overte-JulianGro/libraries/render-utils/src/DeferredLightingEffect.cpp

751 lines
32 KiB
C++

//
// DeferredLightingEffect.cpp
// interface/src/renderer
//
// Created by Andrzej Kapolka on 9/11/14.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "DeferredLightingEffect.h"
#include <GLMHelpers.h>
#include <PathUtils.h>
#include <ViewFrustum.h>
#include <gpu/Batch.h>
#include <gpu/Context.h>
#include "StencilMaskPass.h"
#include "AbstractViewStateInterface.h"
#include "GeometryCache.h"
#include "TextureCache.h"
#include "FramebufferCache.h"
#include "deferred_light_vert.h"
#include "deferred_light_point_vert.h"
#include "deferred_light_spot_vert.h"
#include "directional_ambient_light_frag.h"
#include "directional_skybox_light_frag.h"
#include "directional_ambient_light_shadow_frag.h"
#include "directional_skybox_light_shadow_frag.h"
#include "local_lights_shading_frag.h"
#include "local_lights_drawOutline_frag.h"
using namespace render;
struct LightLocations {
int radius{ -1 };
int lightBufferUnit{ -1 };
int ambientBufferUnit { -1 };
int lightIndexBufferUnit { -1 };
int texcoordFrameTransform{ -1 };
int deferredFrameTransformBuffer{ -1 };
int subsurfaceScatteringParametersBuffer{ -1 };
int shadowTransformBuffer{ -1 };
};
enum DeferredShader_MapSlot {
DEFERRED_BUFFER_COLOR_UNIT = 0,
DEFERRED_BUFFER_NORMAL_UNIT = 1,
DEFERRED_BUFFER_EMISSIVE_UNIT = 2,
DEFERRED_BUFFER_DEPTH_UNIT = 3,
DEFERRED_BUFFER_OBSCURANCE_UNIT = 4,
SHADOW_MAP_UNIT = 5,
SKYBOX_MAP_UNIT = 6,
DEFERRED_BUFFER_LINEAR_DEPTH_UNIT,
DEFERRED_BUFFER_CURVATURE_UNIT,
DEFERRED_BUFFER_DIFFUSED_CURVATURE_UNIT,
SCATTERING_LUT_UNIT,
SCATTERING_SPECULAR_UNIT,
};
enum DeferredShader_BufferSlot {
DEFERRED_FRAME_TRANSFORM_BUFFER_SLOT = 0,
CAMERA_CORRECTION_BUFFER_SLOT,
SCATTERING_PARAMETERS_BUFFER_SLOT,
LIGHTING_MODEL_BUFFER_SLOT = render::ShapePipeline::Slot::LIGHTING_MODEL,
LIGHT_GPU_SLOT = render::ShapePipeline::Slot::LIGHT,
LIGHT_AMBIENT_SLOT,
LIGHT_INDEX_GPU_SLOT,
LIGHT_CLUSTER_GRID_FRUSTUM_GRID_SLOT,
LIGHT_CLUSTER_GRID_CLUSTER_GRID_SLOT,
LIGHT_CLUSTER_GRID_CLUSTER_CONTENT_SLOT,
};
static void loadLightProgram(const char* vertSource, const char* fragSource, bool lightVolume, gpu::PipelinePointer& program, LightLocationsPtr& locations);
void DeferredLightingEffect::init() {
_directionalAmbientSphereLightLocations = std::make_shared<LightLocations>();
_directionalSkyboxLightLocations = std::make_shared<LightLocations>();
_directionalAmbientSphereLightShadowLocations = std::make_shared<LightLocations>();
_directionalSkyboxLightShadowLocations = std::make_shared<LightLocations>();
_localLightLocations = std::make_shared<LightLocations>();
_localLightOutlineLocations = std::make_shared<LightLocations>();
loadLightProgram(deferred_light_vert, directional_ambient_light_frag, false, _directionalAmbientSphereLight, _directionalAmbientSphereLightLocations);
loadLightProgram(deferred_light_vert, directional_skybox_light_frag, false, _directionalSkyboxLight, _directionalSkyboxLightLocations);
loadLightProgram(deferred_light_vert, directional_ambient_light_shadow_frag, false, _directionalAmbientSphereLightShadow, _directionalAmbientSphereLightShadowLocations);
loadLightProgram(deferred_light_vert, directional_skybox_light_shadow_frag, false, _directionalSkyboxLightShadow, _directionalSkyboxLightShadowLocations);
loadLightProgram(deferred_light_vert, local_lights_shading_frag, true, _localLight, _localLightLocations);
loadLightProgram(deferred_light_vert, local_lights_drawOutline_frag, true, _localLightOutline, _localLightOutlineLocations);
// Light Stage and clusters
_lightStage = std::make_shared<LightStage>();
// Allocate a global light representing the Global Directional light casting shadow (the sun) and the ambient light
