overte-JulianGro/interface/src/avatar/SkeletonModel.cpp
Howard Stearns 964d04d24f Restore correct space for eye joint rotations.
Also, do not correct for camera position on my avatar. (That will be done by zero or one receivers.)
2015-08-10 12:34:01 -07:00

546 lines
23 KiB
C++

//
// SkeletonModel.cpp
// interface/src/avatar
//
// Created by Andrzej Kapolka on 10/17/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <glm/gtx/transform.hpp>
#include <QMultiMap>
#include <DeferredLightingEffect.h>
#include "Application.h"
#include "Avatar.h"
#include "Hand.h"
#include "Menu.h"
#include "SkeletonModel.h"
#include "Util.h"
#include "InterfaceLogging.h"
SkeletonModel::SkeletonModel(Avatar* owningAvatar, QObject* parent, RigPointer rig) :
Model(rig, parent),
_triangleFanID(DependencyManager::get<GeometryCache>()->allocateID()),
_owningAvatar(owningAvatar),
_boundingCapsuleLocalOffset(0.0f),
_boundingCapsuleRadius(0.0f),
_boundingCapsuleHeight(0.0f),
_defaultEyeModelPosition(glm::vec3(0.0f, 0.0f, 0.0f)),
_headClipDistance(DEFAULT_NEAR_CLIP)
{
assert(_rig);
assert(_owningAvatar);
}
SkeletonModel::~SkeletonModel() {
}
void SkeletonModel::initJointStates(QVector<JointState> states) {
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
int rootJointIndex = geometry.rootJointIndex;
int leftHandJointIndex = geometry.leftHandJointIndex;
int leftElbowJointIndex = leftHandJointIndex >= 0 ? geometry.joints.at(leftHandJointIndex).parentIndex : -1;
int leftShoulderJointIndex = leftElbowJointIndex >= 0 ? geometry.joints.at(leftElbowJointIndex).parentIndex : -1;
int rightHandJointIndex = geometry.rightHandJointIndex;
int rightElbowJointIndex = rightHandJointIndex >= 0 ? geometry.joints.at(rightHandJointIndex).parentIndex : -1;
int rightShoulderJointIndex = rightElbowJointIndex >= 0 ? geometry.joints.at(rightElbowJointIndex).parentIndex : -1;
_boundingRadius = _rig->initJointStates(states, parentTransform,
rootJointIndex,
leftHandJointIndex,
leftElbowJointIndex,
leftShoulderJointIndex,
rightHandJointIndex,
rightElbowJointIndex,
rightShoulderJointIndex);
// Determine the default eye position for avatar scale = 1.0
int headJointIndex = _geometry->getFBXGeometry().headJointIndex;
if (0 <= headJointIndex && headJointIndex < _rig->getJointStateCount()) {
glm::vec3 leftEyePosition, rightEyePosition;
getEyeModelPositions(leftEyePosition, rightEyePosition);
glm::vec3 midEyePosition = (leftEyePosition + rightEyePosition) / 2.0f;
int rootJointIndex = _geometry->getFBXGeometry().rootJointIndex;
glm::vec3 rootModelPosition;
getJointPosition(rootJointIndex, rootModelPosition);
_defaultEyeModelPosition = midEyePosition - rootModelPosition;
_defaultEyeModelPosition.z = -_defaultEyeModelPosition.z;
// Skeleton may have already been scaled so unscale it
_defaultEyeModelPosition = _defaultEyeModelPosition / _scale;
}
// the SkeletonModel override of updateJointState() will clear the translation part
// of its root joint and we need that done before we try to build shapes hence we
// recompute all joint transforms at this time.
