3
0
Fork 0
mirror of https://github.com/lubosz/overte.git synced 2025-04-27 04:55:32 +02:00

Created Model::TransformComponents class

This commit is contained in:
Anthony J. Thibault 2017-12-19 15:57:06 -08:00
parent 515d13a4c1
commit 18113d824c
9 changed files with 237 additions and 304 deletions

View file

@ -20,19 +20,35 @@ using namespace render;
CauterizedMeshPartPayload::CauterizedMeshPartPayload(ModelPointer model, int meshIndex, int partIndex, int shapeIndex, const Transform& transform, const Transform& offsetTransform)
: ModelMeshPartPayload(model, meshIndex, partIndex, shapeIndex, transform, offsetTransform) {}
void CauterizedMeshPartPayload::updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices, const std::vector<glm::mat4>& cauterizedClusterMatrices) {
ModelMeshPartPayload::updateClusterBuffer(clusterMatrices);
#ifdef SKIN_COMP
void CauterizedMeshPartPayload::updateClusterBuffer(const std::vector<Model::TransformComponents>& clusterTransforms, const std::vector<Model::TransformComponents>& cauterizedClusterTransforms) {
ModelMeshPartPayload::updateClusterBuffer(clusterTransforms);
if (cauterizedClusterMatrices.size() > 1) {
if (cauterizedClusterTransforms.size() > 1) {
if (!_cauterizedClusterBuffer) {
_cauterizedClusterBuffer = std::make_shared<gpu::Buffer>(cauterizedClusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) cauterizedClusterMatrices.data());
_cauterizedClusterBuffer = std::make_shared<gpu::Buffer>(cauterizedClusterTransforms.size() * sizeof(Model::TransformComponents),
(const gpu::Byte*) cauterizedClusterTransforms.data());
} else {
_cauterizedClusterBuffer->setSubData(0, cauterizedClusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) cauterizedClusterMatrices.data());
_cauterizedClusterBuffer->setSubData(0, cauterizedClusterTransforms.size() * sizeof(Model::TransformComponents),
(const gpu::Byte*) cauterizedClusterTransforms.data());
}
}
}
#else
void CauterizedMeshPartPayload::updateClusterBuffer(const std::vector<glm::mat4>& clusterTransforms, const std::vector<glm::mat4>& cauterizedClusterTransforms) {
ModelMeshPartPayload::updateClusterBuffer(clusterTransforms);
if (cauterizedClusterTransforms.size() > 1) {
if (!_cauterizedClusterBuffer) {
_cauterizedClusterBuffer = std::make_shared<gpu::Buffer>(cauterizedClusterTransforms.size() * sizeof(glm::mat4),
(const gpu::Byte*) cauterizedClusterTransforms.data());
} else {
_cauterizedClusterBuffer->setSubData(0, cauterizedClusterTransforms.size() * sizeof(glm::mat4),
(const gpu::Byte*) cauterizedClusterTransforms.data());
}
}
}
#endif
void CauterizedMeshPartPayload::updateTransformForCauterizedMesh(const Transform& renderTransform) {
_cauterizedTransform = renderTransform;

View file

@ -14,8 +14,11 @@
class CauterizedMeshPartPayload : public ModelMeshPartPayload {
public:
CauterizedMeshPartPayload(ModelPointer model, int meshIndex, int partIndex, int shapeIndex, const Transform& transform, const Transform& offsetTransform);
void updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices, const std::vector<glm::mat4>& cauterizedClusterMatrices);
#ifdef SKIN_COMP
void updateClusterBuffer(const std::vector<Model::TransformComponents>& clusterTransforms, const std::vector<Model::TransformComponents>& cauterizedClusterTransforms);
#else
void updateClusterBuffer(const std::vector<glm::mat4>& clusterTransforms, const std::vector<glm::mat4>& cauterizedClusterTransforms);
#endif
void updateTransformForCauterizedMesh(const Transform& renderTransform);

