overte-JulianGro/interface/src/avatar/MyAvatar.cpp

1004 lines
40 KiB
C++

//
// MyAvatar.cpp
// interface
//
// Created by Mark Peng on 8/16/13.
// Copyright (c) 2012 High Fidelity, Inc. All rights reserved.
//
#include <vector>
#include <glm/gtx/vector_angle.hpp>
#include <NodeList.h>
#include <NodeTypes.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include "Application.h"
#include "DataServerClient.h"
#include "Menu.h"
#include "MyAvatar.h"
#include "Physics.h"
#include "devices/OculusManager.h"
#include "ui/TextRenderer.h"
using namespace std;
const glm::vec3 DEFAULT_UP_DIRECTION(0.0f, 1.0f, 0.0f);
const float YAW_MAG = 500.0;
const float PITCH_MAG = 100.0f;
const float COLLISION_RADIUS_SCALAR = 1.2; // pertains to avatar-to-avatar collisions
const float COLLISION_BALL_FORCE = 200.0; // pertains to avatar-to-avatar collisions
const float COLLISION_BODY_FORCE = 30.0; // pertains to avatar-to-avatar collisions
const float COLLISION_RADIUS_SCALE = 0.125f;
const float MOUSE_RAY_TOUCH_RANGE = 0.01f;
const bool USING_HEAD_LEAN = false;
const float SKIN_COLOR[] = {1.0, 0.84, 0.66};
const float DARK_SKIN_COLOR[] = {0.9, 0.78, 0.63};
MyAvatar::MyAvatar(Node* owningNode) :
Avatar(owningNode),
_mousePressed(false),
_bodyPitchDelta(0.0f),
_bodyRollDelta(0.0f),
_shouldJump(false),
_gravity(0.0f, -1.0f, 0.0f),
_distanceToNearestAvatar(std::numeric_limits<float>::max()),
_elapsedTimeMoving(0.0f),
_elapsedTimeStopped(0.0f),
_elapsedTimeSinceCollision(0.0f),
_lastCollisionPosition(0, 0, 0),
_speedBrakes(false),
_isThrustOn(false),
_thrustMultiplier(1.0f),
_moveTarget(0,0,0),
_moveTargetStepCounter(0)
{
for (int i = 0; i < MAX_DRIVE_KEYS; i++) {
_driveKeys[i] = 0.0f;
}
_collisionRadius = _height * COLLISION_RADIUS_SCALE;
}
void MyAvatar::reset() {
_head.reset();
_hand.reset();
}
void MyAvatar::setMoveTarget(const glm::vec3 moveTarget) {
_moveTarget = moveTarget;
_moveTargetStepCounter = 0;
}
void MyAvatar::simulate(float deltaTime, Transmitter* transmitter) {
glm::quat orientation = getOrientation();
// Update movement timers
_elapsedTimeSinceCollision += deltaTime;
const float VELOCITY_MOVEMENT_TIMER_THRESHOLD = 0.2f;
if (glm::length(_velocity) < VELOCITY_MOVEMENT_TIMER_THRESHOLD) {
_elapsedTimeMoving = 0.f;
_elapsedTimeStopped += deltaTime;
} else {
_elapsedTimeStopped = 0.f;
_elapsedTimeMoving += deltaTime;
}
if (_leadingAvatar && !_leadingAvatar->getOwningNode()->isAlive()) {
follow(NULL);
}
// Ajust, scale, position and lookAt position when following an other avatar
if (_leadingAvatar && _newScale != _leadingAvatar->getScale()) {
_newScale = _leadingAvatar->getScale();
}
if (_scale != _newScale) {
float scale = (1.f - SMOOTHING_RATIO) * _scale + SMOOTHING_RATIO * _newScale;
setScale(scale);
Application::getInstance()->getCamera()->setScale(scale);
}
// Collect thrust forces from keyboard and devices
updateThrust(deltaTime, transmitter);
// copy velocity so we can use it later for acceleration
glm::vec3 oldVelocity = getVelocity();
// calculate speed
_speed = glm::length(_velocity);
// update torso rotation based on head lean
_skeleton.joint[AVATAR_JOINT_TORSO].rotation = glm::quat(glm::radians(glm::vec3(
_head.getLeanForward(), 0.0f, _head.getLeanSideways())));
// apply joint data (if any) to skeleton
bool enableHandMovement = true;
for (vector<JointData>::iterator it = _joints.begin(); it != _joints.end(); it++) {
_skeleton.joint[it->jointID].rotation = it->rotation;
// disable hand movement if we have joint info for the right wrist
enableHandMovement &= (it->jointID != AVATAR_JOINT_RIGHT_WRIST);
}
// update the movement of the hand and process handshaking with other avatars...
