVE,
1.0,
DEFAULT_ROUGHNESS,
DEFAULT_METALLIC,
DEFAULT_OCCLUSION,
DEFAULT_SCATTERING
};
emissiveAmount = getProceduralFragment(proceduralData);
position = vec4(proceduralData.position, 1.0);
vec4 posEye4 = cam._view * position;
posEye = vec3(posEye4);
occlusion = proceduralData.occlusion;
normal = proceduralData.normal;
diffuse = proceduralData.diffuse;
alpha = proceduralData.alpha;
fresnel = proceduralData.specular;
metallic = proceduralData.metallic;
emissive = proceduralData.emissive;
roughness = proceduralData.roughness;
vec4 posClip = cam._projection * posEye4;
float far = gl_DepthRange.far;
float near = gl_DepthRange.near;
gl_FragDepth = 0.5 * ((far - near) * posClip.z / posClip.w + near + far);
#endif
TransformCamera cam = getTransformCamera();
vec3 fragPosition = _positionES.xyz;
if (emissiveAmount > 0.0) {
_fragColor0 = vec4(diffuse, _color.a);
_fragColor0 = vec4(diffuse, alpha);
} else {
_fragColor0 = vec4(evalGlobalLightingAlphaBlendedWithHaze(
cam._viewInverse,
1.0,
DEFAULT_OCCLUSION,
fragPosition,
occlusion,
posEye,
normal,
diffuse,
DEFAULT_FRESNEL,
length(specular),
DEFAULT_EMISSIVE,
max(0.0, 1.0 - shininess / 128.0), _color.a),
_color.a);
fresnel,
metallic,
emissive,
roughness, alpha),
alpha);
}
}