overte-JulianGro/libraries/render-utils/src/RenderShadowTask.cpp
HifiExperiments 204c7a7391 fix shadows!!
2019-12-12 23:04:55 -05:00

632 lines
28 KiB
C++
Executable file

//
// RenderShadowTask.cpp
// render-utils/src/
//
// Created by Zach Pomerantz on 1/7/2016.
// Copyright 2016 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "RenderShadowTask.h"
#include <gpu/Context.h>
#include <ViewFrustum.h>
#include <render/CullTask.h>
#include <render/SortTask.h>
#include <render/DrawTask.h>
#include "DeferredLightingEffect.h"
#include "FramebufferCache.h"
#include "RenderUtilsLogging.h"
#include "RenderCommonTask.h"
#include "AssembleLightingStageTask.h"
#include "FadeEffect.h"
// These values are used for culling the objects rendered in the shadow map
// but are readjusted afterwards
#define SHADOW_FRUSTUM_NEAR 1.0f
#define SHADOW_FRUSTUM_FAR 500.0f
using namespace render;
extern void initZPassPipelines(ShapePlumber& plumber, gpu::StatePointer state, const render::ShapePipeline::BatchSetter& batchSetter, const render::ShapePipeline::ItemSetter& itemSetter);
void RenderShadowTask::configure(const Config& configuration) {
//DependencyManager::get<DeferredLightingEffect>()->setShadowMapEnabled(configuration.isEnabled());
// This is a task, so must still propogate configure() to its Jobs
// Task::configure(configuration);
}
void RenderShadowTask::build(JobModel& task, const render::Varying& input, render::Varying& output, render::CullFunctor cameraCullFunctor, uint8_t tagBits, uint8_t tagMask) {
// Prepare the ShapePipeline
ShapePlumberPointer shapePlumber = std::make_shared<ShapePlumber>();
{
auto state = std::make_shared<gpu::State>();
state->setCullMode(gpu::State::CULL_BACK);
state->setDepthTest(true, true, gpu::LESS_EQUAL);
auto fadeEffect = DependencyManager::get<FadeEffect>();
initZPassPipelines(*shapePlumber, state, fadeEffect->getBatchSetter(), fadeEffect->getItemUniformSetter());
}
const auto setupOutput = task.addJob<RenderShadowSetup>("ShadowSetup", input);
const auto queryResolution = setupOutput.getN<RenderShadowSetup::Output>(1);
const auto shadowFrame = setupOutput.getN<RenderShadowSetup::Output>(3);
const auto currentKeyLight = setupOutput.getN<RenderShadowSetup::Output>(4);
// Fetch and cull the items from the scene
static const auto shadowCasterReceiverFilter = ItemFilter::Builder::visibleWorldItems().withOpaque().withoutLayered().withTagBits(tagBits, tagMask);
const auto fetchInput = FetchSpatialTree::Inputs(shadowCasterReceiverFilter, queryResolution).asVarying();
const auto shadowSelection = task.addJob<FetchSpatialTree>("FetchShadowTree", fetchInput);
const auto selectionInputs = CullSpatialSelection::Inputs(shadowSelection, shadowCasterReceiverFilter).asVarying();
const auto shadowItems = task.addJob<CullSpatialSelection>("FilterShadowSelection", selectionInputs, nullptr, true, RenderDetails::SHADOW);
// Cull objects that are not visible in camera view. Hopefully the cull functor only performs LOD culling, not
// frustum culling or this will make shadow casters out of the camera frustum disappear.
