overte-JulianGro/interface/src/avatar/SkeletonModel.cpp
2014-06-23 12:59:38 -07:00

767 lines
31 KiB
C++

//
// SkeletonModel.cpp
// interface/src/avatar
//
// Created by Andrzej Kapolka on 10/17/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <glm/gtx/transform.hpp>
#include <VerletCapsuleShape.h>
#include <VerletSphereShape.h>
#include "Application.h"
#include "Avatar.h"
#include "Hand.h"
#include "Menu.h"
#include "SkeletonModel.h"
SkeletonModel::SkeletonModel(Avatar* owningAvatar, QObject* parent) :
Model(parent),
Ragdoll(),
_owningAvatar(owningAvatar),
_boundingShape(),
_boundingShapeLocalOffset(0.0f) {
}
void SkeletonModel::setJointStates(QVector<JointState> states) {
Model::setJointStates(states);
// the SkeletonModel override of updateJointState() will clear the translation part
// of its root joint and we need that done before we try to build shapes hence we
// recompute all joint transforms at this time.
for (int i = 0; i < _jointStates.size(); i++) {
updateJointState(i);
}
clearShapes();
clearRagdollConstraintsAndPoints();
if (_enableShapes) {
buildShapes();
}
}
const float PALM_PRIORITY = 3.0f;
void SkeletonModel::simulate(float deltaTime, bool fullUpdate) {
setTranslation(_owningAvatar->getPosition());
setRotation(_owningAvatar->getOrientation() * glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f)));
const float MODEL_SCALE = 0.0006f;
setScale(glm::vec3(1.0f, 1.0f, 1.0f) * _owningAvatar->getScale() * MODEL_SCALE);
Model::simulate(deltaTime, fullUpdate);
if (!(isActive() && _owningAvatar->isMyAvatar())) {
return; // only simulate for own avatar
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
PrioVR* prioVR = Application::getInstance()->getPrioVR();
if (prioVR->isActive()) {
for (int i = 0; i < prioVR->getJointRotations().size(); i++) {
int humanIKJointIndex = prioVR->getHumanIKJointIndices().at(i);
if (humanIKJointIndex == -1) {
continue;
}
int jointIndex = geometry.humanIKJointIndices.at(humanIKJointIndex);
if (jointIndex != -1) {
JointState& state = _jointStates[jointIndex];
state.setRotationFromBindFrame(prioVR->getJointRotations().at(i), PALM_PRIORITY);
}
}
return;
}
// find the left and rightmost active palms
int leftPalmIndex, rightPalmIndex;
Hand* hand = _owningAvatar->getHand();
hand->getLeftRightPalmIndices(leftPalmIndex, rightPalmIndex);
const float HAND_RESTORATION_RATE = 0.25f;
if (leftPalmIndex == -1 || rightPalmIndex == -1) {
// palms are not yet set, use mouse
if (_owningAvatar->getHandState() == HAND_STATE_NULL) {
restoreRightHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
} else {
// transform into model-frame
glm::vec3 handPosition = glm::inverse(_rotation) * (_owningAvatar->getHandPosition() - _translation);
applyHandPosition(geometry.rightHandJointIndex, handPosition);
}
restoreLeftHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
} else if (leftPalmIndex == rightPalmIndex) {
// right hand only
applyPalmData(geometry.rightHandJointIndex, hand->getPalms()[leftPalmIndex]);
restoreLeftHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
} else {
applyPalmData(geometry.leftHandJointIndex, hand->getPalms()[leftPalmIndex]);
applyPalmData(geometry.rightHandJointIndex, hand->getPalms()[rightPalmIndex]);
}
_boundingShape.setTranslation(_translation + _rotation * _boundingShapeLocalOffset);
_boundingShape.setRotation(_rotation);
}
void SkeletonModel::getHandShapes(int jointIndex, QVector<const Shape*>& shapes) const {
if (jointIndex < 0 || jointIndex >= int(_shapes.size())) {
return;
}
if (jointIndex == getLeftHandJointIndex()