View file

@ -35,7 +35,7 @@ bool CauterizedModel::updateGeometry() {
const FBXGeometry& fbxGeometry = getFBXGeometry();
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
Model::MeshState state;
state.clusterMatrices.resize(mesh.clusters.size());
state.clusterTransforms.resize(mesh.clusters.size());
_cauterizeMeshStates.append(state);
}
}
@ -116,47 +116,14 @@ void CauterizedModel::updateClusterMatrices() {
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
/* AJT: TODO REMOVE */
#ifdef SKIN_MATRIX
SKIN_ASSERT(false);
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
#endif
#ifdef SKIN_COMP
if (debug) {
qDebug() << "AJT: _meshState[" << i << "], cluster[" << j << "]";
}
AnimPose jointPose = _rig.getJointPose(cluster.jointIndex);
AnimPose result = jointPose * AnimPose(cluster.inverseBindMatrix);
result.rot() = glm::normalize(result.rot());
// pack scale rotation and translation into a mat4.
state.clusterMatrices[j][0].x = result.scale().x;
state.clusterMatrices[j][0].y = result.scale().y;
state.clusterMatrices[j][0].z = result.scale().z;
state.clusterMatrices[j][1].x = result.rot().x;
state.clusterMatrices[j][1].y = result.rot().y;
state.clusterMatrices[j][1].z = result.rot().z;
state.clusterMatrices[j][1].w = result.rot().w;
state.clusterMatrices[j][2].x = result.trans().x;
state.clusterMatrices[j][2].y = result.trans().y;
state.clusterMatrices[j][2].z = result.trans().z;
// AJT REMOVE
if (debug) {
glm::mat4 jointMatrix = _rig.getJointTransform(cluster.jointIndex);
glm::mat4 m;
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, m);
qDebug() << "AJT: m =" << m;
qDebug() << "AJT: (AnimPose)m =" << AnimPose(m);
qDebug() << "AJT: result =" << result;
qDebug() << "AJT: (mat4)result =" << (glm::mat4)result;
SKIN_ASSERT(result.fuzzyEqual(AnimPose(m)));
}
// AJT: TODO: optimize
glm::mat4 m;
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, m);
state.clusterTransforms[j] = Model::TransformComponents(m);
#else
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
}
@ -177,60 +144,18 @@ void CauterizedModel::updateClusterMatrices() {
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
#ifdef SKIN_MATRIX
SKIN_ASSERT(false);
// AJT: TODO REMOVE:
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
if (_cauterizeBoneSet.find(cluster.jointIndex) != _cauterizeBoneSet.end()) {
jointMatrix = cauterizeMatrix;
}
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
#endif
#ifdef SKIN_COMP
if (debug) {
qDebug() << "AJT: CAUTERIZED _meshState[" << i << "], cluster[" << j << "]";
}
auto jointPose = _rig.getJointPose(cluster.jointIndex);
/*
if (_cauterizeBoneSet.find(cluster.jointIndex) != _cauterizeBoneSet.end()) {
jointPose = cauterizePose;
}
*/
AnimPose result = jointPose * AnimPose(cluster.inverseBindMatrix);
result.rot() = glm::normalize(result.rot());
// pack scale rotation and translation into a mat4.
state.clusterMatrices[j][0].x = result.scale().x;
state.clusterMatrices[j][0].y = result.scale().y;
state.clusterMatrices[j][0].z = result.scale().z;
state.clusterMatrices[j][1].x = result.rot().x;
state.clusterMatrices[j][1].y = result.rot().y;
state.clusterMatrices[j][1].z = result.rot().z;
state.clusterMatrices[j][1].w = result.rot().w;
state.clusterMatrices[j][2].x = result.trans().x;
state.clusterMatrices[j][2].y = result.trans().y;
state.clusterMatrices[j][2].z = result.trans().z;
// AJT REMOVE
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
/*
if (_cauterizeBoneSet.find(cluster.jointIndex) != _cauterizeBoneSet.end()) {
jointMatrix = cauterizeMatrix;
}
*/
if (debug) {
glm::mat4 m;
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, m);
qDebug() << "AJT: m =" << m;
qDebug() << "AJT: (AnimPose)m =" << AnimPose(m);
qDebug() << "AJT: result =" << result;
qDebug() << "AJT: (mat4)result =" << (glm::mat4)result;
SKIN_ASSERT(result.fuzzyEqual(AnimPose(m)));
}
// AJT: TODO: optimize
glm::mat4 m;
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, m);
state.clusterTransforms[j] = Model::TransformComponents(m);
#else
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
}
@ -288,43 +213,31 @@ void CauterizedModel::updateRenderItems() {
auto itemID = self->_modelMeshRenderItemIDs[i];
auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex;
auto clusterMatrices(self->getMeshState(meshIndex).clusterMatrices);
auto clusterMatricesCauterized(self->getCauterizeMeshState(meshIndex).clusterMatrices);
auto clusterTransforms(self->getMeshState(meshIndex).clusterTransforms);
auto clusterTransformsCauterized(self->getCauterizeMeshState(meshIndex).clusterTransforms);
bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex);
transaction.updateItem<CauterizedMeshPartPayload>(itemID, [modelTransform, clusterMatrices, clusterMatricesCauterized, invalidatePayloadShapeKey,
transaction.updateItem<CauterizedMeshPartPayload>(itemID, [modelTransform, clusterTransforms, clusterTransformsCauterized, invalidatePayloadShapeKey,
isWireframe, isVisible, isLayeredInFront, isLayeredInHUD, enableCauterization](CauterizedMeshPartPayload& data) {
data.updateClusterBuffer(clusterMatrices, clusterMatricesCauterized);
data.updateClusterBuffer(clusterTransforms, clusterTransformsCauterized);
Transform renderTransform = modelTransform;
if (clusterMatrices.size() == 1) {
#ifdef SKIN_MATRIX
SKIN_ASSERT(false);
renderTransform = modelTransform.worldTransform(Transform(clusterMatrices[0]));
#endif
if (clusterTransforms.size() == 1) {
#ifdef SKIN_COMP
glm::vec3 scale(clusterMatrices[0][0]);
glm::quat rot(clusterMatrices[0][1].w, clusterMatrices[0][1].x, clusterMatrices[0][1].y, clusterMatrices[0][1].z);
glm::vec3 trans(clusterMatrices[0][2]);
glm::mat4 m = createMatFromScaleQuatAndPos(scale, rot, trans);
renderTransform = modelTransform.worldTransform(Transform(m));
renderTransform = modelTransform.worldTransform(Transform(clusterTransforms[0].getMatrix()));
#else
renderTransform = modelTransform.worldTransform(Transform(clusterTransforms[0]));
#endif
}
data.updateTransformForSkinnedMesh(renderTransform, modelTransform);
renderTransform = modelTransform;
if (clusterMatricesCauterized.size() == 1) {
#ifdef SKIN_MATRIX
SKIN_ASSERT(false);
renderTransform = modelTransform.worldTransform(Transform(clusterMatricesCauterized[0]));
#endif
if (clusterTransformsCauterized.size() == 1) {
#ifdef SKIN_COMP
glm::vec3 scale(clusterMatricesCauterized[0][0]);
glm::quat rot(clusterMatricesCauterized[0][1].w, clusterMatricesCauterized[0][1].x, clusterMatricesCauterized[0][1].y, clusterMatricesCauterized[0][1].z);
glm::vec3 trans(clusterMatricesCauterized[0][2]);
glm::mat4 m = createMatFromScaleQuatAndPos(scale, rot, trans);
renderTransform = modelTransform.worldTransform(Transform(m));
renderTransform = modelTransform.worldTransform(Transform(clusterTransformsCauterized[0].getMatrix()));
#else
renderTransform = modelTransform.worldTransform(Transform(clusterTransformsCauterized[0]));
#endif
}
data.updateTransformForCauterizedMesh(renderTransform);