const auto cameraFrustum = setupOutput.getN<RenderShadowSetup::Output>(2);
const auto applyFunctorInputs = ApplyCullFunctorOnItemBounds::Inputs(shadowItems, cameraFrustum).asVarying();
const auto culledShadowItems = task.addJob<ApplyCullFunctorOnItemBounds>("ShadowCullCamera", applyFunctorInputs, cameraCullFunctor);
// Sort
const auto sortedPipelines = task.addJob<PipelineSortShapes>("PipelineSortShadow", culledShadowItems);
const auto sortedShapes = task.addJob<DepthSortShapes>("DepthSortShadow", sortedPipelines, true);
render::Varying cascadeFrustums[SHADOW_CASCADE_MAX_COUNT] = {
ViewFrustumPointer()
#if SHADOW_CASCADE_MAX_COUNT>1
,ViewFrustumPointer(),
ViewFrustumPointer(),
ViewFrustumPointer()
#endif
};
CascadeBoxes cascadeSceneBBoxes;
for (auto i = 0; i < SHADOW_CASCADE_MAX_COUNT; i++) {
char jobName[64];
sprintf(jobName, "ShadowCascadeSetup%d", i);
const auto cascadeSetupOutput = task.addJob<RenderShadowCascadeSetup>(jobName, shadowFrame, i, shadowCasterReceiverFilter);
const auto shadowFilter = cascadeSetupOutput.getN<RenderShadowCascadeSetup::Outputs>(0);
auto antiFrustum = render::Varying(ViewFrustumPointer());
cascadeFrustums[i] = cascadeSetupOutput.getN<RenderShadowCascadeSetup::Outputs>(1);
if (i > 1) {
antiFrustum = cascadeFrustums[i - 2];
}
const auto cullInputs = CullShadowBounds::Inputs(sortedShapes, shadowFilter, antiFrustum, currentKeyLight, cascadeSetupOutput.getN<RenderShadowCascadeSetup::Outputs>(2)).asVarying();
sprintf(jobName, "CullShadowCascade%d", i);
const auto culledShadowItemsAndBounds = task.addJob<CullShadowBounds>(jobName, cullInputs);
// GPU jobs: Render to shadow map
sprintf(jobName, "RenderShadowMap%d", i);
const auto shadowInputs = RenderShadowMap::Inputs(culledShadowItemsAndBounds.getN<CullShadowBounds::Outputs>(0),
culledShadowItemsAndBounds.getN<CullShadowBounds::Outputs>(1), shadowFrame).asVarying();
task.addJob<RenderShadowMap>(jobName, shadowInputs, shapePlumber, i);
sprintf(jobName, "ShadowCascadeTeardown%d", i);
task.addJob<RenderShadowCascadeTeardown>(jobName, shadowFilter);
cascadeSceneBBoxes[i] = culledShadowItemsAndBounds.getN<CullShadowBounds::Outputs>(1);
}
task.addJob<RenderShadowTeardown>("ShadowTeardown", setupOutput);
output = Output(cascadeSceneBBoxes, setupOutput.getN<RenderShadowSetup::Output>(3));
}
static void computeNearFar(const Triangle& triangle, const Plane shadowClipPlanes[4], float& near, float& far) {
static const int MAX_TRIANGLE_COUNT = 16;
Triangle clippedTriangles[MAX_TRIANGLE_COUNT];
auto clippedTriangleCount = clipTriangleWithPlanes(triangle, shadowClipPlanes, 4, clippedTriangles, MAX_TRIANGLE_COUNT);
for (auto i = 0; i < clippedTriangleCount; i++) {
const auto& clippedTriangle = clippedTriangles[i];
near = glm::min(near, -clippedTriangle.v0.z);
near = glm::min(near, -clippedTriangle.v1.z);
near = glm::min(near, -clippedTriangle.v2.z);
far = glm::max(far, -clippedTriangle.v0.z);
far = glm::max(far, -clippedTriangle.v1.z);
far = glm::max(far, -clippedTriangle.v2.z);
}
}
static void computeNearFar(const glm::vec3 sceneBoundVertices[8], const Plane shadowClipPlanes[4], float& near, float& far) {
// This code is inspired from Microsoft's CascadedShadowMaps11 sample which is under MIT licence.
// See https://code.msdn.microsoft.com/windowsdesktop/Direct3D-Shadow-Win32-2d72a4f2/sourcecode?fileId=121915&pathId=1645833187
// Basically it decomposes the object bounding box in triangles and clips each triangle with the shadow
// frustum planes. Finally it computes the minimum and maximum depth of the clipped triangle vertices
// in shadow space to extract the near and far distances of the shadow frustum.