_allocatedLights.push_back(std::make_shared<model::Light>());
model::LightPointer lp = _allocatedLights[0];
lp->setType(model::Light::SUN);
lp->setDirection(glm::vec3(-1.0f));
lp->setColor(glm::vec3(1.0f));
lp->setIntensity(1.0f);
lp->setType(model::Light::SUN);
lp->setAmbientSpherePreset(gpu::SphericalHarmonics::Preset::OLD_TOWN_SQUARE);
// Add the global light to the light stage (for later shadow rendering)
_globalLights.push_back(_lightStage->addLight(lp));
_lightStage->addShadow(_globalLights[0]);
_backgroundStage = std::make_shared<BackgroundStage>();
auto textureCache = DependencyManager::get<TextureCache>();
{
PROFILE_RANGE(render, "Process Default Skybox");
auto textureCache = DependencyManager::get<TextureCache>();
auto skyboxUrl = PathUtils::resourcesPath().toStdString() + "images/Default-Sky-9-cubemap.ktx";
_defaultSkyboxTexture = gpu::Texture::unserialize(skyboxUrl);
_defaultSkyboxAmbientTexture = _defaultSkyboxTexture;
_defaultSkybox->setCubemap(_defaultSkyboxTexture);
}
lp->setAmbientIntensity(0.5f);
lp->setAmbientMap(_defaultSkyboxAmbientTexture);
auto irradianceSH = _defaultSkyboxAmbientTexture->getIrradiance();
if (irradianceSH) {
lp->setAmbientSphere((*irradianceSH));
}
}
void DeferredLightingEffect::setupKeyLightBatch(gpu::Batch& batch, int lightBufferUnit, int ambientBufferUnit, int skyboxCubemapUnit) {
PerformanceTimer perfTimer("DLE->setupBatch()");
model::LightPointer keySunLight;
if (_lightStage && _lightStage->_currentFrame._sunLights.size()) {
keySunLight = _lightStage->getLight(_lightStage->_currentFrame._sunLights.front());
} else {
keySunLight = _allocatedLights[_globalLights.front()];
}
model::LightPointer keyAmbiLight;
if (_lightStage && _lightStage->_currentFrame._ambientLights.size()) {
keyAmbiLight = _lightStage->getLight(_lightStage->_currentFrame._ambientLights.front());
} else {
keyAmbiLight = _allocatedLights[_globalLights.front()];
}
if (lightBufferUnit >= 0) {
batch.setUniformBuffer(lightBufferUnit, keySunLight->getLightSchemaBuffer());
}
if (ambientBufferUnit >= 0) {
batch.setUniformBuffer(ambientBufferUnit, keyAmbiLight->getAmbientSchemaBuffer());
}
if (keyAmbiLight->getAmbientMap() && (skyboxCubemapUnit >= 0)) {
batch.setResourceTexture(skyboxCubemapUnit, keyAmbiLight->getAmbientMap());
}
}
void DeferredLightingEffect::unsetKeyLightBatch(gpu::Batch& batch, int lightBufferUnit, int ambientBufferUnit, int skyboxCubemapUnit) {
if (lightBufferUnit >= 0) {
batch.setUniformBuffer(lightBufferUnit, nullptr);
}
if ((ambientBufferUnit >= 0)) {
batch.setUniformBuffer(ambientBufferUnit, nullptr);
}
if ((skyboxCubemapUnit >= 0)) {
batch.setResourceTexture(skyboxCubemapUnit, nullptr);
}
}
static gpu::ShaderPointer makeLightProgram(const char* vertSource, const char* fragSource, LightLocationsPtr& locations) {
auto VS = gpu::Shader::createVertex(std::string(vertSource));
auto PS = gpu::Shader::createPixel(std::string(fragSource));
gpu::ShaderPointer program = gpu::Shader::createProgram(VS, PS);
gpu::Shader::BindingSet slotBindings;
slotBindings.insert(gpu::Shader::Binding(std::string("colorMap"), DEFERRED_BUFFER_COLOR_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("normalMap"), DEFERRED_BUFFER_NORMAL_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("specularMap"), DEFERRED_BUFFER_EMISSIVE_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("depthMap"), DEFERRED_BUFFER_DEPTH_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("obscuranceMap"), DEFERRED_BUFFER_OBSCURANCE_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("shadowMap"), SHADOW_MAP_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("skyboxMap"), SKYBOX_MAP_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("linearZeyeMap"), DEFERRED_BUFFER_LINEAR_DEPTH_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("curvatureMap"), DEFERRED_BUFFER_CURVATURE_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("diffusedCurvatureMap"), DEFERRED_BUFFER_DIFFUSED_CURVATURE_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("scatteringLUT"), SCATTERING_LUT_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("scatteringSpecularBeckmann"), SCATTERING_SPECULAR_UNIT));