|| jointIndex == getRightHandJointIndex()) {
// get all shapes that have this hand as an ancestor in the skeleton heirarchy
const FBXGeometry& geometry = _geometry->getFBXGeometry();
for (int i = 0; i < _jointStates.size(); i++) {
const FBXJoint& joint = geometry.joints[i];
int parentIndex = joint.parentIndex;
Shape* shape = _shapes[i];
if (i == jointIndex) {
// this shape is the hand
if (shape) {
shapes.push_back(shape);
}
if (parentIndex != -1 && _shapes[parentIndex]) {
// also add the forearm
shapes.push_back(_shapes[parentIndex]);
}
} else if (shape) {
while (parentIndex != -1) {
if (parentIndex == jointIndex) {
// this shape is a child of the hand
shapes.push_back(shape);
break;
}
parentIndex = geometry.joints[parentIndex].parentIndex;
}
}
}
}
}
void SkeletonModel::getBodyShapes(QVector<const Shape*>& shapes) const {
// for now we push a single bounding shape,
// but later we could push a subset of joint shapes
shapes.push_back(&_boundingShape);
}
void SkeletonModel::renderIKConstraints() {
renderJointConstraints(getRightHandJointIndex());
renderJointConstraints(getLeftHandJointIndex());
//if (isActive() && _owningAvatar->isMyAvatar()) {
// renderRagdoll();
//}
}
class IndexValue {
public:
int index;
float value;
};
bool operator<(const IndexValue& firstIndex, const IndexValue& secondIndex) {
return firstIndex.value < secondIndex.value;
}
void SkeletonModel::applyHandPosition(int jointIndex, const glm::vec3& position) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return;
}
// NOTE: 'position' is in model-frame
setJointPosition(jointIndex, position, glm::quat(), false, -1, false, glm::vec3(0.0f, -1.0f, 0.0f), PALM_PRIORITY);
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::vec3 handPosition, elbowPosition;
getJointPosition(jointIndex, handPosition);
getJointPosition(geometry.joints.at(jointIndex).parentIndex, elbowPosition);
glm::vec3 forearmVector = handPosition - elbowPosition;
float forearmLength = glm::length(forearmVector);
if (forearmLength < EPSILON) {
return;
}
JointState& state = _jointStates[jointIndex];
glm::quat handRotation = state.getRotation();
// align hand with forearm
float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f;
state.applyRotationDelta(rotationBetween(handRotation * glm::vec3(-sign, 0.0f, 0.0f), forearmVector), true, PALM_PRIORITY);
}
void SkeletonModel::applyPalmData(int jointIndex, PalmData& palm) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f;
int parentJointIndex = geometry.joints.at(jointIndex).parentIndex;
if (parentJointIndex == -1) {
return;
}
// rotate palm to align with its normal (normal points out of hand's palm)
glm::quat inverseRotation = glm::inverse(_rotation);
glm::vec3 palmPosition = inverseRotation * (palm.getPosition() - _translation);
glm::vec3 palmNormal = inverseRotation * palm.getNormal();
glm::vec3 fingerDirection = inverseRotation * palm.getFingerDirection();
glm::quat palmRotation = rotationBetween(geometry.palmDirection, palmNormal);
palmRotation = rotationBetween(palmRotation * glm::vec3(-sign, 0.0f, 0.0f), fingerDirection) * palmRotation;
if (Menu::getInstance()->isOptionChecked(MenuOption::AlternateIK)) {
setHandPosition(jointIndex, palmPosition, palmRotation);
} else if (Menu::getInstance()->isOptionChecked(MenuOption::AlignForearmsWithWrists)) {
float forearmLength = geometry.joints.at(jointIndex).distanceToParent * extractUniformScale(_scale);
glm::vec3 forearm = palmRotation * glm::vec3(sign * forearmLength, 0.0f, 0.0f);
setJointPosition(parentJointIndex, palmPosition + forearm,