static const std::array<int[4], 6> boxQuadVertexIndices = { {
{ TOP_LEFT_FAR, BOTTOM_LEFT_FAR, BOTTOM_RIGHT_FAR, TOP_RIGHT_FAR },
{ TOP_LEFT_NEAR, BOTTOM_LEFT_NEAR, BOTTOM_RIGHT_NEAR, TOP_RIGHT_NEAR },
{ TOP_RIGHT_FAR, BOTTOM_RIGHT_FAR, BOTTOM_RIGHT_NEAR, TOP_RIGHT_NEAR },
{ TOP_LEFT_FAR, BOTTOM_LEFT_FAR, BOTTOM_LEFT_NEAR, TOP_LEFT_NEAR },
{ BOTTOM_LEFT_FAR, BOTTOM_RIGHT_FAR, BOTTOM_RIGHT_NEAR, BOTTOM_LEFT_NEAR },
{ TOP_LEFT_FAR, TOP_RIGHT_FAR, TOP_RIGHT_NEAR, TOP_LEFT_NEAR }
} };
Triangle triangle;
for (auto quadVertexIndices : boxQuadVertexIndices) {
triangle.v0 = sceneBoundVertices[quadVertexIndices[0]];
triangle.v1 = sceneBoundVertices[quadVertexIndices[1]];
triangle.v2 = sceneBoundVertices[quadVertexIndices[2]];
computeNearFar(triangle, shadowClipPlanes, near, far);
triangle.v1 = sceneBoundVertices[quadVertexIndices[3]];
computeNearFar(triangle, shadowClipPlanes, near, far);
}
}
static void adjustNearFar(const AABox& inShapeBounds, ViewFrustum& shadowFrustum) {
if (!inShapeBounds.isNull()) {
const Transform shadowView{ shadowFrustum.getView() };
const Transform shadowViewInverse{ shadowView.getInverseMatrix() };
glm::vec3 sceneBoundVertices[8];
// Keep only the left, right, top and bottom shadow frustum planes as we wish to determine
// the near and far
Plane shadowClipPlanes[4];
int i;
// The vertices of the scene bounding box are expressed in the shadow frustum's local space
for (i = 0; i < 8; i++) {
sceneBoundVertices[i] = shadowViewInverse.transform(inShapeBounds.getVertex(static_cast<BoxVertex>(i)));
}
shadowFrustum.getUniformlyTransformedSidePlanes(shadowViewInverse, shadowClipPlanes);
float near = std::numeric_limits<float>::max();
float far = 0.0f;
computeNearFar(sceneBoundVertices, shadowClipPlanes, near, far);
// Limit the far range to the one used originally.
far = glm::min(far, shadowFrustum.getFarClip());
if (near > far) {
near = far;
}
const auto depthEpsilon = 0.1f;
auto projMatrix = glm::ortho(-1.0f, 1.0f, -1.0f, 1.0f, near - depthEpsilon, far + depthEpsilon);
auto shadowProjection = shadowFrustum.getProjection();
shadowProjection[2][2] = projMatrix[2][2];
shadowProjection[3][2] = projMatrix[3][2];
shadowFrustum.setProjection(shadowProjection);
shadowFrustum.calculate();
}
}
void RenderShadowMap::run(const render::RenderContextPointer& renderContext, const Inputs& inputs) {
assert(renderContext->args);
assert(renderContext->args->hasViewFrustum());
const auto& inShapes = inputs.get0();
const auto& inShapeBounds = inputs.get1();
const auto& shadowFrame = inputs.get2();
LightStage::ShadowPointer shadow;
if (shadowFrame && !shadowFrame->_objects.empty()) {
shadow = shadowFrame->_objects.front();
}
if (!shadow || _cascadeIndex >= shadow->getCascadeCount()) {
return;
}
auto& cascade = shadow->getCascade(_cascadeIndex);
auto& fbo = cascade.framebuffer;
RenderArgs* args = renderContext->args;
auto adjustedShadowFrustum = args->getViewFrustum();
// Adjust the frustum near and far depths based on the rendered items bounding box to have
// the minimal Z range.