View file

@ -326,22 +326,17 @@ ModelMeshPartPayload::ModelMeshPartPayload(ModelPointer model, int meshIndex, in
const Model::MeshState& state = model->getMeshState(_meshIndex);
updateMeshPart(modelMesh, partIndex);
computeAdjustedLocalBound(state.clusterMatrices);
computeAdjustedLocalBound(state.clusterTransforms);
updateTransform(transform, offsetTransform);
Transform renderTransform = transform;
if (state.clusterMatrices.size() == 1) {
#ifdef SKIN_MATRIX
SKIN_ASSERT(false);
renderTransform = transform.worldTransform(Transform(state.clusterMatrices[0]));
#endif
if (state.clusterTransforms.size() == 1) {
#ifdef SKIN_COMP
glm::vec3 scale(state.clusterMatrices[0][0]);
glm::quat rot(state.clusterMatrices[0][1].w, state.clusterMatrices[0][1].x, state.clusterMatrices[0][1].y, state.clusterMatrices[0][1].z);
glm::vec3 trans(state.clusterMatrices[0][2]);
glm::mat4 m = createMatFromScaleQuatAndPos(scale, rot, trans);
renderTransform = transform.worldTransform(Transform(m));
renderTransform = transform.worldTransform(Transform(state.clusterTransforms[0].getMatrix()));
#else
renderTransform = transform.worldTransform(Transform(state.clusterTransforms[0]));
#endif
}
updateTransformForSkinnedMesh(renderTransform, transform);
@ -371,20 +366,36 @@ void ModelMeshPartPayload::notifyLocationChanged() {
}
void ModelMeshPartPayload::updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices) {
#ifdef SKIN_COMP
void ModelMeshPartPayload::updateClusterBuffer(const std::vector<Model::TransformComponents>& clusterTransforms) {
// Once computed the cluster matrices, update the buffer(s)
if (clusterMatrices.size() > 1) {
if (clusterTransforms.size() > 1) {
if (!_clusterBuffer) {
_clusterBuffer = std::make_shared<gpu::Buffer>(clusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) clusterMatrices.data());
_clusterBuffer = std::make_shared<gpu::Buffer>(clusterTransforms.size() * sizeof(Model::TransformComponents),
(const gpu::Byte*) clusterTransforms.data());
}
else {
_clusterBuffer->setSubData(0, clusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) clusterMatrices.data());
_clusterBuffer->setSubData(0, clusterTransforms.size() * sizeof(Model::TransformComponents),
(const gpu::Byte*) clusterTransforms.data());
}
}
}
#else
void ModelMeshPartPayload::updateClusterBuffer(const std::vector<glm::mat4>& clusterTransforms) {
// Once computed the cluster matrices, update the buffer(s)
if (clusterTransforms.size() > 1) {
if (!_clusterBuffer) {
_clusterBuffer = std::make_shared<gpu::Buffer>(clusterTransforms.size() * sizeof(glm::mat4),
(const gpu::Byte*) clusterTransforms.data());
}
else {
_clusterBuffer->setSubData(0, clusterTransforms.size() * sizeof(glm::mat4),
(const gpu::Byte*) clusterTransforms.data());
}
}
}
#endif
void ModelMeshPartPayload::updateTransformForSkinnedMesh(const Transform& renderTransform, const Transform& boundTransform) {
_transform = renderTransform;
@ -550,23 +561,27 @@ void ModelMeshPartPayload::render(RenderArgs* args) {
args->_details._trianglesRendered += _drawPart._numIndices / INDICES_PER_TRIANGLE;
}
void ModelMeshPartPayload::computeAdjustedLocalBound(const std::vector<glm::mat4>& clusterMatrices) {
_adjustedLocalBound = _localBound;
if (clusterMatrices.size() > 0) {
_adjustedLocalBound.transform(clusterMatrices[0]);
for (int i = 1; i < (int)clusterMatrices.size(); ++i) {
AABox clusterBound = _localBound;
#ifdef SKIN_MATRIX
SKIN_ASSERT(false);
clusterBound.transform(clusterMatrices[i]);
#endif
#ifdef SKIN_COMP
// AJT: FIXME: TODO: SLOW AS SHIT
glm::vec3 scale(clusterMatrices[i][0]);
glm::quat rot(clusterMatrices[i][1].w, clusterMatrices[i][1].x, clusterMatrices[i][1].y, clusterMatrices[i][1].z);
glm::vec3 trans(clusterMatrices[i][2]);
glm::mat4 m = createMatFromScaleQuatAndPos(scale, rot, trans);
clusterBound.transform(m);
void ModelMeshPartPayload::computeAdjustedLocalBound(const std::vector<Model::TransformComponents>& clusterTransforms) {
#else
void ModelMeshPartPayload::computeAdjustedLocalBound(const std::vector<glm::mat4>& clusterTransforms) {
#endif
_adjustedLocalBound = _localBound;
if (clusterTransforms.size() > 0) {
#ifdef SKIN_COMP
// AJT: TODO: optimize
_adjustedLocalBound.transform(clusterTransforms[0].getMatrix());
#else
_adjustedLocalBound.transform(clusterTransforms[0]);
#endif
for (int i = 1; i < (int)clusterTransforms.size(); ++i) {
AABox clusterBound = _localBound;
#ifdef SKIN_COMP
// AJT: TODO: optimize
clusterBound.transform(clusterTransforms[i].getMatrix());
#else
clusterBound.transform(clusterTransforms[i]);
#endif
_adjustedLocalBound += clusterBound;
}