glm::quat(), false, -1, false, glm::vec3(0.0f, -1.0f, 0.0f), PALM_PRIORITY);
JointState& parentState = _jointStates[parentJointIndex];
parentState.setRotationFromBindFrame(palmRotation, PALM_PRIORITY);
// lock hand to forearm by slamming its rotation (in parent-frame) to identity
_jointStates[jointIndex]._rotationInParentFrame = glm::quat();
} else {
setJointPosition(jointIndex, palmPosition, palmRotation,
true, -1, false, glm::vec3(0.0f, -1.0f, 0.0f), PALM_PRIORITY);
}
}
void SkeletonModel::updateJointState(int index) {
JointState& state = _jointStates[index];
const FBXJoint& joint = state.getFBXJoint();
if (joint.parentIndex != -1) {
const JointState& parentState = _jointStates.at(joint.parentIndex);
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (index == geometry.leanJointIndex) {
maybeUpdateLeanRotation(parentState, joint, state);
} else if (index == geometry.neckJointIndex) {
maybeUpdateNeckRotation(parentState, joint, state);
} else if (index == geometry.leftEyeJointIndex || index == geometry.rightEyeJointIndex) {
maybeUpdateEyeRotation(parentState, joint, state);
}
}
Model::updateJointState(index);
if (index == _geometry->getFBXGeometry().rootJointIndex) {
state.clearTransformTranslation();
}
}
void SkeletonModel::maybeUpdateLeanRotation(const JointState& parentState, const FBXJoint& joint, JointState& state) {
if (!_owningAvatar->isMyAvatar() || Application::getInstance()->getPrioVR()->isActive()) {
return;
}
// get the rotation axes in joint space and use them to adjust the rotation
glm::mat3 axes = glm::mat3_cast(glm::quat());
glm::mat3 inverse = glm::mat3(glm::inverse(parentState.getTransform() * glm::translate(state.getDefaultTranslationInParentFrame()) *
joint.preTransform * glm::mat4_cast(joint.preRotation * joint.rotation)));
state._rotationInParentFrame = glm::angleAxis(- RADIANS_PER_DEGREE * _owningAvatar->getHead()->getFinalLeanSideways(),
glm::normalize(inverse * axes[2])) * glm::angleAxis(- RADIANS_PER_DEGREE * _owningAvatar->getHead()->getFinalLeanForward(),
glm::normalize(inverse * axes[0])) * joint.rotation;
}
void SkeletonModel::maybeUpdateNeckRotation(const JointState& parentState, const FBXJoint& joint, JointState& state) {
_owningAvatar->getHead()->getFaceModel().maybeUpdateNeckRotation(parentState, joint, state);
}
void SkeletonModel::maybeUpdateEyeRotation(const JointState& parentState, const FBXJoint& joint, JointState& state) {
_owningAvatar->getHead()->getFaceModel().maybeUpdateEyeRotation(parentState, joint, state);
}
void SkeletonModel::renderJointConstraints(int jointIndex) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
const float BASE_DIRECTION_SIZE = 300.0f;
float directionSize = BASE_DIRECTION_SIZE * extractUniformScale(_scale);
glLineWidth(3.0f);
do {
const FBXJoint& joint = geometry.joints.at(jointIndex);
const JointState& jointState = _jointStates.at(jointIndex);
glm::vec3 position = _rotation * jointState.getPosition() + _translation;
glPushMatrix();
glTranslatef(position.x, position.y, position.z);
glm::quat parentRotation = (joint.parentIndex == -1) ? _rotation : _rotation * _jointStates.at(joint.parentIndex).getRotation();
glm::vec3 rotationAxis = glm::axis(parentRotation);
glRotatef(glm::degrees(glm::angle(parentRotation)), rotationAxis.x, rotationAxis.y, rotationAxis.z);
float fanScale = directionSize * 0.75f;
glScalef(fanScale, fanScale, fanScale);
const int AXIS_COUNT = 3;
for (int i = 0; i < AXIS_COUNT; i++) {
if (joint.rotationMin[i] <= -PI + EPSILON && joint.rotationMax[i] >= PI - EPSILON) {
continue; // unconstrained