adjustNearFar(inShapeBounds, adjustedShadowFrustum);
// Reapply the frustum as it has been adjusted
shadow->setCascadeFrustum(_cascadeIndex, adjustedShadowFrustum);
args->popViewFrustum();
args->pushViewFrustum(adjustedShadowFrustum);
gpu::doInBatch("RenderShadowMap::run", args->_context, [&](gpu::Batch& batch) {
args->_batch = &batch;
batch.enableStereo(false);
glm::ivec4 viewport{0, 0, fbo->getWidth(), fbo->getHeight()};
batch.setViewportTransform(viewport);
batch.setStateScissorRect(viewport);
batch.setFramebuffer(fbo);
batch.clearDepthFramebuffer(1.0, false);
if (!inShapeBounds.isNull()) {
glm::mat4 projMat;
Transform viewMat;
args->getViewFrustum().evalProjectionMatrix(projMat);
args->getViewFrustum().evalViewTransform(viewMat);
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat, false);
const std::vector<ShapeKey::Builder> keys = {
ShapeKey::Builder(), ShapeKey::Builder().withFade(),
ShapeKey::Builder().withDeformed(), ShapeKey::Builder().withDeformed().withFade(),
ShapeKey::Builder().withDeformed().withDualQuatSkinned(), ShapeKey::Builder().withDeformed().withDualQuatSkinned().withFade(),
ShapeKey::Builder().withOwnPipeline(), ShapeKey::Builder().withOwnPipeline().withFade(),
ShapeKey::Builder().withOwnPipeline().withDeformed(), ShapeKey::Builder().withOwnPipeline().withDeformed().withFade(),
ShapeKey::Builder().withOwnPipeline().withDeformed().withDualQuatSkinned(), ShapeKey::Builder().withOwnPipeline().withDeformed().withDualQuatSkinned().withFade(),
};
std::vector<std::vector<ShapeKey>> sortedShapeKeys(keys.size());
const int OWN_PIPELINE_INDEX = 6;
for (const auto& items : inShapes) {
int index = items.first.hasOwnPipeline() ? OWN_PIPELINE_INDEX : 0;
if (items.first.isDeformed()) {
index += 2;
if (items.first.isDualQuatSkinned()) {
index += 2;
}
}
if (items.first.isFaded()) {
index += 1;
}
sortedShapeKeys[index].push_back(items.first);
}
// Render non-withOwnPipeline things
for (size_t i = 0; i < OWN_PIPELINE_INDEX; i++) {
auto& shapeKeys = sortedShapeKeys[i];
if (shapeKeys.size() > 0) {
const auto& shapePipeline = _shapePlumber->pickPipeline(args, keys[i]);
args->_shapePipeline = shapePipeline;
for (const auto& key : shapeKeys) {
renderShapes(renderContext, _shapePlumber, inShapes.at(key));
}
}
}
// Render withOwnPipeline things
for (size_t i = OWN_PIPELINE_INDEX; i < keys.size(); i++) {
auto& shapeKeys = sortedShapeKeys[i];
if (shapeKeys.size() > 0) {
args->_shapePipeline = nullptr;
for (const auto& key : shapeKeys) {
args->_itemShapeKey = key._flags.to_ulong();
renderShapes(renderContext, _shapePlumber, inShapes.at(key));
}
}
}
args->_shapePipeline = nullptr;
}
args->_batch = nullptr;
});
}
RenderShadowSetup::RenderShadowSetup() :
_cameraFrustum{ std::make_shared<ViewFrustum>() },
_coarseShadowFrustum{ std::make_shared<ViewFrustum>() } {
_shadowFrameCache = std::make_shared<LightStage::ShadowFrame>();
}
void RenderShadowSetup::configure(const Config& config) {
constantBias0 = config.constantBias0;
constantBias1 = config.constantBias1;
constantBias2 = config.constantBias2;
constantBias3 = config.constantBias3;
slopeBias0 = config.slopeBias0;
slopeBias1 = config.slopeBias1;
slopeBias2 = config.slopeBias2;
slopeBias3 = config.slopeBias3;
biasInput = config.biasInput;
maxDistance = config.maxDistance;
}
void RenderShadowSetup::calculateBiases(float biasInput) {
const std::array<float, SHADOW_CASCADE_MAX_COUNT> CONSTANT_CASCADE_SCALE = {{ 0.01f, 0.01f, 0.015f, 0.02f }};
const float SLOPE_BIAS_SCALE = 0.005f;