updateHandMovementAndTouching(deltaTime, enableHandMovement);
// apply gravity
// For gravity, always move the avatar by the amount driven by gravity, so that the collision
// routines will detect it and collide every frame when pulled by gravity to a surface
const float MIN_DISTANCE_AFTER_COLLISION_FOR_GRAVITY = 0.02f;
if (glm::length(_position - _lastCollisionPosition) > MIN_DISTANCE_AFTER_COLLISION_FOR_GRAVITY) {
_velocity += _scale * _gravity * (GRAVITY_EARTH * deltaTime);
}
// Only collide if we are not moving to a target
if (_isCollisionsOn && (glm::length(_moveTarget) < EPSILON)) {
Camera* myCamera = Application::getInstance()->getCamera();
if (myCamera->getMode() == CAMERA_MODE_FIRST_PERSON && !OculusManager::isConnected()) {
_collisionRadius = myCamera->getAspectRatio() * (myCamera->getNearClip() / cos(myCamera->getFieldOfView() / 2.f));
_collisionRadius *= COLLISION_RADIUS_SCALAR;
} else {
_collisionRadius = _height * COLLISION_RADIUS_SCALE;
}
updateCollisionWithEnvironment(deltaTime);
updateCollisionWithVoxels(deltaTime);
updateAvatarCollisions(deltaTime);
}
// add thrust to velocity
_velocity += _thrust * deltaTime;
// update body yaw by body yaw delta
orientation = orientation * glm::quat(glm::radians(
glm::vec3(_bodyPitchDelta, _bodyYawDelta, _bodyRollDelta) * deltaTime));
// decay body rotation momentum
const float BODY_SPIN_FRICTION = 7.5f;
float bodySpinMomentum = 1.0 - BODY_SPIN_FRICTION * deltaTime;
if (bodySpinMomentum < 0.0f) { bodySpinMomentum = 0.0f; }
_bodyPitchDelta *= bodySpinMomentum;
_bodyYawDelta *= bodySpinMomentum;
_bodyRollDelta *= bodySpinMomentum;
float MINIMUM_ROTATION_RATE = 2.0f;
if (fabs(_bodyYawDelta) < MINIMUM_ROTATION_RATE) { _bodyYawDelta = 0.f; }
if (fabs(_bodyRollDelta) < MINIMUM_ROTATION_RATE) { _bodyRollDelta = 0.f; }
if (fabs(_bodyPitchDelta) < MINIMUM_ROTATION_RATE) { _bodyPitchDelta = 0.f; }
const float MAX_STATIC_FRICTION_VELOCITY = 0.5f;
const float STATIC_FRICTION_STRENGTH = _scale * 20.f;
applyStaticFriction(deltaTime, _velocity, MAX_STATIC_FRICTION_VELOCITY, STATIC_FRICTION_STRENGTH);
// Damp avatar velocity
const float LINEAR_DAMPING_STRENGTH = 0.5f;
const float SPEED_BRAKE_POWER = _scale * 10.0f;
const float SQUARED_DAMPING_STRENGTH = 0.007f;
const float SLOW_NEAR_RADIUS = 5.f;
float linearDamping = LINEAR_DAMPING_STRENGTH;
const float NEAR_AVATAR_DAMPING_FACTOR = 50.f;
if (_distanceToNearestAvatar < _scale * SLOW_NEAR_RADIUS) {
linearDamping *= 1.f + NEAR_AVATAR_DAMPING_FACTOR *
((SLOW_NEAR_RADIUS - _distanceToNearestAvatar) / SLOW_NEAR_RADIUS);
}
if (_speedBrakes) {
applyDamping(deltaTime, _velocity, linearDamping * SPEED_BRAKE_POWER, SQUARED_DAMPING_STRENGTH * SPEED_BRAKE_POWER);
} else {
applyDamping(deltaTime, _velocity, linearDamping, SQUARED_DAMPING_STRENGTH);
}
// update the euler angles
setOrientation(orientation);
// Compute instantaneous acceleration
float forwardAcceleration = glm::length(glm::dot(getBodyFrontDirection(), getVelocity() - oldVelocity)) / deltaTime;
const float ACCELERATION_PITCH_DECAY = 0.4f;
const float ACCELERATION_YAW_DECAY = 0.4f;
const float ACCELERATION_PULL_THRESHOLD = 0.2f;
const float OCULUS_ACCELERATION_PULL_THRESHOLD = 1.0f;
const int OCULUS_YAW_OFFSET_THRESHOLD = 10;
if (!Application::getInstance()->getFaceshift()->isActive()) {
// Decay HeadPitch as a function of acceleration, so that you look straight ahead when
// you start moving, but don't do this with an HMD like the Oculus.
if (!OculusManager::isConnected()) {
if (forwardAcceleration > ACCELERATION_PULL_THRESHOLD) {
_head.setPitch(_head.getPitch() * (1.f - forwardAcceleration * ACCELERATION_PITCH_DECAY * deltaTime));
_head.setYaw(_head.getYaw() * (1.f - forwardAcceleration * ACCELERATION_YAW_DECAY * deltaTime));
}
} else if (fabsf(forwardAcceleration) > OCULUS_ACCELERATION_PULL_THRESHOLD
&& fabs(_head.getYaw()) > OCULUS_YAW_OFFSET_THRESHOLD) {
// if we're wearing the oculus
// and this acceleration is above the pull threshold
// and the head yaw if off the body by more than OCULUS_YAW_OFFSET_THRESHOLD
// match the body yaw to the oculus yaw
_bodyYaw = getAbsoluteHeadYaw();
// set the head yaw to zero for this draw
_head.setYaw(0);
// correct the oculus yaw offset
OculusManager::updateYawOffset();
}
}
const float WALKING_SPEED_THRESHOLD = 0.2f;
// use speed and angular velocity to determine walking vs. standing
if (_speed + fabs(_bodyYawDelta) > WALKING_SPEED_THRESHOLD) {
_mode = AVATAR_MODE_WALKING;
} else {
_mode = AVATAR_MODE_INTERACTING;
}
// update moving flag based on speed