slotBindings.insert(gpu::Shader::Binding(std::string("cameraCorrectionBuffer"), CAMERA_CORRECTION_BUFFER_SLOT));
slotBindings.insert(gpu::Shader::Binding(std::string("deferredFrameTransformBuffer"), DEFERRED_FRAME_TRANSFORM_BUFFER_SLOT));
slotBindings.insert(gpu::Shader::Binding(std::string("lightingModelBuffer"), LIGHTING_MODEL_BUFFER_SLOT));
slotBindings.insert(gpu::Shader::Binding(std::string("subsurfaceScatteringParametersBuffer"), SCATTERING_PARAMETERS_BUFFER_SLOT));
slotBindings.insert(gpu::Shader::Binding(std::string("lightBuffer"), LIGHT_GPU_SLOT));
slotBindings.insert(gpu::Shader::Binding(std::string("lightAmbientBuffer"), LIGHT_AMBIENT_SLOT));
slotBindings.insert(gpu::Shader::Binding(std::string("lightIndexBuffer"), LIGHT_INDEX_GPU_SLOT));
slotBindings.insert(gpu::Shader::Binding(std::string("frustumGridBuffer"), LIGHT_CLUSTER_GRID_FRUSTUM_GRID_SLOT));
slotBindings.insert(gpu::Shader::Binding(std::string("clusterGridBuffer"), LIGHT_CLUSTER_GRID_CLUSTER_GRID_SLOT));
slotBindings.insert(gpu::Shader::Binding(std::string("clusterContentBuffer"), LIGHT_CLUSTER_GRID_CLUSTER_CONTENT_SLOT));
gpu::Shader::makeProgram(*program, slotBindings);
locations->radius = program->getUniforms().findLocation("radius");
locations->texcoordFrameTransform = program->getUniforms().findLocation("texcoordFrameTransform");
locations->lightBufferUnit = program->getUniformBuffers().findLocation("lightBuffer");
locations->ambientBufferUnit = program->getUniformBuffers().findLocation("lightAmbientBuffer");
locations->lightIndexBufferUnit = program->getUniformBuffers().findLocation("lightIndexBuffer");
locations->deferredFrameTransformBuffer = program->getUniformBuffers().findLocation("deferredFrameTransformBuffer");
locations->subsurfaceScatteringParametersBuffer = program->getUniformBuffers().findLocation("subsurfaceScatteringParametersBuffer");
locations->shadowTransformBuffer = program->getUniformBuffers().findLocation("shadowTransformBuffer");
return program;
}
static void loadLightProgram(const char* vertSource, const char* fragSource, bool lightVolume, gpu::PipelinePointer& pipeline, LightLocationsPtr& locations) {
gpu::ShaderPointer program = makeLightProgram(vertSource, fragSource, locations);
auto state = std::make_shared<gpu::State>();
state->setColorWriteMask(true, true, true, false);
if (lightVolume) {
PrepareStencil::testShape(*state);
state->setCullMode(gpu::State::CULL_BACK);
// state->setCullMode(gpu::State::CULL_FRONT);
// state->setDepthTest(true, false, gpu::GREATER_EQUAL);
//state->setDepthClampEnable(true);
// TODO: We should use DepthClamp and avoid changing geometry for inside /outside cases
// additive blending
state->setBlendFunction(true, gpu::State::ONE, gpu::State::BLEND_OP_ADD, gpu::State::ONE);
} else {
// Stencil test all the light passes for objects pixels only, not the background
PrepareStencil::testShape(*state);
state->setCullMode(gpu::State::CULL_BACK);
// additive blending
state->setBlendFunction(true, gpu::State::ONE, gpu::State::BLEND_OP_ADD, gpu::State::ONE);
}
pipeline = gpu::Pipeline::create(program, state);
}
void DeferredLightingEffect::setGlobalLight(const model::LightPointer& light) {
/* auto globalLight = _allocatedLights.front();
globalLight->setDirection(light->getDirection());
globalLight->setColor(light->getColor());