for (int i = 0; i < SHADOW_CASCADE_MAX_COUNT; i++) {
auto& cascade = _globalShadowObject->getCascade(i);
// Constant bias is dependent on the depth precision
float cascadeDepth = cascade.getMaxDistance() - cascade.getMinDistance();
float constantBias = CONSTANT_CASCADE_SCALE[i] * biasInput / cascadeDepth;
setConstantBias(i, constantBias);
// Slope bias is dependent on the texel size
float cascadeWidth = cascade.getFrustum()->getWidth();
float cascadeHeight = cascade.getFrustum()->getHeight();
float cascadeTexelMaxDim = glm::max(cascadeWidth, cascadeHeight) / LightStage::Shadow::MAP_SIZE; // TODO: variable cascade resolution
setSlopeBias(i, cascadeTexelMaxDim * constantBias / SLOPE_BIAS_SCALE);
}
}
void RenderShadowSetup::setConstantBias(int cascadeIndex, float value) {
_bias[cascadeIndex]._constant = value;
}
void RenderShadowSetup::setSlopeBias(int cascadeIndex, float value) {
_bias[cascadeIndex]._slope = value;
}
void RenderShadowSetup::run(const render::RenderContextPointer& renderContext, const Input& input, Output& output) {
// Abort all jobs if not casting shadows
auto lightStage = renderContext->_scene->getStage<LightStage>();
assert(lightStage);
const auto lightFrame = *input.get0();
const auto lightingModel = input.get1();
// Clear previous shadow frame always
_shadowFrameCache->_objects.clear();
output.edit3() = _shadowFrameCache;
const auto currentKeyLight = lightStage->getCurrentKeyLight(lightFrame);
if (!lightingModel->isShadowEnabled() || !currentKeyLight || !currentKeyLight->getCastShadows()) {
renderContext->taskFlow.abortTask();
return;
}
output.edit4() = currentKeyLight;
// Cache old render args
RenderArgs* args = renderContext->args;
output.edit0() = args->_renderMode;
// Save main camera frustum
*_cameraFrustum = args->getViewFrustum();
output.edit2() = _cameraFrustum;
if (!_globalShadowObject) {
_globalShadowObject = std::make_shared<LightStage::Shadow>(currentKeyLight, SHADOW_CASCADE_MAX_COUNT);
}
_globalShadowObject->setLight(currentKeyLight);
_globalShadowObject->setKeylightFrustum(args->getViewFrustum(), SHADOW_FRUSTUM_NEAR, SHADOW_FRUSTUM_FAR);
// Update our biases and maxDistance from the light or config
_globalShadowObject->setMaxDistance(maxDistance > 0.0f ? maxDistance : currentKeyLight->getShadowsMaxDistance());
// Adjust each cascade frustum
for (unsigned int cascadeIndex = 0; cascadeIndex < _globalShadowObject->getCascadeCount(); ++cascadeIndex) {
_globalShadowObject->setKeylightCascadeFrustum(cascadeIndex, args->getViewFrustum(), SHADOW_FRUSTUM_NEAR, SHADOW_FRUSTUM_FAR);
}
calculateBiases(biasInput > 0.0f ? biasInput : currentKeyLight->getShadowBias());
std::array<float, SHADOW_CASCADE_MAX_COUNT> constantBiases = {{ constantBias0, constantBias1, constantBias2, constantBias3 }};
std::array<float, SHADOW_CASCADE_MAX_COUNT> slopeBiases = {{ slopeBias0, slopeBias1, slopeBias2, slopeBias3 }};
for (unsigned int cascadeIndex = 0; cascadeIndex < _globalShadowObject->getCascadeCount(); ++cascadeIndex) {
float constantBias = constantBiases[cascadeIndex];
if (constantBias > 0.0f) {
setConstantBias(cascadeIndex, constantBias);
}
float slopeBias = slopeBiases[cascadeIndex];
if (slopeBias > 0.0f) {
setSlopeBias(cascadeIndex, slopeBias);
}
auto& bias = _bias[cascadeIndex];
_globalShadowObject->setKeylightCascadeBias(cascadeIndex, bias._constant, bias._slope);
}
_shadowFrameCache->pushShadow(_globalShadowObject);
// Now adjust coarse frustum bounds
auto& firstCascade = _globalShadowObject->getCascade(0);