}
glm::vec3 axis;
axis[i] = 1.0f;
glm::vec3 otherAxis;
if (i == 0) {
otherAxis.y = 1.0f;
} else {
otherAxis.x = 1.0f;
}
glColor4f(otherAxis.r, otherAxis.g, otherAxis.b, 0.75f);
glBegin(GL_TRIANGLE_FAN);
glVertex3f(0.0f, 0.0f, 0.0f);
const int FAN_SEGMENTS = 16;
for (int j = 0; j < FAN_SEGMENTS; j++) {
glm::vec3 rotated = glm::angleAxis(glm::mix(joint.rotationMin[i], joint.rotationMax[i],
(float)j / (FAN_SEGMENTS - 1)), axis) * otherAxis;
glVertex3f(rotated.x, rotated.y, rotated.z);
}
glEnd();
}
glPopMatrix();
renderOrientationDirections(position, _rotation * jointState.getRotation(), directionSize);
jointIndex = joint.parentIndex;
} while (jointIndex != -1 && geometry.joints.at(jointIndex).isFree);
glLineWidth(1.0f);
}
void SkeletonModel::setHandPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation) {
// this algorithm is from sample code from sixense
const FBXGeometry& geometry = _geometry->getFBXGeometry();
int elbowJointIndex = geometry.joints.at(jointIndex).parentIndex;
if (elbowJointIndex == -1) {
return;
}
int shoulderJointIndex = geometry.joints.at(elbowJointIndex).parentIndex;
glm::vec3 shoulderPosition;
if (!getJointPosition(shoulderJointIndex, shoulderPosition)) {
return;
}
// precomputed lengths
float scale = extractUniformScale(_scale);
float upperArmLength = geometry.joints.at(elbowJointIndex).distanceToParent * scale;
float lowerArmLength = geometry.joints.at(jointIndex).distanceToParent * scale;
// first set wrist position
glm::vec3 wristPosition = position;
glm::vec3 shoulderToWrist = wristPosition - shoulderPosition;
float distanceToWrist = glm::length(shoulderToWrist);
// prevent gimbal lock
if (distanceToWrist > upperArmLength + lowerArmLength - EPSILON) {
distanceToWrist = upperArmLength + lowerArmLength - EPSILON;
shoulderToWrist = glm::normalize(shoulderToWrist) * distanceToWrist;
wristPosition = shoulderPosition + shoulderToWrist;
}
// cosine of angle from upper arm to hand vector
float cosA = (upperArmLength * upperArmLength + distanceToWrist * distanceToWrist - lowerArmLength * lowerArmLength) /
(2 * upperArmLength * distanceToWrist);
float mid = upperArmLength * cosA;
float height = sqrt(upperArmLength * upperArmLength + mid * mid - 2 * upperArmLength * mid * cosA);
// direction of the elbow
glm::vec3 handNormal = glm::cross(rotation * glm::vec3(0.0f, 1.0f, 0.0f), shoulderToWrist); // elbow rotating with wrist
glm::vec3 relaxedNormal = glm::cross(glm::vec3(0.0f, 1.0f, 0.0f), shoulderToWrist); // elbow pointing straight down
const float NORMAL_WEIGHT = 0.5f;
glm::vec3 finalNormal = glm::mix(relaxedNormal, handNormal, NORMAL_WEIGHT);
bool rightHand = (jointIndex == geometry.rightHandJointIndex);
if (rightHand ? (finalNormal.y > 0.0f) : (finalNormal.y < 0.0f)) {
finalNormal.y = 0.0f; // dont allow elbows to point inward (y is vertical axis)
}
glm::vec3 tangent = glm::normalize(glm::cross(shoulderToWrist, finalNormal));
// ik solution
glm::vec3 elbowPosition = shoulderPosition + glm::normalize(shoulderToWrist) * mid - tangent * height;
glm::vec3 forwardVector(rightHand ? -1.0f : 1.0f, 0.0f, 0.0f);
glm::quat shoulderRotation = rotationBetween(forwardVector, elbowPosition - shoulderPosition);
JointState& shoulderState = _jointStates[shoulderJointIndex];
shoulderState.setRotationFromBindFrame(shoulderRotation, PALM_PRIORITY);
JointState& elbowState = _jointStates[elbowJointIndex];
elbowState.setRotationFromBindFrame(rotationBetween(shoulderRotation * forwardVector, wristPosition - elbowPosition) * shoulderRotation, PALM_PRIORITY);