globalLight->setIntensity(light->getIntensity());
globalLight->setAmbientIntensity(light->getAmbientIntensity());
globalLight->setAmbientSphere(light->getAmbientSphere());
globalLight->setAmbientMap(light->getAmbientMap());*/
}
const model::LightPointer& DeferredLightingEffect::getGlobalLight() const {
return _allocatedLights.front();
}
#include <shared/Shapes.h>
model::MeshPointer DeferredLightingEffect::getPointLightMesh() {
if (!_pointLightMesh) {
_pointLightMesh = std::make_shared<model::Mesh>();
// let's use a icosahedron
auto solid = geometry::icosahedron();
solid.fitDimension(1.05f); // scaled to 1.05 meters, it will be scaled by the shader accordingly to the light size
int verticesSize = (int) (solid.vertices.size() * 3 * sizeof(float));
float* vertexData = (float*) solid.vertices.data();
_pointLightMesh->setVertexBuffer(gpu::BufferView(new gpu::Buffer(verticesSize, (gpu::Byte*) vertexData), gpu::Element::VEC3F_XYZ));
int nbIndices = (int) solid.faces.size() * 3;
gpu::uint16* indexData = new gpu::uint16[nbIndices];
gpu::uint16* index = indexData;
for (auto face : solid.faces) {
*(index++) = face[0];
*(index++) = face[1];
*(index++) = face[2];
}
_pointLightMesh->setIndexBuffer(gpu::BufferView(new gpu::Buffer(sizeof(unsigned short) * nbIndices, (gpu::Byte*) indexData), gpu::Element::INDEX_UINT16));
delete[] indexData;
std::vector<model::Mesh::Part> parts;
parts.push_back(model::Mesh::Part(0, nbIndices, 0, model::Mesh::TRIANGLES));
parts.push_back(model::Mesh::Part(0, nbIndices, 0, model::Mesh::LINE_STRIP)); // outline version
_pointLightMesh->setPartBuffer(gpu::BufferView(new gpu::Buffer(parts.size() * sizeof(model::Mesh::Part), (gpu::Byte*) parts.data()), gpu::Element::PART_DRAWCALL));
}
return _pointLightMesh;
}
model::MeshPointer DeferredLightingEffect::getSpotLightMesh() {
if (!_spotLightMesh) {
_spotLightMesh = std::make_shared<model::Mesh>();
int slices = 16;
int rings = 3;
int vertices = 2 + rings * slices;
int originVertex = vertices - 2;
int capVertex = vertices - 1;
int verticesSize = vertices * 3 * sizeof(float);
int indices = 3 * slices * (1 + 1 + 2 * (rings -1));
int ringFloatOffset = slices * 3;
float* vertexData = new float[verticesSize];
float* vertexRing0 = vertexData;
float* vertexRing1 = vertexRing0 + ringFloatOffset;
float* vertexRing2 = vertexRing1 + ringFloatOffset;
for (int i = 0; i < slices; i++) {
float theta = TWO_PI * i / slices;
auto cosin = glm::vec2(cosf(theta), sinf(theta));
*(vertexRing0++) = cosin.x;
*(vertexRing0++) = cosin.y;
*(vertexRing0++) = 0.0f;
*(vertexRing1++) = cosin.x;
*(vertexRing1++) = cosin.y;
*(vertexRing1++) = 0.33f;
*(vertexRing2++) = cosin.x;
*(vertexRing2++) = cosin.y;
*(vertexRing2++) = 0.66f;
}
*(vertexRing2++) = 0.0f;
*(vertexRing2++) = 0.0f;
*(vertexRing2++) = -1.0f;
*(vertexRing2++) = 0.0f;
*(vertexRing2++) = 0.0f;
*(vertexRing2++) = 1.0f;
_spotLightMesh->setVertexBuffer(gpu::BufferView(new gpu::Buffer(verticesSize, (gpu::Byte*) vertexData), gpu::Element::VEC3F_XYZ));
delete[] vertexData;
gpu::uint16* indexData = new gpu::uint16[indices];
gpu::uint16* index = indexData;
for (int i = 0; i < slices; i++) {
*(index++) = originVertex;
int s0 = i;
int s1 = ((i + 1) % slices);
*(index++) = s0;
*(index++) = s1;
int s2 = s0 + slices;
int s3 = s1 + slices;
*(index++) = s1;
*(index++) = s0;
*(index++) = s2;
*(index++) = s1;
*(index++) = s2;
*(index++) = s3;
int s4 = s2 + slices;
int s5 = s3 + slices;
*(index++) = s3;
*(index++) = s2;
*(index++) = s4;
*(index++) = s3;
*(index++) = s4;
*(index++) = s5;
*(index++) = s5;
*(index++) = s4;
*(index++) = capVertex;
}
_spotLightMesh->setIndexBuffer(gpu::BufferView(new gpu::Buffer(sizeof(unsigned short) * indices, (gpu::Byte*) indexData), gpu::Element::INDEX_UINT16));