View file

@ -87,7 +87,11 @@ public:
typedef Payload::DataPointer Pointer;
void notifyLocationChanged() override;
void updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices);
#ifdef SKIN_COMP
void updateClusterBuffer(const std::vector<Model::TransformComponents>& clusterTransforms);
#else
void updateClusterBuffer(const std::vector<glm::mat4>& clusterTransforms);
#endif
void updateTransformForSkinnedMesh(const Transform& renderTransform, const Transform& boundTransform);
// Render Item interface
@ -104,7 +108,11 @@ public:
void bindMesh(gpu::Batch& batch) override;
void bindTransform(gpu::Batch& batch, const render::ShapePipeline::LocationsPointer locations, RenderArgs::RenderMode renderMode) const override;
#ifdef SKIN_COMP
void computeAdjustedLocalBound(const std::vector<Model::TransformComponents>& clusterTransforms);
#else
void computeAdjustedLocalBound(const std::vector<glm::mat4>& clusterMatrices);
#endif
gpu::BufferPointer _clusterBuffer;

View file

@ -266,25 +266,20 @@ void Model::updateRenderItems() {
auto itemID = self->_modelMeshRenderItemIDs[i];
auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex;
auto clusterMatrices(self->getMeshState(meshIndex).clusterMatrices);
auto clusterTransforms(self->getMeshState(meshIndex).clusterTransforms);
bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex);
transaction.updateItem<ModelMeshPartPayload>(itemID, [modelTransform, clusterMatrices, invalidatePayloadShapeKey,
transaction.updateItem<ModelMeshPartPayload>(itemID, [modelTransform, clusterTransforms, invalidatePayloadShapeKey,
isWireframe, isVisible, isLayeredInFront, isLayeredInHUD](ModelMeshPartPayload& data) {
data.updateClusterBuffer(clusterMatrices);
data.updateClusterBuffer(clusterTransforms);
Transform renderTransform = modelTransform;
if (clusterMatrices.size() == 1) {
#ifdef SKIN_MATRIX
SKIN_ASSERT(false);
renderTransform = modelTransform.worldTransform(Transform(clusterMatrices[0]));
#endif
if (clusterTransforms.size() == 1) {
#ifdef SKIN_COMP
glm::vec3 scale(clusterMatrices[0][0]);
glm::quat rot(clusterMatrices[0][1].w, clusterMatrices[0][1].x, clusterMatrices[0][1].y, clusterMatrices[0][1].z);
glm::vec3 trans(clusterMatrices[0][2]);
glm::mat4 m = createMatFromScaleQuatAndPos(scale, rot, trans);
renderTransform = modelTransform.worldTransform(Transform(m));
renderTransform = modelTransform.worldTransform(Transform(clusterTransforms[0].getMatrix()));
#else
renderTransform = modelTransform.worldTransform(Transform(clusterTransforms[0]));
#endif
}
data.updateTransformForSkinnedMesh(renderTransform, modelTransform);
@ -338,7 +333,7 @@ bool Model::updateGeometry() {
const FBXGeometry& fbxGeometry = getFBXGeometry();
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
MeshState state;
state.clusterMatrices.resize(mesh.clusters.size());
state.clusterTransforms.resize(mesh.clusters.size());
_meshStates.push_back(state);
// Note: we add empty buffers for meshes that lack blendshapes so we can access the buffers by index
@ -1169,7 +1164,7 @@ void Model::updateRig(float deltaTime, glm::mat4 parentTransform) {
void Model::computeMeshPartLocalBounds() {
for (auto& part : _modelMeshRenderItems) {
const Model::MeshState& state = _meshStates.at(part->_meshIndex);
part->computeAdjustedLocalBound(state.clusterMatrices);
part->computeAdjustedLocalBound(state.clusterTransforms);
}
}
@ -1187,30 +1182,14 @@ void Model::updateClusterMatrices() {
const FBXMesh& mesh = geometry.meshes.at(i);
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
// AJT: TODO FIXME
#ifdef SKIN_MATRIX
SKIN_ASSERT(false);
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
#endif
#ifdef SKIN_COMP
AnimPose jointPose = _rig.getJointPose(cluster.jointIndex);
AnimPose result = jointPose * AnimPose(cluster.inverseBindMatrix);
// pack scale rotation and translation into a mat4.
state.clusterMatrices[j][0].x = result.scale().x;
state.clusterMatrices[j][0].y = result.scale().y;
state.clusterMatrices[j][0].z = result.scale().z;
state.clusterMatrices[j][1].x = result.rot().x;
state.clusterMatrices[j][1].y = result.rot().y;
state.clusterMatrices[j][1].z = result.rot().z;
state.clusterMatrices[j][1].w = result.rot().w;
state.clusterMatrices[j][2].x = result.trans().x;
state.clusterMatrices[j][2].y = result.trans().y;
state.clusterMatrices[j][2].z = result.trans().z;
// AJT: TODO: optimize
glm::mat4 mat;
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, mat);
state.clusterTransforms[j] = TransformComponents(mat);
#else
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
}

