overte-JulianGro/libraries/entities-renderer/src/RenderableShapeEntityItem.cpp
2017-09-18 15:27:58 -07:00

164 lines
5.9 KiB
C++

//
// Created by Bradley Austin Davis on 2016/05/09
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "RenderableShapeEntityItem.h"
#include <glm/gtx/quaternion.hpp>
#include <gpu/Batch.h>
#include <DependencyManager.h>
#include <StencilMaskPass.h>
#include <GeometryCache.h>
#include <PerfStat.h>
#include <render-utils/simple_vert.h>
#include <render-utils/simple_frag.h>
//#define SHAPE_ENTITY_USE_FADE_EFFECT
#ifdef SHAPE_ENTITY_USE_FADE_EFFECT
#include <FadeEffect.h>
#endif
using namespace render;
using namespace render::entities;
// Sphere entities should fit inside a cube entity of the same size, so a sphere that has dimensions 1x1x1
// is a half unit sphere. However, the geometry cache renders a UNIT sphere, so we need to scale down.
static const float SPHERE_ENTITY_SCALE = 0.5f;
static std::array<GeometryCache::Shape, entity::NUM_SHAPES> MAPPING { {
GeometryCache::Triangle,
GeometryCache::Quad,
GeometryCache::Hexagon,
GeometryCache::Octagon,
GeometryCache::Circle,
GeometryCache::Cube,
GeometryCache::Sphere,
GeometryCache::Tetrahedron,
GeometryCache::Octahedron,
GeometryCache::Dodecahedron,
GeometryCache::Icosahedron,
GeometryCache::Torus,
GeometryCache::Cone,
GeometryCache::Cylinder,
} };
ShapeEntityRenderer::ShapeEntityRenderer(const EntityItemPointer& entity) : Parent(entity) {
_procedural._vertexSource = simple_vert;
_procedural._fragmentSource = simple_frag;
_procedural._opaqueState->setCullMode(gpu::State::CULL_NONE);
_procedural._opaqueState->setDepthTest(true, true, gpu::LESS_EQUAL);
PrepareStencil::testMaskDrawShape(*_procedural._opaqueState);
_procedural._opaqueState->setBlendFunction(false,
gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA,
gpu::State::FACTOR_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::ONE);
}
bool ShapeEntityRenderer::needsRenderUpdate() const {
if (_procedural.isEnabled() && _procedural.isFading()) {
return true;
}
return Parent::needsRenderUpdate();
}
bool ShapeEntityRenderer::needsRenderUpdateFromTypedEntity(const TypedEntityPointer& entity) const {
if (_lastUserData != entity->getUserData()) {
return true;
}
glm::vec4 newColor(toGlm(entity->getXColor()), entity->getLocalRenderAlpha());
if (newColor != _color) {
return true;
}
return false;
}
void ShapeEntityRenderer::doRenderUpdateSynchronousTyped(const ScenePointer& scene, Transaction& transaction, const TypedEntityPointer& entity) {
withWriteLock([&] {
auto userData = entity->getUserData();
if (_lastUserData != userData) {
_lastUserData = userData;
_procedural.setProceduralData(ProceduralData::parse(_lastUserData));
}
_color = vec4(toGlm(entity->getXColor()), entity->getLocalRenderAlpha());
});
}
void ShapeEntityRenderer::doRenderUpdateAsynchronousTyped(const TypedEntityPointer& entity) {
if (_procedural.isEnabled() && _procedural.isFading()) {
float isFading = Interpolate::calculateFadeRatio(_procedural.getFadeStartTime()) < 1.0f;
_procedural.setIsFading(isFading);
}
_shape = entity->getShape();
_position = entity->getPosition();
_dimensions = entity->getDimensions();
_orientation = entity->getOrientation();
if (_shape == entity::Sphere) {
_modelTransform.postScale(SPHERE_ENTITY_SCALE);
}
_modelTransform.postScale(_dimensions);
}
bool ShapeEntityRenderer::isTransparent() const {
if (_procedural.isEnabled() && _procedural.isFading()) {
return Interpolate::calculateFadeRatio(_procedural.getFadeStartTime()) < 1.0f;
}
// return _entity->getLocalRenderAlpha() < 1.0f || Parent::isTransparent();
return Parent::isTransparent();
}
void ShapeEntityRenderer::doRender(RenderArgs* args) {
PerformanceTimer perfTimer("RenderableShapeEntityItem::render");
Q_ASSERT(args->_batch);
gpu::Batch& batch = *args->_batch;
auto geometryShape = MAPPING[_shape];
batch.setModelTransform(_modelTransform); // use a transform with scale, rotation, registration point and translation
bool proceduralRender = false;
glm::vec4 outColor = _color;
withReadLock([&] {
if (_procedural.isReady()) {
_procedural.prepare(batch, _position, _dimensions, _orientation);
auto outColor = _procedural.getColor(_color);
outColor.a *= _procedural.isFading() ? Interpolate::calculateFadeRatio(_procedural.getFadeStartTime()) : 1.0f;
proceduralRender = true;
}
});
if (proceduralRender) {
batch._glColor4f(outColor.r, outColor.g, outColor.b, outColor.a);
if (render::ShapeKey(args->_globalShapeKey).isWireframe()) {
DependencyManager::get<GeometryCache>()->renderWireShape(batch, geometryShape);
} else {
DependencyManager::get<GeometryCache>()->renderShape(batch, geometryShape);
}
} else {
// FIXME, support instanced multi-shape rendering using multidraw indirect
_color.a *= _isFading ? Interpolate::calculateFadeRatio(_fadeStartTime) : 1.0f;
auto geometryCache = DependencyManager::get<GeometryCache>();
auto pipeline = _color.a < 1.0f ? geometryCache->getTransparentShapePipeline() : geometryCache->getOpaqueShapePipeline();
if (render::ShapeKey(args->_globalShapeKey).isWireframe()) {
geometryCache->renderWireShapeInstance(args, batch, geometryShape, _color, pipeline);
} else {
geometryCache->renderSolidShapeInstance(args, batch, geometryShape, _color, pipeline);
}
}
static const auto triCount = DependencyManager::get<GeometryCache>()->getShapeTriangleCount(geometryShape);
args->_details._trianglesRendered += (int)triCount;
}