delete[] indexData;
std::vector<model::Mesh::Part> parts;
parts.push_back(model::Mesh::Part(0, indices, 0, model::Mesh::TRIANGLES));
parts.push_back(model::Mesh::Part(0, indices, 0, model::Mesh::LINE_STRIP)); // outline version
_spotLightMesh->setPartBuffer(gpu::BufferView(new gpu::Buffer(parts.size() * sizeof(model::Mesh::Part), (gpu::Byte*) parts.data()), gpu::Element::PART_DRAWCALL));
}
return _spotLightMesh;
}
void PreparePrimaryFramebuffer::run(const RenderContextPointer& renderContext, gpu::FramebufferPointer& primaryFramebuffer) {
glm::uvec2 frameSize(renderContext->args->_viewport.z, renderContext->args->_viewport.w);
// Resizing framebuffers instead of re-building them seems to cause issues with threaded
// rendering
if (_primaryFramebuffer && _primaryFramebuffer->getSize() != frameSize) {
_primaryFramebuffer.reset();
}
if (!_primaryFramebuffer) {
_primaryFramebuffer = gpu::FramebufferPointer(gpu::Framebuffer::create("deferredPrimary"));
auto colorFormat = gpu::Element::COLOR_SRGBA_32;
auto defaultSampler = gpu::Sampler(gpu::Sampler::FILTER_MIN_MAG_POINT);
auto primaryColorTexture = gpu::Texture::createRenderBuffer(colorFormat, frameSize.x, frameSize.y, gpu::Texture::SINGLE_MIP, defaultSampler);
_primaryFramebuffer->setRenderBuffer(0, primaryColorTexture);
auto depthFormat = gpu::Element(gpu::SCALAR, gpu::UINT32, gpu::DEPTH_STENCIL); // Depth24_Stencil8 texel format
auto primaryDepthTexture = gpu::Texture::createRenderBuffer(depthFormat, frameSize.x, frameSize.y, gpu::Texture::SINGLE_MIP, defaultSampler);
_primaryFramebuffer->setDepthStencilBuffer(primaryDepthTexture, depthFormat);
}
primaryFramebuffer = _primaryFramebuffer;
}
void PrepareDeferred::run(const RenderContextPointer& renderContext, const Inputs& inputs, Outputs& outputs) {
auto args = renderContext->args;
auto primaryFramebuffer = inputs.get0();
auto lightingModel = inputs.get1();
if (!_deferredFramebuffer) {
_deferredFramebuffer = std::make_shared<DeferredFramebuffer>();
}
_deferredFramebuffer->updatePrimaryDepth(primaryFramebuffer->getDepthStencilBuffer());
outputs.edit0() = _deferredFramebuffer;
outputs.edit1() = _deferredFramebuffer->getLightingFramebuffer();
gpu::doInBatch(args->_context, [&](gpu::Batch& batch) {
batch.enableStereo(false);
batch.setViewportTransform(args->_viewport);
batch.setStateScissorRect(args->_viewport);
// Clear deferred
auto deferredFbo = _deferredFramebuffer->getDeferredFramebuffer();
batch.setFramebuffer(deferredFbo);
// Clear Color, Depth and Stencil for deferred buffer
batch.clearFramebuffer(
gpu::Framebuffer::BUFFER_COLOR0 | gpu::Framebuffer::BUFFER_COLOR1 | gpu::Framebuffer::BUFFER_COLOR2 | gpu::Framebuffer::BUFFER_COLOR3 |
gpu::Framebuffer::BUFFER_DEPTH |
gpu::Framebuffer::BUFFER_STENCIL,
vec4(vec3(0), 0), 1.0, 1, true);
// For the rest of the rendering, bind the lighting model
batch.setUniformBuffer(LIGHTING_MODEL_BUFFER_SLOT, lightingModel->getParametersBuffer());
});
// Prepare a fresh Light Frame
auto deferredLightingEffect = DependencyManager::get<DeferredLightingEffect>();
deferredLightingEffect->getLightStage()->_currentFrame.clear();
}
void RenderDeferredSetup::run(const render::RenderContextPointer& renderContext,
const DeferredFrameTransformPointer& frameTransform,
const DeferredFramebufferPointer& deferredFramebuffer,
const LightingModelPointer& lightingModel,
const SurfaceGeometryFramebufferPointer& surfaceGeometryFramebuffer,
const AmbientOcclusionFramebufferPointer& ambientOcclusionFramebuffer,
const SubsurfaceScatteringResourcePointer& subsurfaceScatteringResource) {
auto args = renderContext->args;
auto& batch = (*args->_batch);
{
// Framebuffer copy operations cannot function as multipass stereo operations.