const float MOVING_SPEED_THRESHOLD = 0.01f;
_moving = _speed > MOVING_SPEED_THRESHOLD;
// If a move target is set, update position explicitly
const float MOVE_FINISHED_TOLERANCE = 0.1f;
const float MOVE_SPEED_FACTOR = 2.f;
const int MOVE_TARGET_MAX_STEPS = 250;
if ((glm::length(_moveTarget) > EPSILON) && (_moveTargetStepCounter < MOVE_TARGET_MAX_STEPS)) {
if (glm::length(_position - _moveTarget) > MOVE_FINISHED_TOLERANCE) {
_position += (_moveTarget - _position) * (deltaTime * MOVE_SPEED_FACTOR);
_moveTargetStepCounter++;
} else {
// Move completed
_moveTarget = glm::vec3(0,0,0);
_moveTargetStepCounter = 0;
}
}
updateChatCircle(deltaTime);
// Get any position, velocity, or rotation update from Grab Drag controller
glm::vec3 moveFromGrab = _hand.getAndResetGrabDelta();
if (glm::length(moveFromGrab) > EPSILON) {
_position += moveFromGrab;
_velocity = glm::vec3(0, 0, 0);
}
_velocity += _hand.getAndResetGrabDeltaVelocity();
glm::quat deltaRotation = _hand.getAndResetGrabRotation();
const float GRAB_CONTROLLER_TURN_SCALING = 0.5f;
glm::vec3 euler = safeEulerAngles(deltaRotation) * GRAB_CONTROLLER_TURN_SCALING;
// Adjust body yaw by yaw from controller
setOrientation(glm::angleAxis(-euler.y, glm::vec3(0, 1, 0)) * getOrientation());
// Adjust head pitch from controller
getHead().setMousePitch(getHead().getMousePitch() - euler.x);
_position += _velocity * deltaTime;
// update avatar skeleton and simulate hand and head
_skeleton.update(deltaTime, getOrientation(), _position);
_hand.simulate(deltaTime, true);
_skeletonModel.simulate(deltaTime);
_head.setBodyRotation(glm::vec3(_bodyPitch, _bodyYaw, _bodyRoll));
glm::vec3 headPosition;
_skeletonModel.getHeadPosition(headPosition);
_head.setPosition(headPosition);
_head.setScale(_scale);
_head.setSkinColor(glm::vec3(SKIN_COLOR[0], SKIN_COLOR[1], SKIN_COLOR[2]));
_head.simulate(deltaTime, true);
// Zero thrust out now that we've added it to velocity in this frame
_thrust = glm::vec3(0, 0, 0);
}
const float MAX_PITCH = 90.0f;
// Update avatar head rotation with sensor data
void MyAvatar::updateFromGyrosAndOrWebcam(bool turnWithHead) {
Faceshift* faceshift = Application::getInstance()->getFaceshift();
SerialInterface* gyros = Application::getInstance()->getSerialHeadSensor();
Webcam* webcam = Application::getInstance()->getWebcam();
glm::vec3 estimatedPosition, estimatedRotation;
if (faceshift->isActive()) {
estimatedPosition = faceshift->getHeadTranslation();
estimatedRotation = safeEulerAngles(faceshift->getHeadRotation());
// Rotate the body if the head is turned beyond the screen
if (turnWithHead) {
const float FACESHIFT_YAW_TURN_SENSITIVITY = 0.5f;
const float FACESHIFT_MIN_YAW_TURN = 15.f;
const float FACESHIFT_MAX_YAW_TURN = 50.f;
if ( (fabs(estimatedRotation.y) > FACESHIFT_MIN_YAW_TURN) &&
(fabs(estimatedRotation.y) < FACESHIFT_MAX_YAW_TURN) ) {
if (estimatedRotation.y > 0.f) {
_bodyYawDelta += (estimatedRotation.y - FACESHIFT_MIN_YAW_TURN) * FACESHIFT_YAW_TURN_SENSITIVITY;
} else {
_bodyYawDelta += (estimatedRotation.y + FACESHIFT_MIN_YAW_TURN) * FACESHIFT_YAW_TURN_SENSITIVITY;
}
}
}
} else if (gyros->isActive()) {
estimatedRotation = gyros->getEstimatedRotation();
} else if (webcam->isActive()) {
estimatedRotation = webcam->getEstimatedRotation();
} else {
if (!_leadingAvatar) {
_head.setPitch(_head.getMousePitch());
}
_head.getVideoFace().clearFrame();
// restore rotation, lean to neutral positions
const float RESTORE_RATE = 0.05f;
_head.setYaw(glm::mix(_head.getYaw(), 0.0f, RESTORE_RATE));
_head.setRoll(glm::mix(_head.getRoll(), 0.0f, RESTORE_RATE));
_head.setLeanSideways(glm::mix(_head.getLeanSideways(), 0.0f, RESTORE_RATE));
_head.setLeanForward(glm::mix(_head.getLeanForward(), 0.0f, RESTORE_RATE));
return;
}
if (webcam->isActive()) {
estimatedPosition = webcam->getEstimatedPosition();
// apply face data
_head.getVideoFace().setFrameFromWebcam();
// compute and store the joint rotations
const JointVector& joints = webcam->getEstimatedJoints();
_joints.clear();
for (int i = 0; i < NUM_AVATAR_JOINTS; i++) {
if (joints.size() > i && joints[i].isValid) {
JointData data = { i, joints[i].rotation };
_joints.push_back(data);
if (i == AVATAR_JOINT_CHEST) {
// if we have a chest rotation, don't apply lean based on head
estimatedPosition = glm::vec3();
}
}
}
} else {
_head.getVideoFace().clearFrame();
}
// Set the rotation of the avatar's head (as seen by others, not affecting view frustum)
// to be scaled. Pitch is greater to emphasize nodding behavior / synchrony.