View file

@ -43,8 +43,6 @@
} \
} while(false)
//#define SKIN_MATRIX
//#define SKIN_DUAL_QUAT
#define SKIN_COMP
class AbstractViewStateInterface;
@ -257,9 +255,50 @@ public:
int getRenderInfoDrawCalls() const { return _renderInfoDrawCalls; }
bool getRenderInfoHasTransparent() const { return _renderInfoHasTransparent; }
class TransformComponents {
public:
TransformComponents() {}
TransformComponents(const glm::mat4& m) {
AnimPose p(m);
_scale.x = p.scale().x;
_scale.y = p.scale().y;
_scale.z = p.scale().z;
_rot = p.rot();
_trans.x = p.trans().x;
_trans.y = p.trans().y;
_trans.z = p.trans().z;
}
TransformComponents(const glm::vec3& scale, const glm::quat& rot, const glm::vec3& trans) {
_scale.x = scale.x;
_scale.y = scale.y;
_scale.z = scale.z;
_rot = rot;
_trans.x = trans.x;
_trans.y = trans.y;
_trans.z = trans.z;
}
glm::vec3 getScale() const { return glm::vec3(_scale); }
glm::quat getRot() const { return _rot; }
glm::vec3 getTrans() const { return glm::vec3(_trans); }
glm::mat4 getMatrix() const { return createMatFromScaleQuatAndPos(getScale(), getRot(), getTrans()); };
protected:
glm::vec4 _scale { 1.0f, 1.0f, 1.0f, 0.0f };
glm::quat _rot { 1.0f, 0.0f, 0.0f, 0.0f };
glm::vec4 _trans { 0.0f, 0.0f, 0.0f, 0.0f };
glm::vec4 _padding { 0.0f, 0.0f, 0.0f, 0.0f };
};
class MeshState {
public:
std::vector<glm::mat4> clusterMatrices;
#ifdef SKIN_COMP
std::vector<TransformComponents> clusterTransforms;
#else
std::vector<glm::mat4> clusterTransforms;
#endif
};
const MeshState& getMeshState(int index) { return _meshStates.at(index); }