auto& firstCascadeFrustum = firstCascade.getFrustum();
auto frustumPosition = firstCascadeFrustum->getPosition();
auto farTopLeft = firstCascadeFrustum->getFarTopLeft() - frustumPosition;
auto farBottomRight = firstCascadeFrustum->getFarBottomRight() - frustumPosition;
auto left = glm::dot(farTopLeft, firstCascadeFrustum->getRight());
auto right = glm::dot(farBottomRight, firstCascadeFrustum->getRight());
auto top = glm::dot(farTopLeft, firstCascadeFrustum->getUp());
auto bottom = glm::dot(farBottomRight, firstCascadeFrustum->getUp());
auto near = firstCascadeFrustum->getNearClip();
auto far = firstCascadeFrustum->getFarClip();
for (unsigned int cascadeIndex = 1; cascadeIndex < _globalShadowObject->getCascadeCount(); ++cascadeIndex) {
auto& cascadeFrustum = _globalShadowObject->getCascade(cascadeIndex).getFrustum();
farTopLeft = cascadeFrustum->getFarTopLeft() - frustumPosition;
farBottomRight = cascadeFrustum->getFarBottomRight() - frustumPosition;
auto cascadeLeft = glm::dot(farTopLeft, cascadeFrustum->getRight());
auto cascadeRight = glm::dot(farBottomRight, cascadeFrustum->getRight());
auto cascadeTop = glm::dot(farTopLeft, cascadeFrustum->getUp());
auto cascadeBottom = glm::dot(farBottomRight, cascadeFrustum->getUp());
auto cascadeNear = cascadeFrustum->getNearClip();
auto cascadeFar = cascadeFrustum->getFarClip();
left = glm::min(left, cascadeLeft);
right = glm::max(right, cascadeRight);
bottom = glm::min(bottom, cascadeBottom);
top = glm::max(top, cascadeTop);
near = glm::min(near, cascadeNear);
far = glm::max(far, cascadeFar);
}
_coarseShadowFrustum->setPosition(firstCascadeFrustum->getPosition());
_coarseShadowFrustum->setOrientation(firstCascadeFrustum->getOrientation());
_coarseShadowFrustum->setProjection(glm::ortho<float>(left, right, bottom, top, near, far));
_coarseShadowFrustum->calculate();
// Push frustum for further culling and selection
args->pushViewFrustum(*_coarseShadowFrustum);
args->_renderMode = RenderArgs::SHADOW_RENDER_MODE;
// We want for the octree query enough resolution to catch the details in the lowest cascade. So compute
// the desired resolution for the first cascade frustum and extrapolate it to the coarse frustum.
glm::ivec2 queryResolution = firstCascade.framebuffer->getSize();
queryResolution.x = int(queryResolution.x * _coarseShadowFrustum->getWidth() / firstCascadeFrustum->getWidth());
queryResolution.y = int(queryResolution.y * _coarseShadowFrustum->getHeight() / firstCascadeFrustum->getHeight());
output.edit1() = queryResolution;
}
void RenderShadowCascadeSetup::run(const render::RenderContextPointer& renderContext, const Inputs& input, Outputs& output) {
const auto shadowFrame = input;
// Cache old render args
RenderArgs* args = renderContext->args;
RenderShadowTask::CullFunctor cullFunctor;
if (shadowFrame && !shadowFrame->_objects.empty() && shadowFrame->_objects[0]) {
const auto globalShadow = shadowFrame->_objects[0];
if (globalShadow && _cascadeIndex < globalShadow->getCascadeCount()) {
output.edit0() = _filter;
// Set the keylight render args
auto& cascade = globalShadow->getCascade(_cascadeIndex);
auto& cascadeFrustum = cascade.getFrustum();
args->pushViewFrustum(*cascadeFrustum);
auto texelSize = glm::min(cascadeFrustum->getHeight(), cascadeFrustum->getWidth()) / cascade.framebuffer->getSize().x;
// Set the cull threshold to 24 shadow texels. This is totally arbitrary
const auto minTexelCount = 24.0f;
// TODO : maybe adapt that with LOD management system?