const float AVATAR_HEAD_PITCH_MAGNIFY = 1.0f;
const float AVATAR_HEAD_YAW_MAGNIFY = 1.0f;
const float AVATAR_HEAD_ROLL_MAGNIFY = 1.0f;
_head.setPitch(estimatedRotation.x * AVATAR_HEAD_PITCH_MAGNIFY);
_head.setYaw(estimatedRotation.y * AVATAR_HEAD_YAW_MAGNIFY);
_head.setRoll(estimatedRotation.z * AVATAR_HEAD_ROLL_MAGNIFY);
// Update torso lean distance based on accelerometer data
const float TORSO_LENGTH = 0.5f;
glm::vec3 relativePosition = estimatedPosition - glm::vec3(0.0f, -TORSO_LENGTH, 0.0f);
const float MAX_LEAN = 45.0f;
_head.setLeanSideways(glm::clamp(glm::degrees(atanf(relativePosition.x * _leanScale / TORSO_LENGTH)),
-MAX_LEAN, MAX_LEAN));
_head.setLeanForward(glm::clamp(glm::degrees(atanf(relativePosition.z * _leanScale / TORSO_LENGTH)),
-MAX_LEAN, MAX_LEAN));
// if Faceshift drive is enabled, set the avatar drive based on the head position
if (!Menu::getInstance()->isOptionChecked(MenuOption::MoveWithLean)) {
return;
}
// Move with Lean by applying thrust proportional to leaning
glm::quat orientation = _head.getCameraOrientation();
glm::vec3 front = orientation * IDENTITY_FRONT;
glm::vec3 right = orientation * IDENTITY_RIGHT;
float leanForward = _head.getLeanForward();
float leanSideways = _head.getLeanSideways();
// Degrees of 'dead zone' when leaning, and amount of acceleration to apply to lean angle
const float LEAN_FWD_DEAD_ZONE = 15.f;
const float LEAN_SIDEWAYS_DEAD_ZONE = 10.f;
const float LEAN_FWD_THRUST_SCALE = 4.f;
const float LEAN_SIDEWAYS_THRUST_SCALE = 3.f;
if (fabs(leanForward) > LEAN_FWD_DEAD_ZONE) {
if (leanForward > 0.f) {
addThrust(front * -(leanForward - LEAN_FWD_DEAD_ZONE) * LEAN_FWD_THRUST_SCALE);
} else {
addThrust(front * -(leanForward + LEAN_FWD_DEAD_ZONE) * LEAN_FWD_THRUST_SCALE);
}
}
if (fabs(leanSideways) > LEAN_SIDEWAYS_DEAD_ZONE) {
if (leanSideways > 0.f) {
addThrust(right * -(leanSideways - LEAN_SIDEWAYS_DEAD_ZONE) * LEAN_SIDEWAYS_THRUST_SCALE);
} else {
addThrust(right * -(leanSideways + LEAN_SIDEWAYS_DEAD_ZONE) * LEAN_SIDEWAYS_THRUST_SCALE);
}
}
}
static TextRenderer* textRenderer() {
static TextRenderer* renderer = new TextRenderer(SANS_FONT_FAMILY, 24, -1, false, TextRenderer::SHADOW_EFFECT);
return renderer;
}
void MyAvatar::renderDebugBodyPoints() {
glm::vec3 torsoPosition(getPosition());
glm::vec3 headPosition(getHead().getEyePosition());
float torsoToHead = glm::length(headPosition - torsoPosition);
glm::vec3 position;
printf("head-above-torso %.2f, scale = %0.2f\n", torsoToHead, getScale());
// Torso Sphere
position = torsoPosition;
glPushMatrix();
glColor4f(0, 1, 0, .5f);
glTranslatef(position.x, position.y, position.z);
glutSolidSphere(0.2, 10, 10);
glPopMatrix();
// Head Sphere
position = headPosition;
glPushMatrix();
glColor4f(0, 1, 0, .5f);
glTranslatef(position.x, position.y, position.z);
glutSolidSphere(0.15, 10, 10);
glPopMatrix();
}
void MyAvatar::render(bool forceRenderHead) {
// render body
renderBody(forceRenderHead);
//renderDebugBodyPoints();
if (!_chatMessage.empty()) {
int width = 0;
int lastWidth = 0;
for (string::iterator it = _chatMessage.begin(); it != _chatMessage.end(); it++) {
width += (lastWidth = textRenderer()->computeWidth(*it));
}
glPushMatrix();
glm::vec3 chatPosition = getHead().getEyePosition() + getBodyUpDirection() * CHAT_MESSAGE_HEIGHT * _scale;
glTranslatef(chatPosition.x, chatPosition.y, chatPosition.z);
glm::quat chatRotation = Application::getInstance()->getCamera()->getRotation();
glm::vec3 chatAxis = glm::axis(chatRotation);
glRotatef(glm::angle(chatRotation), chatAxis.x, chatAxis.y, chatAxis.z);
glColor3f(0, 0.8, 0);
glRotatef(180, 0, 1, 0);
glRotatef(180, 0, 0, 1);
glScalef(_scale * CHAT_MESSAGE_SCALE, _scale * CHAT_MESSAGE_SCALE, 1.0f);
glDisable(GL_LIGHTING);
glDepthMask(false);
if (_keyState == NO_KEY_DOWN) {
textRenderer()->draw(-width / 2.0f, 0, _chatMessage.c_str());
} else {
// rather than using substr and allocating a new string, just replace the last
// character with a null, then restore it
int lastIndex = _chatMessage.size() - 1;
char lastChar = _chatMessage[lastIndex];
_chatMessage[lastIndex] = '\0';
textRenderer()->draw(-width / 2.0f, 0, _chatMessage.c_str());
_chatMessage[lastIndex] = lastChar;
glColor3f(0, 1, 0);
textRenderer()->draw(width / 2.0f - lastWidth, 0, _chatMessage.c_str() + lastIndex);
}
glEnable(GL_LIGHTING);
glDepthMask(true);
glPopMatrix();
}
}
void MyAvatar::saveData(QSettings* settings) {
settings->beginGroup("Avatar");
settings->setValue("bodyYaw", _bodyYaw);
settings->setValue("bodyPitch", _bodyPitch);
settings->setValue("bodyRoll", _bodyRoll);
settings->setValue("mousePitch", _head.getMousePitch());