for (int i = 0; i < _rig->getJointStateCount(); i++) {
_rig->updateJointState(i, parentTransform);
}
buildShapes();
Extents meshExtents = getMeshExtents();
_headClipDistance = -(meshExtents.minimum.z / _scale.z - _defaultEyeModelPosition.z);
_headClipDistance = std::max(_headClipDistance, DEFAULT_NEAR_CLIP);
_owningAvatar->rebuildSkeletonBody();
emit skeletonLoaded();
}
const float PALM_PRIORITY = DEFAULT_PRIORITY;
void SkeletonModel::updateRig(float deltaTime, glm::mat4 parentTransform) {
if (_owningAvatar->isMyAvatar()) {
_rig->computeMotionAnimationState(deltaTime, _owningAvatar->getPosition(), _owningAvatar->getVelocity(), _owningAvatar->getOrientation());
}
Model::updateRig(deltaTime, parentTransform);
if (_owningAvatar->isMyAvatar()) {
const FBXGeometry& geometry = _geometry->getFBXGeometry();
Rig::HeadParameters params;
params.modelRotation = getRotation();
params.modelTranslation = getTranslation();
params.leanSideways = _owningAvatar->getHead()->getFinalLeanSideways();
params.leanForward = _owningAvatar->getHead()->getFinalLeanSideways();
params.torsoTwist = _owningAvatar->getHead()->getTorsoTwist();
params.localHeadOrientation = _owningAvatar->getHead()->getFinalOrientationInLocalFrame();
params.worldHeadOrientation = _owningAvatar->getHead()->getFinalOrientationInWorldFrame();
params.eyeLookAt = _owningAvatar->getHead()->getLookAtPosition();
params.eyeSaccade = _owningAvatar->getHead()->getSaccade();
params.leanJointIndex = geometry.leanJointIndex;
params.neckJointIndex = geometry.neckJointIndex;
params.leftEyeJointIndex = geometry.leftEyeJointIndex;
params.rightEyeJointIndex = geometry.rightEyeJointIndex;
_rig->updateFromHeadParameters(params);
}
}
void SkeletonModel::simulate(float deltaTime, bool fullUpdate) {
setTranslation(_owningAvatar->getSkeletonPosition());
static const glm::quat refOrientation = glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f));
setRotation(_owningAvatar->getOrientation() * refOrientation);
setScale(glm::vec3(1.0f, 1.0f, 1.0f) * _owningAvatar->getScale());
setBlendshapeCoefficients(_owningAvatar->getHead()->getBlendshapeCoefficients());
Model::simulate(deltaTime, fullUpdate);
if (!isActive() || !_owningAvatar->isMyAvatar()) {
return; // only simulate for own avatar
}
MyAvatar* myAvatar = static_cast<MyAvatar*>(_owningAvatar);
if (myAvatar->isPlaying()) {
// Don't take inputs if playing back a recording.
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
// find the left and rightmost active palms
int leftPalmIndex, rightPalmIndex;
Hand* hand = _owningAvatar->getHand();
hand->getLeftRightPalmIndices(leftPalmIndex, rightPalmIndex);
const float HAND_RESTORATION_RATE = 0.25f;
if (leftPalmIndex == -1 && rightPalmIndex == -1) {
// palms are not yet set, use mouse
if (_owningAvatar->getHandState() == HAND_STATE_NULL) {
restoreRightHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
} else {
// transform into model-frame
glm::vec3 handPosition = glm::inverse(_rotation) * (_owningAvatar->getHandPosition() - _translation);
applyHandPosition(geometry.rightHandJointIndex, handPosition);
}
restoreLeftHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
} else if (leftPalmIndex == rightPalmIndex) {
// right hand only
applyPalmData(geometry.rightHandJointIndex, hand->getPalms()[leftPalmIndex]);
restoreLeftHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
} else {
if (leftPalmIndex != -1) {
applyPalmData(geometry.leftHandJointIndex, hand->getPalms()[leftPalmIndex]);
} else {
restoreLeftHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
}
if (rightPalmIndex != -1) {
applyPalmData(geometry.rightHandJointIndex, hand->getPalms()[rightPalmIndex]);