batch.enableStereo(false);
auto textureCache = DependencyManager::get<TextureCache>();
auto deferredLightingEffect = DependencyManager::get<DeferredLightingEffect>();
// binding the first framebuffer
auto lightingFBO = deferredFramebuffer->getLightingFramebuffer();
batch.setFramebuffer(lightingFBO);
batch.setViewportTransform(args->_viewport);
batch.setStateScissorRect(args->_viewport);
// Bind the G-Buffer surfaces
batch.setResourceTexture(DEFERRED_BUFFER_COLOR_UNIT, deferredFramebuffer->getDeferredColorTexture());
batch.setResourceTexture(DEFERRED_BUFFER_NORMAL_UNIT, deferredFramebuffer->getDeferredNormalTexture());
batch.setResourceTexture(DEFERRED_BUFFER_EMISSIVE_UNIT, deferredFramebuffer->getDeferredSpecularTexture());
batch.setResourceTexture(DEFERRED_BUFFER_DEPTH_UNIT, deferredFramebuffer->getPrimaryDepthTexture());
// FIXME: Different render modes should have different tasks
if (args->_renderMode == RenderArgs::DEFAULT_RENDER_MODE && deferredLightingEffect->isAmbientOcclusionEnabled()) {
batch.setResourceTexture(DEFERRED_BUFFER_OBSCURANCE_UNIT, ambientOcclusionFramebuffer->getOcclusionTexture());
} else {
// need to assign the white texture if ao is off
batch.setResourceTexture(DEFERRED_BUFFER_OBSCURANCE_UNIT, textureCache->getWhiteTexture());
}
// The Deferred Frame Transform buffer
batch.setUniformBuffer(DEFERRED_FRAME_TRANSFORM_BUFFER_SLOT, frameTransform->getFrameTransformBuffer());
// THe lighting model
batch.setUniformBuffer(LIGHTING_MODEL_BUFFER_SLOT, lightingModel->getParametersBuffer());
// Subsurface scattering specific
if (surfaceGeometryFramebuffer) {
batch.setResourceTexture(DEFERRED_BUFFER_LINEAR_DEPTH_UNIT, surfaceGeometryFramebuffer->getLinearDepthTexture());
batch.setResourceTexture(DEFERRED_BUFFER_CURVATURE_UNIT, surfaceGeometryFramebuffer->getCurvatureTexture());
batch.setResourceTexture(DEFERRED_BUFFER_DIFFUSED_CURVATURE_UNIT, surfaceGeometryFramebuffer->getLowCurvatureTexture());
}
if (subsurfaceScatteringResource) {
batch.setUniformBuffer(SCATTERING_PARAMETERS_BUFFER_SLOT, subsurfaceScatteringResource->getParametersBuffer());
batch.setResourceTexture(SCATTERING_LUT_UNIT, subsurfaceScatteringResource->getScatteringTable());
batch.setResourceTexture(SCATTERING_SPECULAR_UNIT, subsurfaceScatteringResource->getScatteringSpecular());
}
// Global directional light and ambient pass
assert(deferredLightingEffect->getLightStage()->getNumLights() > 0);
auto lightAndShadow = deferredLightingEffect->getLightStage()->getLightAndShadow(0);
const auto& globalShadow = lightAndShadow.second;
// Bind the shadow buffer
if (globalShadow) {
batch.setResourceTexture(SHADOW_MAP_UNIT, globalShadow->map);
}
auto& program = deferredLightingEffect->_directionalSkyboxLight;
LightLocationsPtr locations = deferredLightingEffect->_directionalSkyboxLightLocations;
const auto& keyLight = deferredLightingEffect->_allocatedLights[deferredLightingEffect->_globalLights.front()];
// Setup the global directional pass pipeline
{
if (deferredLightingEffect->_shadowMapEnabled) {
// If the keylight has an ambient Map then use the Skybox version of the pass
// otherwise use the ambient sphere version
if (keyLight->getAmbientMap()) {
program = deferredLightingEffect->_directionalSkyboxLightShadow;
locations = deferredLightingEffect->_directionalSkyboxLightShadowLocations;
} else {
program = deferredLightingEffect->_directionalAmbientSphereLightShadow;
locations = deferredLightingEffect->_directionalAmbientSphereLightShadowLocations;
}
} else {
// If the keylight has an ambient Map then use the Skybox version of the pass