JointState& handState = _jointStates[jointIndex];
handState.setRotationFromBindFrame(rotation, PALM_PRIORITY);
}
bool SkeletonModel::getLeftHandPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getLeftHandJointIndex(), position);
}
bool SkeletonModel::getRightHandPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getRightHandJointIndex(), position);
}
bool SkeletonModel::restoreLeftHandPosition(float fraction, float priority) {
return restoreJointPosition(getLeftHandJointIndex(), fraction, priority);
}
bool SkeletonModel::getLeftShoulderPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getLastFreeJointIndex(getLeftHandJointIndex()), position);
}
float SkeletonModel::getLeftArmLength() const {
return getLimbLength(getLeftHandJointIndex());
}
bool SkeletonModel::restoreRightHandPosition(float fraction, float priority) {
return restoreJointPosition(getRightHandJointIndex(), fraction, priority);
}
bool SkeletonModel::getRightShoulderPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getLastFreeJointIndex(getRightHandJointIndex()), position);
}
float SkeletonModel::getRightArmLength() const {
return getLimbLength(getRightHandJointIndex());
}
bool SkeletonModel::getHeadPosition(glm::vec3& headPosition) const {
return isActive() && getJointPositionInWorldFrame(_geometry->getFBXGeometry().headJointIndex, headPosition);
}
bool SkeletonModel::getNeckPosition(glm::vec3& neckPosition) const {
return isActive() && getJointPositionInWorldFrame(_geometry->getFBXGeometry().neckJointIndex, neckPosition);
}
bool SkeletonModel::getNeckParentRotationFromDefaultOrientation(glm::quat& neckParentRotation) const {
if (!isActive()) {
return false;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (geometry.neckJointIndex == -1) {
return false;
}
int parentIndex = geometry.joints.at(geometry.neckJointIndex).parentIndex;
glm::quat worldFrameRotation;
if (getJointRotationInWorldFrame(parentIndex, worldFrameRotation)) {
neckParentRotation = worldFrameRotation * _jointStates[parentIndex].getFBXJoint().inverseDefaultRotation;
return true;
}
return false;
}
bool SkeletonModel::getEyePositions(glm::vec3& firstEyePosition, glm::vec3& secondEyePosition) const {
if (!isActive()) {
return false;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (getJointPositionInWorldFrame(geometry.leftEyeJointIndex, firstEyePosition) &&
getJointPositionInWorldFrame(geometry.rightEyeJointIndex, secondEyePosition)) {
return true;
}
// no eye joints; try to estimate based on head/neck joints
glm::vec3 neckPosition, headPosition;
if (getJointPositionInWorldFrame(geometry.neckJointIndex, neckPosition) &&
getJointPositionInWorldFrame(geometry.headJointIndex, headPosition)) {
const float EYE_PROPORTION = 0.6f;
glm::vec3 baseEyePosition = glm::mix(neckPosition, headPosition, EYE_PROPORTION);
glm::quat headRotation;
getJointRotationInWorldFrame(geometry.headJointIndex, headRotation);
const float EYES_FORWARD = 0.25f;
const float EYE_SEPARATION = 0.1f;
float headHeight = glm::distance(neckPosition, headPosition);
firstEyePosition = baseEyePosition + headRotation * glm::vec3(EYE_SEPARATION, 0.0f, EYES_FORWARD) * headHeight;
secondEyePosition = baseEyePosition + headRotation * glm::vec3(-EYE_SEPARATION, 0.0f, EYES_FORWARD) * headHeight;
return true;
}
return false;
}
void SkeletonModel::renderRagdoll() {
const int BALL_SUBDIVISIONS = 6;
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glPushMatrix();
Application::getInstance()->loadTranslatedViewMatrix(_translation);
int numPoints = _ragdollPoints.size();
float alpha = 0.3f;