} else {
restoreRightHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
}
}
}
void SkeletonModel::renderIKConstraints(gpu::Batch& batch) {
renderJointConstraints(batch, getRightHandJointIndex());
renderJointConstraints(batch, getLeftHandJointIndex());
}
class IndexValue {
public:
int index;
float value;
};
bool operator<(const IndexValue& firstIndex, const IndexValue& secondIndex) {
return firstIndex.value < secondIndex.value;
}
void SkeletonModel::applyHandPosition(int jointIndex, const glm::vec3& position) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
// NOTE: 'position' is in model-frame
setJointPosition(jointIndex, position, glm::quat(), false, -1, false, glm::vec3(0.0f, -1.0f, 0.0f), PALM_PRIORITY);
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::vec3 handPosition, elbowPosition;
getJointPosition(jointIndex, handPosition);
getJointPosition(geometry.joints.at(jointIndex).parentIndex, elbowPosition);
glm::vec3 forearmVector = handPosition - elbowPosition;
float forearmLength = glm::length(forearmVector);
if (forearmLength < EPSILON) {
return;
}
glm::quat handRotation;
if (!_rig->getJointStateRotation(jointIndex, handRotation)) {
return;
}
// align hand with forearm
float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f;
_rig->applyJointRotationDelta(jointIndex,
rotationBetween(handRotation * glm::vec3(-sign, 0.0f, 0.0f), forearmVector),
true, PALM_PRIORITY);
}
void SkeletonModel::applyPalmData(int jointIndex, PalmData& palm) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f;
int parentJointIndex = geometry.joints.at(jointIndex).parentIndex;
if (parentJointIndex == -1) {
return;
}
// rotate palm to align with its normal (normal points out of hand's palm)
glm::quat inverseRotation = glm::inverse(_rotation);
glm::vec3 palmPosition = inverseRotation * (palm.getPosition() - _translation);
glm::vec3 palmNormal = inverseRotation * palm.getNormal();
glm::vec3 fingerDirection = inverseRotation * palm.getFingerDirection();
glm::quat palmRotation = rotationBetween(geometry.palmDirection, palmNormal);
palmRotation = rotationBetween(palmRotation * glm::vec3(-sign, 0.0f, 0.0f), fingerDirection) * palmRotation;
if (Menu::getInstance()->isOptionChecked(MenuOption::AlternateIK)) {
_rig->setHandPosition(jointIndex, palmPosition, palmRotation, extractUniformScale(_scale), PALM_PRIORITY);
} else if (Menu::getInstance()->isOptionChecked(MenuOption::AlignForearmsWithWrists)) {
float forearmLength = geometry.joints.at(jointIndex).distanceToParent * extractUniformScale(_scale);
glm::vec3 forearm = palmRotation * glm::vec3(sign * forearmLength, 0.0f, 0.0f);
setJointPosition(parentJointIndex, palmPosition + forearm,
glm::quat(), false, -1, false, glm::vec3(0.0f, -1.0f, 0.0f), PALM_PRIORITY);
_rig->setJointRotationInBindFrame(parentJointIndex, palmRotation, PALM_PRIORITY);
// lock hand to forearm by slamming its rotation (in parent-frame) to identity
_rig->setJointRotationInConstrainedFrame(jointIndex, glm::quat(), PALM_PRIORITY);
} else {
inverseKinematics(jointIndex, palmPosition, palmRotation, PALM_PRIORITY);
}
}
void SkeletonModel::renderJointConstraints(gpu::Batch& batch, int jointIndex) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
const float BASE_DIRECTION_SIZE = 0.3f;
float directionSize = BASE_DIRECTION_SIZE * extractUniformScale(_scale);
// FIXME: THe line width of 3.0f is not supported anymore, we ll need a workaround
do {
const FBXJoint& joint = geometry.joints.at(jointIndex);
const JointState& jointState = _rig->getJointState(jointIndex);
glm::vec3 position = _rotation * jointState.getPosition() + _translation;
glm::quat parentRotation = (joint.parentIndex == -1) ?