texelSize *= minTexelCount;
cullFunctor._minSquareSize = texelSize * texelSize;
output.edit1() = cascadeFrustum;
} else {
output.edit0() = ItemFilter::Builder::nothing();
output.edit1() = ViewFrustumPointer();
}
}
else {
output.edit0() = ItemFilter::Builder::nothing();
output.edit1() = ViewFrustumPointer();
}
output.edit2() = cullFunctor;
}
void RenderShadowCascadeTeardown::run(const render::RenderContextPointer& renderContext, const Input& input) {
RenderArgs* args = renderContext->args;
if (args->_renderMode == RenderArgs::SHADOW_RENDER_MODE && !input.selectsNothing()) {
args->popViewFrustum();
}
assert(args->hasViewFrustum());
}
void RenderShadowTeardown::run(const render::RenderContextPointer& renderContext, const Input& input) {
RenderArgs* args = renderContext->args;
if (args->_renderMode == RenderArgs::SHADOW_RENDER_MODE) {
args->popViewFrustum();
}
assert(args->hasViewFrustum());
// Reset the render args
args->_renderMode = input.get0();
}
static AABox& merge(AABox& box, const AABox& otherBox, const glm::vec3& dir) {
if (!otherBox.isInvalid()) {
int vertexIndex = 0;
vertexIndex |= ((dir.z > 0.0f) & 1) << 2;
vertexIndex |= ((dir.y > 0.0f) & 1) << 1;
vertexIndex |= ((dir.x < 0.0f) & 1);
auto vertex = otherBox.getVertex((BoxVertex)vertexIndex);
if (!box.isInvalid()) {
const auto boxCenter = box.calcCenter();
vertex -= boxCenter;
vertex = dir * glm::max(0.0f, glm::dot(vertex, dir));
vertex += boxCenter;
}
box += vertex;
}
return box;
}
void CullShadowBounds::run(const render::RenderContextPointer& renderContext, const Inputs& inputs, Outputs& outputs) {
assert(renderContext->args);
assert(renderContext->args->hasViewFrustum());
RenderArgs* args = renderContext->args;
const auto& inShapes = inputs.get0();
const auto& filter = inputs.get1();
ViewFrustumPointer antiFrustum;
auto& outShapes = outputs.edit0();
auto& outBounds = outputs.edit1();
if (!inputs[3].isNull()) {
antiFrustum = inputs.get2();
}
outShapes.clear();
outBounds = AABox();
const auto currentKeyLight = inputs.get3();
auto cullFunctor = inputs.get4();
render::CullFunctor shadowCullFunctor = [cullFunctor](const RenderArgs* args, const AABox& bounds) {
return cullFunctor(args, bounds);
};
if (!filter.selectsNothing() && currentKeyLight) {
auto& details = args->_details.edit(RenderDetails::SHADOW);
render::CullTest test(shadowCullFunctor, args, details, antiFrustum);
auto scene = args->_scene;
auto lightStage = renderContext->_scene->getStage<LightStage>();
assert(lightStage);
const auto globalLightDir = currentKeyLight->getDirection();
auto castersFilter = render::ItemFilter::Builder(filter).withShadowCaster().build();
for (auto& inItems : inShapes) {
auto key = inItems.first;
auto outItems = outShapes.find(key);
if (outItems == outShapes.end()) {
outItems = outShapes.insert(std::make_pair(key, ItemBounds{})).first;
outItems->second.reserve(inItems.second.size());
}
details._considered += (int)inItems.second.size();
if (antiFrustum == nullptr) {
for (auto& item : inItems.second) {
if (test.solidAngleTest(item.bound) && test.frustumTest(item.bound)) {
const auto shapeKey = scene->getItem(item.id).getKey();
if (castersFilter.test(shapeKey)) {
outItems->second.emplace_back(item);
outBounds += item.bound;
} else {
// Receivers are not rendered but they still increase the bounds of the shadow scene
// although only in the direction of the light direction so as to have a correct far
// distance without decreasing the near distance.
merge(outBounds, item.bound, globalLightDir);
}
}
}
} else {
for (auto& item : inItems.second) {
if (test.solidAngleTest(item.bound) && test.frustumTest(item.bound) && test.antiFrustumTest(item.bound)) {
const auto shapeKey = scene->getItem(item.id).getKey();
if (castersFilter.test(shapeKey)) {
outItems->second.emplace_back(item);
outBounds += item.bound;
} else {
// Receivers are not rendered but they still increase the bounds of the shadow scene
// although only in the direction of the light direction so as to have a correct far
// distance without decreasing the near distance.
merge(outBounds, item.bound, globalLightDir);
}
}
}
}
details._rendered += (int)outItems->second.size();
}
for (auto& items : outShapes) {
items.second.shrink_to_fit();
}
}
}