float radius1 = 0.008f;
float radius2 = 0.01f;
for (int i = 0; i < numPoints; ++i) {
glPushMatrix();
// draw each point as a yellow hexagon with black border
glm::vec3 position = _rotation * _ragdollPoints[i]._position;
glTranslatef(position.x, position.y, position.z);
glColor4f(0.0f, 0.0f, 0.0f, alpha);
glutSolidSphere(radius2, BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
glColor4f(1.0f, 1.0f, 0.0f, alpha);
glutSolidSphere(radius1, BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
glPopMatrix();
}
glPopMatrix();
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
}
// virtual
void SkeletonModel::initRagdollPoints() {
assert(_ragdollPoints.size() == 0);
assert(_ragdollConstraints.size() == 0);
// one point for each joint
int numJoints = _jointStates.size();
_ragdollPoints.fill(VerletPoint(), numJoints);
for (int i = 0; i < numJoints; ++i) {
const JointState& state = _jointStates.at(i);
glm::vec3 position = state.getPosition();
_ragdollPoints[i]._position = position;
_ragdollPoints[i]._lastPosition = position;
}
}
void SkeletonModel::buildRagdollConstraints() {
// NOTE: the length of DistanceConstraints is computed and locked in at this time
// so make sure the ragdoll positions are in a normal configuration before here.
const int numPoints = _ragdollPoints.size();
assert(numPoints == _jointStates.size());
for (int i = 0; i < numPoints; ++i) {
const JointState& state = _jointStates.at(i);
const FBXJoint& joint = state.getFBXJoint();
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
FixedConstraint* anchor = new FixedConstraint(&(_ragdollPoints[i]), glm::vec3(0.0f));
_ragdollConstraints.push_back(anchor);
} else {
DistanceConstraint* bone = new DistanceConstraint(&(_ragdollPoints[i]), &(_ragdollPoints[parentIndex]));
_ragdollConstraints.push_back(bone);
}
}
}
// virtual
void SkeletonModel::stepRagdollForward(float deltaTime) {
const float RAGDOLL_FOLLOWS_JOINTS_TIMESCALE = 0.03f;
float fraction = glm::clamp(deltaTime / RAGDOLL_FOLLOWS_JOINTS_TIMESCALE, 0.0f, 1.0f);
moveShapesTowardJoints(fraction);
}
float DENSITY_OF_WATER = 1000.0f; // kg/m^3
float MIN_JOINT_MASS = 1.0f;
float VERY_BIG_MASS = 1.0e6f;
// virtual
void SkeletonModel::buildShapes() {
if (!_geometry || _rootIndex == -1) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (geometry.joints.isEmpty()) {
return;
}
initRagdollPoints();
float uniformScale = extractUniformScale(_scale);
const int numStates = _jointStates.size();
for (int i = 0; i < numStates; i++) {
JointState& state = _jointStates[i];
const FBXJoint& joint = state.getFBXJoint();
float radius = uniformScale * joint.boneRadius;
float halfHeight = 0.5f * uniformScale * joint.distanceToParent;
Shape::Type type = joint.shapeType;
if (i == 0 || (type == Shape::CAPSULE_SHAPE && halfHeight < EPSILON)) {
// this shape is forced to be a sphere
type = Shape::SPHERE_SHAPE;
}
Shape* shape = NULL;
int parentIndex = joint.parentIndex;
if (type == Shape::SPHERE_SHAPE) {
shape = new VerletSphereShape(radius, &(_ragdollPoints[i]));
shape->setEntity(this);
_ragdollPoints[i]._mass = glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume());
} else if (type == Shape::CAPSULE_SHAPE) {
assert(parentIndex != -1);
shape = new VerletCapsuleShape(radius, &(_ragdollPoints[parentIndex]), &(_ragdollPoints[i]));
shape->setEntity(this);
_ragdollPoints[i]._mass = glm::max(MIN_JOINT_MASS, DENSITY_OF_WATER * shape->getVolume());
}
if (parentIndex != -1) {
// always disable collisions between joint and its parent
disableCollisions(i, parentIndex);
} else {