_rotation :
_rotation * _rig->getJointState(joint.parentIndex).getRotation();
float fanScale = directionSize * 0.75f;
Transform transform = Transform();
transform.setTranslation(position);
transform.setRotation(parentRotation);
transform.setScale(fanScale);
batch.setModelTransform(transform);
const int AXIS_COUNT = 3;
auto geometryCache = DependencyManager::get<GeometryCache>();
for (int i = 0; i < AXIS_COUNT; i++) {
if (joint.rotationMin[i] <= -PI + EPSILON && joint.rotationMax[i] >= PI - EPSILON) {
continue; // unconstrained
}
glm::vec3 axis;
axis[i] = 1.0f;
glm::vec3 otherAxis;
if (i == 0) {
otherAxis.y = 1.0f;
} else {
otherAxis.x = 1.0f;
}
glm::vec4 color(otherAxis.r, otherAxis.g, otherAxis.b, 0.75f);
QVector<glm::vec3> points;
points << glm::vec3(0.0f, 0.0f, 0.0f);
const int FAN_SEGMENTS = 16;
for (int j = 0; j < FAN_SEGMENTS; j++) {
glm::vec3 rotated = glm::angleAxis(glm::mix(joint.rotationMin[i], joint.rotationMax[i],
(float)j / (FAN_SEGMENTS - 1)), axis) * otherAxis;
points << rotated;
}
// TODO: this is really inefficient constantly recreating these vertices buffers. It would be
// better if the skeleton model cached these buffers for each of the joints they are rendering
geometryCache->updateVertices(_triangleFanID, points, color);
geometryCache->renderVertices(batch, gpu::TRIANGLE_FAN, _triangleFanID);
}
renderOrientationDirections(batch, jointIndex, position, _rotation * jointState.getRotation(), directionSize);
jointIndex = joint.parentIndex;
} while (jointIndex != -1 && geometry.joints.at(jointIndex).isFree);
}
void SkeletonModel::renderOrientationDirections(gpu::Batch& batch, int jointIndex,
glm::vec3 position, const glm::quat& orientation, float size) {
auto geometryCache = DependencyManager::get<GeometryCache>();
if (!_jointOrientationLines.contains(jointIndex)) {
OrientationLineIDs jointLineIDs;
jointLineIDs._up = geometryCache->allocateID();
jointLineIDs._front = geometryCache->allocateID();
jointLineIDs._right = geometryCache->allocateID();
_jointOrientationLines[jointIndex] = jointLineIDs;
}
OrientationLineIDs& jointLineIDs = _jointOrientationLines[jointIndex];
glm::vec3 pRight = position + orientation * IDENTITY_RIGHT * size;
glm::vec3 pUp = position + orientation * IDENTITY_UP * size;
glm::vec3 pFront = position + orientation * IDENTITY_FRONT * size;
glm::vec3 red(1.0f, 0.0f, 0.0f);
geometryCache->renderLine(batch, position, pRight, red, jointLineIDs._right);
glm::vec3 green(0.0f, 1.0f, 0.0f);
geometryCache->renderLine(batch, position, pUp, green, jointLineIDs._up);
glm::vec3 blue(0.0f, 0.0f, 1.0f);
geometryCache->renderLine(batch, position, pFront, blue, jointLineIDs._front);
}
bool SkeletonModel::getLeftHandPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getLeftHandJointIndex(), position);
}
bool SkeletonModel::getRightHandPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getRightHandJointIndex(), position);
}
bool SkeletonModel::restoreLeftHandPosition(float fraction, float priority) {
return restoreJointPosition(getLeftHandJointIndex(), fraction, priority);
}
bool SkeletonModel::getLeftShoulderPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getLastFreeJointIndex(getLeftHandJointIndex()), position);
}
float SkeletonModel::getLeftArmLength() const {
return getLimbLength(getLeftHandJointIndex());
}