View file

@ -38,60 +38,11 @@ void dqMul(vec4 lhsReal, vec4 lhsImag, vec4 rhsReal, vec4 rhsImag, out vec4 real
imagOut = quatMul(lhsReal, rhsImag) + quatMul(lhsImag, rhsReal);
}
// dual quat blend
void blendClusters_dual_quat(ivec4 skinClusterIndex, vec4 skinClusterWeight, out vec3 scaleOut, out vec4 rotOut, out vec3 posOut) {
vec3 scale = vec3(0.0, 0.0, 0.0);
vec4 dqReal = vec4(0.0, 0.0, 0.0, 0.0);
vec4 dqImag = vec4(0.0, 0.0, 0.0, 0.0);
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
float clusterWeight = skinClusterWeight[i];
void skinPosition(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, out vec4 skinnedPosition) {
vec3 sAccum = vec3(0.0, 0.0, 0.0);
vec4 rAccum = vec4(0.0, 0.0, 0.0, 0.0);
vec3 tAccum = vec3(0.0, 0.0, 0.0);
vec3 s = vec3(clusterMatrix[0][0], clusterMatrix[0][1], clusterMatrix[0][2]);
vec4 dqr = vec4(clusterMatrix[1][0], clusterMatrix[1][1], clusterMatrix[1][2], clusterMatrix[1][3]);
vec4 dqi = vec4(clusterMatrix[2][0], clusterMatrix[2][1], clusterMatrix[2][2], clusterMatrix[2][3]);
scale += s * clusterWeight;
dqReal += dqr * clusterWeight;
dqImag += dqi * clusterWeight;
}
scaleOut = scale;
float dqLen = length(dqReal);
dqReal *= 1.0 / dqLen;
dqImag *= 1.0 / dqLen;
rotOut = dqReal;
vec4 invReal = quatConj(dqReal);
posOut.xyz = 2.0 * quatMul(dqImag, invReal).xyz;
}
// rigid dual quat blend
void blendClusters_rigid_dual_quat(ivec4 skinClusterIndex, vec4 skinClusterWeight, out vec3 scaleOut, out vec4 rotOut, out vec3 posOut) {
float maxWeight = 0.0;
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
float clusterWeight = skinClusterWeight[i];
vec3 s = vec3(clusterMatrix[0][0], clusterMatrix[0][1], clusterMatrix[0][2]);
vec4 dqr = vec4(clusterMatrix[1][0], clusterMatrix[1][1], clusterMatrix[1][2], clusterMatrix[1][3]);
vec4 dqi = vec4(clusterMatrix[2][0], clusterMatrix[2][1], clusterMatrix[2][2], clusterMatrix[2][3]);
if (clusterWeight > maxWeight) {
maxWeight = clusterWeight;
scaleOut = s;
rotOut = dqr;
vec4 invReal = quatConj(dqr);
posOut = 2.0 * quatMul(dqi, invReal).xyz;
}
}
}
// rigid componentwise blend
void blendClusters(ivec4 skinClusterIndex, vec4 skinClusterWeight, out vec3 scaleOut, out vec4 rotOut, out vec3 posOut) {
float maxWeight = 0.0;
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
float clusterWeight = skinClusterWeight[i];
@ -100,51 +51,83 @@ void blendClusters(ivec4 skinClusterIndex, vec4 skinClusterWeight, out vec3 scal
vec4 r = vec4(clusterMatrix[1][0], clusterMatrix[1][1], clusterMatrix[1][2], clusterMatrix[1][3]);
vec3 t = vec3(clusterMatrix[2][0], clusterMatrix[2][1], clusterMatrix[2][2]);
if (clusterWeight > maxWeight) {
maxWeight = clusterWeight;
scaleOut = s;
rotOut = r;
posOut = t;
if (dot(r, rAccum) < 0) {
r = -r;
}
sAccum += s * clusterWeight;
rAccum += r * clusterWeight;
tAccum += t * clusterWeight;
}
}
void skinPosition(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, out vec4 skinnedPosition) {