// give the base joint a very large mass since it doesn't actually move
// in the local-frame simulation (it defines the origin)
_ragdollPoints[i]._mass = VERY_BIG_MASS;
}
_shapes.push_back(shape);
}
// This method moves the shapes to their default positions in Model frame.
computeBoundingShape(geometry);
// While the shapes are in their default position we disable collisions between
// joints that are currently colliding.
disableCurrentSelfCollisions();
buildRagdollConstraints();
// ... then move shapes back to current joint positions
moveShapesTowardJoints(1.0f);
enforceRagdollConstraints();
}
void SkeletonModel::moveShapesTowardJoints(float fraction) {
const int numStates = _jointStates.size();
assert(_jointStates.size() == _ragdollPoints.size());
assert(fraction >= 0.0f && fraction <= 1.0f);
if (_ragdollPoints.size() == numStates) {
float oneMinusFraction = 1.0f - fraction;
int numJoints = _jointStates.size();
for (int i = 0; i < numJoints; ++i) {
_ragdollPoints[i]._lastPosition = _ragdollPoints[i]._position;
_ragdollPoints[i]._position = oneMinusFraction * _ragdollPoints[i]._position + fraction * _jointStates.at(i).getPosition();
}
}
}
void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
// compute default joint transforms
int numJoints = geometry.joints.size();
if (numJoints != _ragdollPoints.size()) {
return;
}
QVector<glm::mat4> transforms;
transforms.fill(glm::mat4(), numJoints);
// compute the default transforms and slam the ragdoll positions accordingly
// (which puts the shapes where we want them)
transforms[0] = _jointStates[0].getTransform();
_ragdollPoints[0]._position = extractTranslation(transforms[0]);
_ragdollPoints[0]._lastPosition = _ragdollPoints[0]._position;
for (int i = 1; i < numJoints; i++) {
const FBXJoint& joint = geometry.joints.at(i);
int parentIndex = joint.parentIndex;
assert(parentIndex != -1);
glm::quat modifiedRotation = joint.preRotation * joint.rotation * joint.postRotation;
transforms[i] = transforms[parentIndex] * glm::translate(joint.translation)
* joint.preTransform * glm::mat4_cast(modifiedRotation) * joint.postTransform;
// setting the ragdollPoints here slams the VerletShapes into their default positions
_ragdollPoints[i]._position = extractTranslation(transforms[i]);
_ragdollPoints[i]._lastPosition = _ragdollPoints[i]._position;
}
// compute bounding box that encloses all shapes
Extents totalExtents;
totalExtents.reset();
totalExtents.addPoint(glm::vec3(0.0f));
for (int i = 0; i < _shapes.size(); i++) {
Shape* shape = _shapes[i];
if (!shape) {
continue;
}
// TODO: skip hand and arm shapes for bounding box calculation
Extents shapeExtents;
shapeExtents.reset();
glm::vec3 localPosition = shape->getTranslation();
int type = shape->getType();
if (type == Shape::CAPSULE_SHAPE) {
// add the two furthest surface points of the capsule
CapsuleShape* capsule = static_cast<CapsuleShape*>(shape);
glm::vec3 axis;
capsule->computeNormalizedAxis(axis);
float radius = capsule->getRadius();
float halfHeight = capsule->getHalfHeight();
axis = halfHeight * axis + glm::vec3(radius);
shapeExtents.addPoint(localPosition + axis);
shapeExtents.addPoint(localPosition - axis);
totalExtents.addExtents(shapeExtents);
} else if (type == Shape::SPHERE_SHAPE) {
float radius = shape->getBoundingRadius();
glm::vec3 axis = glm::vec3(radius);
shapeExtents.addPoint(localPosition + axis);
shapeExtents.addPoint(localPosition - axis);
totalExtents.addExtents(shapeExtents);
}
}
// compute bounding shape parameters
// NOTE: we assume that the longest side of totalExtents is the yAxis...