settings->setValue("position_x", _position.x);
settings->setValue("position_y", _position.y);
settings->setValue("position_z", _position.z);
settings->setValue("pupilDilation", _head.getPupilDilation());
settings->setValue("leanScale", _leanScale);
settings->setValue("scale", _newScale);
settings->endGroup();
}
void MyAvatar::loadData(QSettings* settings) {
settings->beginGroup("Avatar");
// in case settings is corrupt or missing loadSetting() will check for NaN
_bodyYaw = loadSetting(settings, "bodyYaw", 0.0f);
_bodyPitch = loadSetting(settings, "bodyPitch", 0.0f);
_bodyRoll = loadSetting(settings, "bodyRoll", 0.0f);
_head.setMousePitch(loadSetting(settings, "mousePitch", 0.0f));
_position.x = loadSetting(settings, "position_x", 0.0f);
_position.y = loadSetting(settings, "position_y", 0.0f);
_position.z = loadSetting(settings, "position_z", 0.0f);
_head.setPupilDilation(settings->value("pupilDilation", 0.0f).toFloat());
_leanScale = loadSetting(settings, "leanScale", 0.05f);
_newScale = loadSetting(settings, "scale", 1.0f);
setScale(_scale);
Application::getInstance()->getCamera()->setScale(_scale);
settings->endGroup();
}
void MyAvatar::orbit(const glm::vec3& position, int deltaX, int deltaY) {
glm::vec3 vector = getPosition() - position;
glm::quat orientation = getOrientation();
glm::vec3 up = orientation * IDENTITY_UP;
const float ANGULAR_SCALE = 0.5f;
glm::quat rotation = glm::angleAxis(deltaX * -ANGULAR_SCALE, up);
const float LINEAR_SCALE = 0.01f;
setPosition(position + rotation * vector + up * (deltaY * LINEAR_SCALE * _scale));
setOrientation(rotation * orientation);
}
float MyAvatar::getAbsoluteHeadYaw() const {
return glm::yaw(_head.getOrientation());
}
glm::vec3 MyAvatar::getUprightHeadPosition() const {
return _position + getWorldAlignedOrientation() * glm::vec3(0.0f, _pelvisToHeadLength, 0.0f);
}
glm::vec3 MyAvatar::getEyeLevelPosition() const {
const float EYE_UP_OFFSET = 0.36f;
return _position + getWorldAlignedOrientation() * _skeleton.joint[AVATAR_JOINT_TORSO].rotation *
glm::vec3(0.0f, _pelvisToHeadLength + _scale * BODY_BALL_RADIUS_HEAD_BASE * EYE_UP_OFFSET, 0.0f);
}
void MyAvatar::renderBody(bool forceRenderHead) {
if (_head.getVideoFace().isFullFrame()) {
// Render the full-frame video
_head.getVideoFace().render(1.0f);
} else {
// Render the body's voxels and head
_skeletonModel.render(1.0f);
_head.render(1.0f, false);
}
_hand.render(true);
}
void MyAvatar::updateThrust(float deltaTime, Transmitter * transmitter) {
//
// Gather thrust information from keyboard and sensors to apply to avatar motion
//
glm::quat orientation = getHead().getCameraOrientation();
glm::vec3 front = orientation * IDENTITY_FRONT;
glm::vec3 right = orientation * IDENTITY_RIGHT;
glm::vec3 up = orientation * IDENTITY_UP;
const float THRUST_MAG_UP = 800.0f;
const float THRUST_MAG_DOWN = 300.f;
const float THRUST_MAG_FWD = 500.f;
const float THRUST_MAG_BACK = 300.f;
const float THRUST_MAG_LATERAL = 250.f;
const float THRUST_JUMP = 120.f;
// Add Thrusts from keyboard
_thrust += _driveKeys[FWD] * _scale * THRUST_MAG_FWD * _thrustMultiplier * deltaTime * front;
_thrust -= _driveKeys[BACK] * _scale * THRUST_MAG_BACK * _thrustMultiplier * deltaTime * front;
_thrust += _driveKeys[RIGHT] * _scale * THRUST_MAG_LATERAL * _thrustMultiplier * deltaTime * right;
_thrust -= _driveKeys[LEFT] * _scale * THRUST_MAG_LATERAL * _thrustMultiplier * deltaTime * right;
_thrust += _driveKeys[UP] * _scale * THRUST_MAG_UP * _thrustMultiplier * deltaTime * up;
_thrust -= _driveKeys[DOWN] * _scale * THRUST_MAG_DOWN * _thrustMultiplier * deltaTime * up;
_bodyYawDelta -= _driveKeys[ROT_RIGHT] * YAW_MAG * deltaTime;
_bodyYawDelta += _driveKeys[ROT_LEFT] * YAW_MAG * deltaTime;
_head.setMousePitch(_head.getMousePitch() + (_driveKeys[ROT_UP] - _driveKeys[ROT_DOWN]) * PITCH_MAG * deltaTime);
// If thrust keys are being held down, slowly increase thrust to allow reaching great speeds
if (_driveKeys[FWD] || _driveKeys[BACK] || _driveKeys[RIGHT] || _driveKeys[LEFT] || _driveKeys[UP] || _driveKeys[DOWN]) {
const float THRUST_INCREASE_RATE = 1.05;
const float MAX_THRUST_MULTIPLIER = 75.0;
//printf("m = %.3f\n", _thrustMultiplier);
if (_thrustMultiplier < MAX_THRUST_MULTIPLIER) {
_thrustMultiplier *= 1.f + deltaTime * THRUST_INCREASE_RATE;
}
} else {
_thrustMultiplier = 1.f;
}
// Add one time jumping force if requested
if (_shouldJump) {
if (glm::length(_gravity) > EPSILON) {
_thrust += _scale * THRUST_JUMP * up;
}
_shouldJump = false;
}
// Add thrusts from leading avatar
const float FOLLOWING_RATE = 0.02f;
const float MIN_YAW = 5.0f;