rAccum = normalize(rAccum);
vec3 scale, pos;
vec4 rot;
blendClusters(skinClusterIndex, skinClusterWeight, scale, rot, pos);
skinnedPosition.xyz = rotateByQuat(rot, (vec3(inPosition) * scale)) + pos;
skinnedPosition.w = 1;
skinnedPosition = vec4(rotateByQuat(rAccum, (vec3(inPosition) * sAccum)) + tAccum, 1);
}
void skinPositionNormal(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, vec3 inNormal,
out vec4 skinnedPosition, out vec3 skinnedNormal) {
vec3 scale, pos;
vec4 rot;
blendClusters(skinClusterIndex, skinClusterWeight, scale, rot, pos);
vec3 sAccum = vec3(0.0, 0.0, 0.0);
vec4 rAccum = vec4(0.0, 0.0, 0.0, 0.0);
vec3 tAccum = vec3(0.0, 0.0, 0.0);
skinnedNormal.xyz = rotateByQuat(rot, inNormal * scale);
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
float clusterWeight = skinClusterWeight[i];
vec3 s = vec3(clusterMatrix[0][0], clusterMatrix[0][1], clusterMatrix[0][2]);
vec4 r = vec4(clusterMatrix[1][0], clusterMatrix[1][1], clusterMatrix[1][2], clusterMatrix[1][3]);
vec3 t = vec3(clusterMatrix[2][0], clusterMatrix[2][1], clusterMatrix[2][2]);
if (dot(r, rAccum) < 0) {
r = -r;
}
sAccum += s * clusterWeight;
rAccum += r * clusterWeight;
tAccum += t * clusterWeight;
}
rAccum = normalize(rAccum);
skinnedPosition = vec4(rotateByQuat(rAccum, (vec3(inPosition) * sAccum)) + tAccum, 1);
skinnedNormal = rotateByQuat(rAccum, inNormal);
}
void skinPositionNormalTangent(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, vec3 inNormal, vec3 inTangent,
out vec4 skinnedPosition, out vec3 skinnedNormal, out vec3 skinnedTangent) {
vec3 scale, pos;
vec4 rot;
blendClusters(skinClusterIndex, skinClusterWeight, scale, rot, pos);
vec3 sAccum = vec3(0.0, 0.0, 0.0);
vec4 rAccum = vec4(0.0, 0.0, 0.0, 0.0);
vec3 tAccum = vec3(0.0, 0.0, 0.0);
skinnedPosition.xyz = rotateByQuat(rot, (vec3(inPosition) * scale)) + pos;
skinnedPosition.w = 1;
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
float clusterWeight = skinClusterWeight[i];
skinnedNormal = rotateByQuat(rot, inNormal * scale);
skinnedTangent = rotateByQuat(rot, inTangent * scale);
vec3 s = vec3(clusterMatrix[0][0], clusterMatrix[0][1], clusterMatrix[0][2]);
vec4 r = vec4(clusterMatrix[1][0], clusterMatrix[1][1], clusterMatrix[1][2], clusterMatrix[1][3]);
vec3 t = vec3(clusterMatrix[2][0], clusterMatrix[2][1], clusterMatrix[2][2]);
if (dot(r, rAccum) < 0) {
r = -r;
}
sAccum += s * clusterWeight;
rAccum += r * clusterWeight;
tAccum += t * clusterWeight;
}
rAccum = normalize(rAccum);
skinnedPosition = vec4(rotateByQuat(rAccum, (vec3(inPosition) * sAccum)) + tAccum, 1);
skinnedNormal = rotateByQuat(rAccum, inNormal);
skinnedTangent = rotateByQuat(rAccum, inTangent);
}
// ORIGINAL
/*
// ORIGINAL
void skinPosition(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, out vec4 skinnedPosition) {
vec4 newPosition = vec4(0.0, 0.0, 0.0, 0.0);
@ -193,5 +176,4 @@ void skinPositionNormalTangent(ivec4 skinClusterIndex, vec4 skinClusterWeight, v
}
*/
<@endif@>