bool SkeletonModel::restoreRightHandPosition(float fraction, float priority) {
return restoreJointPosition(getRightHandJointIndex(), fraction, priority);
}
bool SkeletonModel::getRightShoulderPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getLastFreeJointIndex(getRightHandJointIndex()), position);
}
float SkeletonModel::getRightArmLength() const {
return getLimbLength(getRightHandJointIndex());
}
bool SkeletonModel::getHeadPosition(glm::vec3& headPosition) const {
return isActive() && getJointPositionInWorldFrame(_geometry->getFBXGeometry().headJointIndex, headPosition);
}
bool SkeletonModel::getNeckPosition(glm::vec3& neckPosition) const {
return isActive() && getJointPositionInWorldFrame(_geometry->getFBXGeometry().neckJointIndex, neckPosition);
}
bool SkeletonModel::getNeckParentRotationFromDefaultOrientation(glm::quat& neckParentRotation) const {
if (!isActive()) {
return false;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (geometry.neckJointIndex == -1) {
return false;
}
int parentIndex = geometry.joints.at(geometry.neckJointIndex).parentIndex;
glm::quat worldFrameRotation;
bool success = getJointRotationInWorldFrame(parentIndex, worldFrameRotation);
if (success) {
neckParentRotation = worldFrameRotation * _rig->getJointState(parentIndex).getInverseDefaultRotation();
}
return success;
}
bool SkeletonModel::getEyeModelPositions(glm::vec3& firstEyePosition, glm::vec3& secondEyePosition) const {
if (!isActive()) {
return false;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (getJointPosition(geometry.leftEyeJointIndex, firstEyePosition) &&
getJointPosition(geometry.rightEyeJointIndex, secondEyePosition)) {
return true;
}
// no eye joints; try to estimate based on head/neck joints
glm::vec3 neckPosition, headPosition;
if (getJointPosition(geometry.neckJointIndex, neckPosition) &&
getJointPosition(geometry.headJointIndex, headPosition)) {
const float EYE_PROPORTION = 0.6f;
glm::vec3 baseEyePosition = glm::mix(neckPosition, headPosition, EYE_PROPORTION);
glm::quat headRotation;
getJointRotation(geometry.headJointIndex, headRotation);
const float EYES_FORWARD = 0.25f;
const float EYE_SEPARATION = 0.1f;
float headHeight = glm::distance(neckPosition, headPosition);
firstEyePosition = baseEyePosition + headRotation * glm::vec3(EYE_SEPARATION, 0.0f, EYES_FORWARD) * headHeight;
secondEyePosition = baseEyePosition + headRotation * glm::vec3(-EYE_SEPARATION, 0.0f, EYES_FORWARD) * headHeight;
return true;
}
return false;
}
bool SkeletonModel::getEyePositions(glm::vec3& firstEyePosition, glm::vec3& secondEyePosition) const {
if (getEyeModelPositions(firstEyePosition, secondEyePosition)) {
firstEyePosition = _translation + _rotation * firstEyePosition;
secondEyePosition = _translation + _rotation * secondEyePosition;
return true;
}
return false;
}
glm::vec3 SkeletonModel::getDefaultEyeModelPosition() const {
return _owningAvatar->getScale() * _defaultEyeModelPosition;
}
float DENSITY_OF_WATER = 1000.0f; // kg/m^3
float MIN_JOINT_MASS = 1.0f;
float VERY_BIG_MASS = 1.0e6f;
// virtual
void SkeletonModel::buildShapes() {
if (_geometry == NULL || _rig->jointStatesEmpty()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (geometry.joints.isEmpty() || geometry.rootJointIndex == -1) {
// rootJointIndex == -1 if the avatar model has no skeleton
return;
}