const float MIN_PITCH = 1.0f;
const float PITCH_RATE = 0.1f;
const float MIN_YAW_BEFORE_PITCH = 30.0f;
if (_leadingAvatar != NULL) {
glm::vec3 toTarget = _leadingAvatar->getPosition() - _position;
if (glm::length(_position - _leadingAvatar->getPosition()) > _scale * _stringLength) {
_position += toTarget * FOLLOWING_RATE;
} else {
toTarget = _leadingAvatar->getHead().getLookAtPosition() - _head.getPosition();
}
toTarget = glm::vec3(glm::dot(right, toTarget),
glm::dot(up , toTarget),
glm::dot(front, toTarget));
float yawAngle = angleBetween(-IDENTITY_FRONT, glm::vec3(toTarget.x, 0.f, toTarget.z));
if (glm::abs(yawAngle) > MIN_YAW){
if (IDENTITY_RIGHT.x * toTarget.x + IDENTITY_RIGHT.y * toTarget.y + IDENTITY_RIGHT.z * toTarget.z > 0) {
_bodyYawDelta -= yawAngle;
} else {
_bodyYawDelta += yawAngle;
}
}
float pitchAngle = glm::abs(90.0f - angleBetween(IDENTITY_UP, toTarget));
if (glm::abs(pitchAngle) > MIN_PITCH && yawAngle < MIN_YAW_BEFORE_PITCH){
if (IDENTITY_UP.x * toTarget.x + IDENTITY_UP.y * toTarget.y + IDENTITY_UP.z * toTarget.z > 0) {
_head.setMousePitch(_head.getMousePitch() + PITCH_RATE * pitchAngle);
} else {
_head.setMousePitch(_head.getMousePitch() - PITCH_RATE * pitchAngle);
}
_head.setPitch(_head.getMousePitch());
}
}
// Add thrusts from Transmitter
if (transmitter) {
transmitter->checkForLostTransmitter();
glm::vec3 rotation = transmitter->getEstimatedRotation();
const float TRANSMITTER_MIN_RATE = 1.f;
const float TRANSMITTER_MIN_YAW_RATE = 4.f;
const float TRANSMITTER_LATERAL_FORCE_SCALE = 5.f;
const float TRANSMITTER_FWD_FORCE_SCALE = 25.f;
const float TRANSMITTER_UP_FORCE_SCALE = 100.f;
const float TRANSMITTER_YAW_SCALE = 10.0f;
const float TRANSMITTER_LIFT_SCALE = 3.f;
const float TOUCH_POSITION_RANGE_HALF = 32767.f;
if (fabs(rotation.z) > TRANSMITTER_MIN_RATE) {
_thrust += rotation.z * TRANSMITTER_LATERAL_FORCE_SCALE * deltaTime * right;
}
if (fabs(rotation.x) > TRANSMITTER_MIN_RATE) {
_thrust += -rotation.x * TRANSMITTER_FWD_FORCE_SCALE * deltaTime * front;
}
if (fabs(rotation.y) > TRANSMITTER_MIN_YAW_RATE) {
_bodyYawDelta += rotation.y * TRANSMITTER_YAW_SCALE * deltaTime;
}
if (transmitter->getTouchState()->state == 'D') {
_thrust += TRANSMITTER_UP_FORCE_SCALE *
(float)(transmitter->getTouchState()->y - TOUCH_POSITION_RANGE_HALF) / TOUCH_POSITION_RANGE_HALF *
TRANSMITTER_LIFT_SCALE *
deltaTime *
up;
}
}
// Add thrust and rotation from hand controllers
const float THRUST_MAG_HAND_JETS = THRUST_MAG_FWD;
const float JOYSTICK_YAW_MAG = YAW_MAG;
const float JOYSTICK_PITCH_MAG = PITCH_MAG * 0.5f;
const int THRUST_CONTROLLER = 0;
const int VIEW_CONTROLLER = 1;
for (size_t i = 0; i < getHand().getPalms().size(); ++i) {
PalmData& palm = getHand().getPalms()[i];
if (palm.isActive() && (palm.getSixenseID() == THRUST_CONTROLLER)) {
if (palm.getJoystickY() != 0.f) {
FingerData& finger = palm.getFingers()[0];
if (finger.isActive()) {
}
_thrust += front * _scale * THRUST_MAG_HAND_JETS * palm.getJoystickY() * _thrustMultiplier * deltaTime;
}
if (palm.getJoystickX() != 0.f) {
_thrust += right * _scale * THRUST_MAG_HAND_JETS * palm.getJoystickX() * _thrustMultiplier * deltaTime;
}
} else if (palm.isActive() && (palm.getSixenseID() == VIEW_CONTROLLER)) {
if (palm.getJoystickX() != 0.f) {
_bodyYawDelta -= palm.getJoystickX() * JOYSTICK_YAW_MAG * deltaTime;
}
if (palm.getJoystickY() != 0.f) {
getHand().setPitchUpdate(getHand().getPitchUpdate() +
(palm.getJoystickY() * JOYSTICK_PITCH_MAG * deltaTime));
}
}
}
// Update speed brake status
const float MIN_SPEED_BRAKE_VELOCITY = _scale * 0.4f;
if ((glm::length(_thrust) == 0.0f) && _isThrustOn && (glm::length(_velocity) > MIN_SPEED_BRAKE_VELOCITY)) {
_speedBrakes = true;
}
if (_speedBrakes && (glm::length(_velocity) < MIN_SPEED_BRAKE_VELOCITY)) {
_speedBrakes = false;
}
_isThrustOn = (glm::length(_thrust) > EPSILON);
}
void MyAvatar::updateHandMovementAndTouching(float deltaTime, bool enableHandMovement) {
glm::quat orientation = getOrientation();
// reset hand and arm positions according to hand movement
glm::vec3 up = orientation * IDENTITY_UP;
bool pointing = false;
if (enableHandMovement && glm::length(_mouseRayDirection) > EPSILON && !Application::getInstance()->isMouseHidden()) {
// confine to the approximate shoulder plane
glm::vec3 pointDirection = _mouseRayDirection;
if (glm::dot(_mouseRayDirection, up) > 0.0f) {
glm::vec3 projectedVector = glm::cross(up, glm::cross(_mouseRayDirection, up));
if (glm::length(projectedVector) > EPSILON) {
pointDirection = glm::normalize(projectedVector);
}
}
glm::vec3 shoulderPosition;
if (_skeletonModel.getRightShoulderPosition(shoulderPosition)) {