View file

@ -50,7 +50,6 @@ void SoftAttachmentModel::updateClusterMatrices() {
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
#ifdef SKIN_MATRIX
// TODO: cache these look-ups as an optimization
int jointIndexOverride = getJointIndexOverride(cluster.jointIndex);
glm::mat4 jointMatrix;
@ -59,35 +58,14 @@ void SoftAttachmentModel::updateClusterMatrices() {
} else {
jointMatrix = _rig.getJointTransform(cluster.jointIndex);
}
SKIN_ASSERT(false);
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
#endif
#ifdef SKIN_COMP
// TODO: cache these look-ups as an optimization
int jointIndexOverride = getJointIndexOverride(cluster.jointIndex);
AnimPose jointPose;
if (jointIndexOverride >= 0 && jointIndexOverride < _rigOverride.getJointStateCount()) {
jointPose = _rigOverride.getJointPose(jointIndexOverride);
} else {
jointPose = _rig.getJointPose(cluster.jointIndex);
}
AnimPose result = jointPose * AnimPose(cluster.inverseBindMatrix);
// pack scale rotation and translation into a mat4.
state.clusterMatrices[j][0].x = result.scale().x;
state.clusterMatrices[j][0].y = result.scale().y;
state.clusterMatrices[j][0].z = result.scale().z;
state.clusterMatrices[j][1].x = result.rot().x;
state.clusterMatrices[j][1].y = result.rot().y;
state.clusterMatrices[j][1].z = result.rot().z;
state.clusterMatrices[j][1].w = result.rot().w;
state.clusterMatrices[j][2].x = result.trans().x;
state.clusterMatrices[j][2].y = result.trans().y;
state.clusterMatrices[j][2].z = result.trans().z;
// AJT: TODO: Optimize
glm::mat4 m;
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, m);
state.clusterTransforms[j] = Model::TransformComponents(m);
#else
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
}