// otherwise use the ambient sphere version
if (keyLight->getAmbientMap()) {
program = deferredLightingEffect->_directionalSkyboxLight;
locations = deferredLightingEffect->_directionalSkyboxLightLocations;
} else {
program = deferredLightingEffect->_directionalAmbientSphereLight;
locations = deferredLightingEffect->_directionalAmbientSphereLightLocations;
}
}
if (locations->shadowTransformBuffer >= 0) {
if (globalShadow) {
batch.setUniformBuffer(locations->shadowTransformBuffer, globalShadow->getBuffer());
}
}
batch.setPipeline(program);
}
// Adjust the texcoordTransform in the case we are rendeirng a sub region(mini mirror)
auto textureFrameTransform = gpu::Framebuffer::evalSubregionTexcoordTransformCoefficients(deferredFramebuffer->getFrameSize(), args->_viewport);
batch._glUniform4fv(locations->texcoordFrameTransform, 1, reinterpret_cast< const float* >(&textureFrameTransform));
// Setup the global lighting
deferredLightingEffect->setupKeyLightBatch(batch, locations->lightBufferUnit, locations->ambientBufferUnit, SKYBOX_MAP_UNIT);
batch.draw(gpu::TRIANGLE_STRIP, 4);
deferredLightingEffect->unsetKeyLightBatch(batch, locations->lightBufferUnit, locations->ambientBufferUnit, SKYBOX_MAP_UNIT);
batch.setResourceTexture(SHADOW_MAP_UNIT, nullptr);
}
}
RenderDeferredLocals::RenderDeferredLocals() :
_localLightsBuffer(std::make_shared<gpu::Buffer>()) {
}
void RenderDeferredLocals::run(const render::RenderContextPointer& renderContext,
const DeferredFrameTransformPointer& frameTransform,
const DeferredFramebufferPointer& deferredFramebuffer,
const LightingModelPointer& lightingModel,
const SurfaceGeometryFramebufferPointer& surfaceGeometryFramebuffer, const LightClustersPointer& lightClusters) {
bool points = lightingModel->isPointLightEnabled();
bool spots = lightingModel->isSpotLightEnabled();
if (!points && !spots) {
return;
}
auto args = renderContext->args;
auto& batch = (*args->_batch);
{
// THe main viewport is assumed to be the mono viewport (or the 2 stereo faces side by side within that viewport)
auto viewport = args->_viewport;
// The view frustum is the mono frustum base
auto viewFrustum = args->getViewFrustum();
// Eval the mono projection
mat4 projMat;
viewFrustum.evalProjectionMatrix(projMat);
// The view transform
Transform viewTransform;
viewFrustum.evalViewTransform(viewTransform);
auto deferredLightingEffect = DependencyManager::get<DeferredLightingEffect>();
// Render in this viewport
batch.setViewportTransform(viewport);
batch.setStateScissorRect(viewport);
auto textureFrameTransform = gpu::Framebuffer::evalSubregionTexcoordTransformCoefficients(deferredFramebuffer->getFrameSize(), viewport);
auto& lightIndices = lightClusters->_visibleLightIndices;
if (!lightIndices.empty() && lightIndices[0] > 0) {
// Bind the global list of lights and the visible lights this frame
batch.setUniformBuffer(deferredLightingEffect->_localLightLocations->lightBufferUnit, lightClusters->_lightStage->_lightArrayBuffer);
batch.setUniformBuffer(LIGHT_CLUSTER_GRID_FRUSTUM_GRID_SLOT, lightClusters->_frustumGridBuffer);
batch.setUniformBuffer(LIGHT_CLUSTER_GRID_CLUSTER_GRID_SLOT, lightClusters->_clusterGridBuffer);
batch.setUniformBuffer(LIGHT_CLUSTER_GRID_CLUSTER_CONTENT_SLOT, lightClusters->_clusterContentBuffer);
// Local light pipeline
batch.setPipeline(deferredLightingEffect->_localLight);
batch._glUniform4fv(deferredLightingEffect->_localLightLocations->texcoordFrameTransform, 1, reinterpret_cast<const float*>(&textureFrameTransform));
batch.draw(gpu::TRIANGLE_STRIP, 4);
// Draw outline as well ?