glm::vec3 diagonal = totalExtents.maximum - totalExtents.minimum;
// ... and assume the radius is half the RMS of the X and Z sides:
float capsuleRadius = 0.5f * sqrtf(0.5f * (diagonal.x * diagonal.x + diagonal.z * diagonal.z));
_boundingShape.setRadius(capsuleRadius);
_boundingShape.setHalfHeight(0.5f * diagonal.y - capsuleRadius);
_boundingShapeLocalOffset = 0.5f * (totalExtents.maximum + totalExtents.minimum);
_boundingRadius = 0.5f * glm::length(diagonal);
}
void SkeletonModel::resetShapePositions() {
// DEBUG method.
// Moves shapes to the joint default locations for debug visibility into
// how the bounding shape is computed.
if (!_geometry || _rootIndex == -1 || _shapes.isEmpty()) {
// geometry or joints have not yet been created
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (geometry.joints.isEmpty() || _shapes.size() != geometry.joints.size()) {
return;
}
// The shapes are moved to their default positions in computeBoundingShape().
computeBoundingShape(geometry);
// Then we move them into world frame for rendering at the Model's location.
for (int i = 0; i < _shapes.size(); i++) {
Shape* shape = _shapes[i];
if (shape) {
shape->setTranslation(_translation + _rotation * shape->getTranslation());
shape->setRotation(_rotation * shape->getRotation());
}
}
_boundingShape.setTranslation(_translation + _rotation * _boundingShapeLocalOffset);
_boundingShape.setRotation(_rotation);
}
void SkeletonModel::renderBoundingCollisionShapes(float alpha) {
const int BALL_SUBDIVISIONS = 10;
if (_shapes.isEmpty()) {
// the bounding shape has not been propery computed
// so no need to render it
return;
}
glPushMatrix();
Application::getInstance()->loadTranslatedViewMatrix(_translation);
// draw a blue sphere at the capsule endpoint
glm::vec3 endPoint;
_boundingShape.getEndPoint(endPoint);
endPoint = endPoint - _translation;
glTranslatef(endPoint.x, endPoint.y, endPoint.z);
glColor4f(0.6f, 0.6f, 0.8f, alpha);
glutSolidSphere(_boundingShape.getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
// draw a yellow sphere at the capsule startpoint
glm::vec3 startPoint;
_boundingShape.getStartPoint(startPoint);
startPoint = startPoint - _translation;
glm::vec3 axis = endPoint - startPoint;
glTranslatef(-axis.x, -axis.y, -axis.z);
glColor4f(0.8f, 0.8f, 0.6f, alpha);
glutSolidSphere(_boundingShape.getRadius(), BALL_SUBDIVISIONS, BALL_SUBDIVISIONS);
// draw a green cylinder between the two points
glm::vec3 origin(0.0f);
glColor4f(0.6f, 0.8f, 0.6f, alpha);
Avatar::renderJointConnectingCone( origin, axis, _boundingShape.getRadius(), _boundingShape.getRadius());
glPopMatrix();
}