glm::vec3 farVector = _mouseRayOrigin + pointDirection * (float)TREE_SCALE - shoulderPosition;
const float ARM_RETRACTION = 0.75f;
float retractedLength = _skeletonModel.getRightArmLength() * ARM_RETRACTION;
setHandPosition(shoulderPosition + glm::normalize(farVector) * retractedLength);
pointing = true;
}
}
if (_mousePressed) {
_handState = HAND_STATE_GRASPING;
} else if (pointing) {
_handState = HAND_STATE_POINTING;
} else {
_handState = HAND_STATE_NULL;
}
}
void MyAvatar::updateCollisionWithEnvironment(float deltaTime) {
glm::vec3 up = getBodyUpDirection();
float radius = _collisionRadius;
const float ENVIRONMENT_SURFACE_ELASTICITY = 1.0f;
const float ENVIRONMENT_SURFACE_DAMPING = 0.01;
const float ENVIRONMENT_COLLISION_FREQUENCY = 0.05f;
glm::vec3 penetration;
if (Application::getInstance()->getEnvironment()->findCapsulePenetration(
_position - up * (_pelvisFloatingHeight - radius),
_position + up * (_height - _pelvisFloatingHeight + radius), radius, penetration)) {
_lastCollisionPosition = _position;
updateCollisionSound(penetration, deltaTime, ENVIRONMENT_COLLISION_FREQUENCY);
applyHardCollision(penetration, ENVIRONMENT_SURFACE_ELASTICITY, ENVIRONMENT_SURFACE_DAMPING);
}
}
void MyAvatar::updateCollisionWithVoxels(float deltaTime) {
float radius = _collisionRadius;
const float VOXEL_ELASTICITY = 1.4f;
const float VOXEL_DAMPING = 0.0;
const float VOXEL_COLLISION_FREQUENCY = 0.5f;
glm::vec3 penetration;
if (Application::getInstance()->getVoxels()->findCapsulePenetration(
_position - glm::vec3(0.0f, _pelvisFloatingHeight - radius, 0.0f),
_position + glm::vec3(0.0f, _height - _pelvisFloatingHeight + radius, 0.0f), radius, penetration)) {
_lastCollisionPosition = _position;
updateCollisionSound(penetration, deltaTime, VOXEL_COLLISION_FREQUENCY);
applyHardCollision(penetration, VOXEL_ELASTICITY, VOXEL_DAMPING);
}
}
void MyAvatar::applyHardCollision(const glm::vec3& penetration, float elasticity, float damping) {
//
// Update the avatar in response to a hard collision. Position will be reset exactly
// to outside the colliding surface. Velocity will be modified according to elasticity.
//
// if elasticity = 1.0, collision is inelastic.
// if elasticity > 1.0, collision is elastic.
//
_position -= penetration;
static float HALTING_VELOCITY = 0.2f;
// cancel out the velocity component in the direction of penetration
float penetrationLength = glm::length(penetration);
if (penetrationLength > EPSILON) {
_elapsedTimeSinceCollision = 0.0f;
glm::vec3 direction = penetration / penetrationLength;
_velocity -= glm::dot(_velocity, direction) * direction * elasticity;
_velocity *= glm::clamp(1.f - damping, 0.0f, 1.0f);
if ((glm::length(_velocity) < HALTING_VELOCITY) && (glm::length(_thrust) == 0.f)) {
// If moving really slowly after a collision, and not applying forces, stop altogether
_velocity *= 0.f;
}
}
}
void MyAvatar::updateCollisionSound(const glm::vec3 &penetration, float deltaTime, float frequency) {
// consider whether to have the collision make a sound
const float AUDIBLE_COLLISION_THRESHOLD = 0.02f;
const float COLLISION_LOUDNESS = 1.f;
const float DURATION_SCALING = 0.004f;
const float NOISE_SCALING = 0.1f;
glm::vec3 velocity = _velocity;
glm::vec3 gravity = getGravity();
if (glm::length(gravity) > EPSILON) {
// If gravity is on, remove the effect of gravity on velocity for this
// frame, so that we are not constantly colliding with the surface
velocity -= _scale * glm::length(gravity) * GRAVITY_EARTH * deltaTime * glm::normalize(gravity);
}
float velocityTowardCollision = glm::dot(velocity, glm::normalize(penetration));
float velocityTangentToCollision = glm::length(velocity) - velocityTowardCollision;
if (velocityTowardCollision > AUDIBLE_COLLISION_THRESHOLD) {
// Volume is proportional to collision velocity
// Base frequency is modified upward by the angle of the collision
// Noise is a function of the angle of collision
// Duration of the sound is a function of both base frequency and velocity of impact
Application::getInstance()->getAudio()->startCollisionSound(
fmin(COLLISION_LOUDNESS * velocityTowardCollision, 1.f),
frequency * (1.f + velocityTangentToCollision / velocityTowardCollision),
fmin(velocityTangentToCollision / velocityTowardCollision * NOISE_SCALING, 1.f),
1.f - DURATION_SCALING * powf(frequency, 0.5f) / velocityTowardCollision, true);
}
}
void MyAvatar::updateAvatarCollisions(float deltaTime) {
// Reset detector for nearest avatar
_distanceToNearestAvatar = std::numeric_limits<float>::max();
// loop through all the other avatars for potential interactions...