if (lightingModel->isShowLightContourEnabled()) {
batch.setPipeline(deferredLightingEffect->_localLightOutline);
batch._glUniform4fv(deferredLightingEffect->_localLightOutlineLocations->texcoordFrameTransform, 1, reinterpret_cast<const float*>(&textureFrameTransform));
batch.draw(gpu::TRIANGLE_STRIP, 4);
}
}
}
}
void RenderDeferredCleanup::run(const render::RenderContextPointer& renderContext) {
auto args = renderContext->args;
auto& batch = (*args->_batch);
{
// Probably not necessary in the long run because the gpu layer would unbound this texture if used as render target
batch.setResourceTexture(DEFERRED_BUFFER_COLOR_UNIT, nullptr);
batch.setResourceTexture(DEFERRED_BUFFER_NORMAL_UNIT, nullptr);
batch.setResourceTexture(DEFERRED_BUFFER_EMISSIVE_UNIT, nullptr);
batch.setResourceTexture(DEFERRED_BUFFER_DEPTH_UNIT, nullptr);
batch.setResourceTexture(DEFERRED_BUFFER_OBSCURANCE_UNIT, nullptr);
batch.setResourceTexture(DEFERRED_BUFFER_LINEAR_DEPTH_UNIT, nullptr);
batch.setResourceTexture(DEFERRED_BUFFER_CURVATURE_UNIT, nullptr);
batch.setResourceTexture(DEFERRED_BUFFER_DIFFUSED_CURVATURE_UNIT, nullptr);
batch.setResourceTexture(SCATTERING_LUT_UNIT, nullptr);
batch.setResourceTexture(SCATTERING_SPECULAR_UNIT, nullptr);
batch.setUniformBuffer(SCATTERING_PARAMETERS_BUFFER_SLOT, nullptr);
// batch.setUniformBuffer(LIGHTING_MODEL_BUFFER_SLOT, nullptr);
batch.setUniformBuffer(DEFERRED_FRAME_TRANSFORM_BUFFER_SLOT, nullptr);
batch.setUniformBuffer(LIGHT_CLUSTER_GRID_FRUSTUM_GRID_SLOT, nullptr);
batch.setUniformBuffer(LIGHT_CLUSTER_GRID_CLUSTER_GRID_SLOT, nullptr);
batch.setUniformBuffer(LIGHT_CLUSTER_GRID_CLUSTER_CONTENT_SLOT, nullptr);
}
}
RenderDeferred::RenderDeferred() {
}
void RenderDeferred::configure(const Config& config) {
}
void RenderDeferred::run(const RenderContextPointer& renderContext, const Inputs& inputs) {
PROFILE_RANGE(render, "DeferredLighting");
auto deferredTransform = inputs.get0();
auto deferredFramebuffer = inputs.get1();
auto lightingModel = inputs.get2();
auto surfaceGeometryFramebuffer = inputs.get3();
auto ssaoFramebuffer = inputs.get4();
auto subsurfaceScatteringResource = inputs.get5();
auto lightClusters = inputs.get6();
auto args = renderContext->args;
if (!_gpuTimer) {
_gpuTimer = std::make_shared < gpu::RangeTimer>(__FUNCTION__);
}
auto previousBatch = args->_batch;
gpu::Batch batch;
args->_batch = &batch;
_gpuTimer->begin(batch);
setupJob.run(renderContext, deferredTransform, deferredFramebuffer, lightingModel, surfaceGeometryFramebuffer, ssaoFramebuffer, subsurfaceScatteringResource);
lightsJob.run(renderContext, deferredTransform, deferredFramebuffer, lightingModel, surfaceGeometryFramebuffer, lightClusters);
cleanupJob.run(renderContext);
_gpuTimer->end(batch);
args->_context->appendFrameBatch(batch);
args->_batch = previousBatch;
auto config = std::static_pointer_cast<Config>(renderContext->jobConfig);
config->setGPUBatchRunTime(_gpuTimer->getGPUAverage(), _gpuTimer->getBatchAverage());
}