computeBoundingShape(geometry);
}
void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
// compute default joint transforms
int numStates = _rig->getJointStateCount();
QVector<glm::mat4> transforms;
transforms.fill(glm::mat4(), numStates);
// compute bounding box that encloses all shapes
Extents totalExtents;
totalExtents.reset();
totalExtents.addPoint(glm::vec3(0.0f));
for (int i = 0; i < numStates; i++) {
// compute the default transform of this joint
const JointState& state = _rig->getJointState(i);
int parentIndex = state.getParentIndex();
if (parentIndex == -1) {
transforms[i] = _rig->getJointTransform(i);
} else {
glm::quat modifiedRotation = state.getPreRotation() * state.getDefaultRotation() * state.getPostRotation();
transforms[i] = transforms[parentIndex] * glm::translate(state.getTranslation())
* state.getPreTransform() * glm::mat4_cast(modifiedRotation) * state.getPostTransform();
}
// Each joint contributes a sphere at its position
glm::vec3 axis(state.getBoneRadius());
glm::vec3 jointPosition = extractTranslation(transforms[i]);
totalExtents.addPoint(jointPosition + axis);
totalExtents.addPoint(jointPosition - axis);
}
// compute bounding shape parameters
// NOTE: we assume that the longest side of totalExtents is the yAxis...
glm::vec3 diagonal = totalExtents.maximum - totalExtents.minimum;
// ... and assume the radius is half the RMS of the X and Z sides:
_boundingCapsuleRadius = 0.5f * sqrtf(0.5f * (diagonal.x * diagonal.x + diagonal.z * diagonal.z));
_boundingCapsuleHeight = diagonal.y - 2.0f * _boundingCapsuleRadius;
glm::vec3 rootPosition = _rig->getJointState(geometry.rootJointIndex).getPosition();
_boundingCapsuleLocalOffset = 0.5f * (totalExtents.maximum + totalExtents.minimum) - rootPosition;
_boundingRadius = 0.5f * glm::length(diagonal);
}
void SkeletonModel::renderBoundingCollisionShapes(gpu::Batch& batch, float alpha) {
const int BALL_SUBDIVISIONS = 10;
auto geometryCache = DependencyManager::get<GeometryCache>();
auto deferredLighting = DependencyManager::get<DeferredLightingEffect>();
Transform transform; // = Transform();
// draw a blue sphere at the capsule top point
glm::vec3 topPoint = _translation + _boundingCapsuleLocalOffset + (0.5f * _boundingCapsuleHeight) * glm::vec3(0.0f, 1.0f, 0.0f);
transform.setTranslation(topPoint);
batch.setModelTransform(transform);
deferredLighting->bindSimpleProgram(batch);
geometryCache->renderSphere(batch, _boundingCapsuleRadius, BALL_SUBDIVISIONS, BALL_SUBDIVISIONS,
glm::vec4(0.6f, 0.6f, 0.8f, alpha));
// draw a yellow sphere at the capsule bottom point
glm::vec3 bottomPoint = topPoint - glm::vec3(0.0f, -_boundingCapsuleHeight, 0.0f);
glm::vec3 axis = topPoint - bottomPoint;
transform.setTranslation(bottomPoint);
batch.setModelTransform(transform);
deferredLighting->bindSimpleProgram(batch);
geometryCache->renderSphere(batch, _boundingCapsuleRadius, BALL_SUBDIVISIONS, BALL_SUBDIVISIONS,
glm::vec4(0.8f, 0.8f, 0.6f, alpha));
// draw a green cylinder between the two points
glm::vec3 origin(0.0f);
Avatar::renderJointConnectingCone(batch, origin, axis, _boundingCapsuleRadius, _boundingCapsuleRadius,
glm::vec4(0.6f, 0.8f, 0.6f, alpha));
}
bool SkeletonModel::hasSkeleton() {
return isActive() ? _geometry->getFBXGeometry().rootJointIndex != -1 : false;
}
void SkeletonModel::onInvalidate() {
}