NodeList* nodeList = NodeList::getInstance();
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
if (node->getLinkedData() && node->getType() == NODE_TYPE_AGENT) {
//Avatar *otherAvatar = (Avatar *)node->getLinkedData();
//
// Placeholder: Add code here when we want to add Avatar<->Avatar collision stuff
}
}
}
class SortedAvatar {
public:
Avatar* avatar;
float distance;
glm::vec3 accumulatedCenter;
};
bool operator<(const SortedAvatar& s1, const SortedAvatar& s2) {
return s1.distance < s2.distance;
}
void MyAvatar::updateChatCircle(float deltaTime) {
if (!(_isChatCirclingEnabled = Menu::getInstance()->isOptionChecked(MenuOption::ChatCircling))) {
return;
}
// find all circle-enabled members and sort by distance
QVector<SortedAvatar> sortedAvatars;
NodeList* nodeList = NodeList::getInstance();
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
if (node->getLinkedData() && node->getType() == NODE_TYPE_AGENT) {
SortedAvatar sortedAvatar;
sortedAvatar.avatar = (Avatar*)node->getLinkedData();
if (!sortedAvatar.avatar->isChatCirclingEnabled()) {
continue;
}
sortedAvatar.distance = glm::distance(_position, sortedAvatar.avatar->getPosition());
sortedAvatars.append(sortedAvatar);
}
}
qSort(sortedAvatars.begin(), sortedAvatars.end());
// compute the accumulated centers
glm::vec3 center = _position;
for (int i = 0; i < sortedAvatars.size(); i++) {
SortedAvatar& sortedAvatar = sortedAvatars[i];
sortedAvatar.accumulatedCenter = (center += sortedAvatar.avatar->getPosition()) / (i + 2.0f);
}
// remove members whose accumulated circles are too far away to influence us
const float CIRCUMFERENCE_PER_MEMBER = 0.5f;
const float CIRCLE_INFLUENCE_SCALE = 2.0f;
const float MIN_RADIUS = 0.3f;
for (int i = sortedAvatars.size() - 1; i >= 0; i--) {
float radius = qMax(MIN_RADIUS, (CIRCUMFERENCE_PER_MEMBER * (i + 2)) / PI_TIMES_TWO);
if (glm::distance(_position, sortedAvatars[i].accumulatedCenter) > radius * CIRCLE_INFLUENCE_SCALE) {
sortedAvatars.remove(i);
} else {
break;
}
}
if (sortedAvatars.isEmpty()) {
return;
}
center = sortedAvatars.last().accumulatedCenter;
float radius = qMax(MIN_RADIUS, (CIRCUMFERENCE_PER_MEMBER * (sortedAvatars.size() + 1)) / PI_TIMES_TWO);
// compute the average up vector
glm::vec3 up = getWorldAlignedOrientation() * IDENTITY_UP;
foreach (const SortedAvatar& sortedAvatar, sortedAvatars) {
up += sortedAvatar.avatar->getWorldAlignedOrientation() * IDENTITY_UP;
}
up = glm::normalize(up);
// find reasonable corresponding right/front vectors
glm::vec3 front = glm::cross(up, IDENTITY_RIGHT);
if (glm::length(front) < EPSILON) {
front = glm::cross(up, IDENTITY_FRONT);
}
front = glm::normalize(front);
glm::vec3 right = glm::cross(front, up);
// find our angle and the angular distances to our closest neighbors
glm::vec3 delta = _position - center;
glm::vec3 projected = glm::vec3(glm::dot(right, delta), glm::dot(front, delta), 0.0f);
float myAngle = glm::length(projected) > EPSILON ? atan2f(projected.y, projected.x) : 0.0f;
float leftDistance = PI_TIMES_TWO;
float rightDistance = PI_TIMES_TWO;
foreach (const SortedAvatar& sortedAvatar, sortedAvatars) {
delta = sortedAvatar.avatar->getPosition() - center;
projected = glm::vec3(glm::dot(right, delta), glm::dot(front, delta), 0.0f);
float angle = glm::length(projected) > EPSILON ? atan2f(projected.y, projected.x) : 0.0f;
if (angle < myAngle) {
leftDistance = min(myAngle - angle, leftDistance);
rightDistance = min(PI_TIMES_TWO - (myAngle - angle), rightDistance);
} else {
leftDistance = min(PI_TIMES_TWO - (angle - myAngle), leftDistance);
rightDistance = min(angle - myAngle, rightDistance);
}
}
// if we're on top of a neighbor, we need to randomize so that they don't both go in the same direction
if (rightDistance == 0.0f && randomBoolean()) {
swap(leftDistance, rightDistance);
}
// split the difference between our neighbors
float targetAngle = myAngle + (rightDistance - leftDistance) / 4.0f;
glm::vec3 targetPosition = center + (front * sinf(targetAngle) + right * cosf(targetAngle)) * radius;
// approach the target position
const float APPROACH_RATE = 0.05f;
_position = glm::mix(_position, targetPosition, APPROACH_RATE);
}
void MyAvatar::setGravity(glm::vec3 gravity) {
_gravity = gravity;
_head.setGravity(_gravity);
// use the gravity to determine the new world up direction, if possible
float gravityLength = glm::length(gravity);
if (gravityLength > EPSILON) {
_worldUpDirection = _gravity / -gravityLength;
} else {
_worldUpDirection = DEFAULT_UP_DIRECTION;
}
}
void MyAvatar::setOrientation(const glm::quat& orientation) {
glm::vec3 eulerAngles = safeEulerAngles(orientation);
_bodyPitch = eulerAngles.x;
_bodyYaw = eulerAngles.y;
_bodyRoll = eulerAngles.z;
}