overte-JulianGro/libraries/render-utils/src/GeometryCache.cpp

2130 lines
93 KiB
C++

//
// GeometryCache.cpp
// interface/src/renderer
//
// Created by Andrzej Kapolka on 6/21/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "GeometryCache.h"
#include <cmath>
#include <QNetworkReply>
#include <QThreadPool>
#include <FSTReader.h>
#include <NumericalConstants.h>
#include <gpu/GLBackend.h>
#include "TextureCache.h"
#include "RenderUtilsLogging.h"
#include "standardTransformPNTC_vert.h"
#include "standardDrawTexture_frag.h"
#include "gpu/StandardShaderLib.h"
#include "model/TextureStorage.h"
//#define WANT_DEBUG
const int GeometryCache::UNKNOWN_ID = -1;
GeometryCache::GeometryCache() :
_nextID(0)
{
const qint64 GEOMETRY_DEFAULT_UNUSED_MAX_SIZE = DEFAULT_UNUSED_MAX_SIZE;
setUnusedResourceCacheSize(GEOMETRY_DEFAULT_UNUSED_MAX_SIZE);
}
GeometryCache::~GeometryCache() {
#ifdef WANT_DEBUG
qCDebug(renderutils) << "GeometryCache::~GeometryCache()... ";
qCDebug(renderutils) << " _registeredLine3DVBOs.size():" << _registeredLine3DVBOs.size();
qCDebug(renderutils) << " _line3DVBOs.size():" << _line3DVBOs.size();
qCDebug(renderutils) << " BatchItemDetails... population:" << GeometryCache::BatchItemDetails::population;
#endif //def WANT_DEBUG
}
QSharedPointer<Resource> GeometryCache::createResource(const QUrl& url, const QSharedPointer<Resource>& fallback,
bool delayLoad, const void* extra) {
// NetworkGeometry is no longer a subclass of Resource, but requires this method because, it is pure virtual.
assert(false);
return QSharedPointer<Resource>();
}
const int NUM_VERTICES_PER_TRIANGLE = 3;
const int NUM_TRIANGLES_PER_QUAD = 2;
const int NUM_VERTICES_PER_TRIANGULATED_QUAD = NUM_VERTICES_PER_TRIANGLE * NUM_TRIANGLES_PER_QUAD;
const int NUM_COORDS_PER_VERTEX = 3;
void GeometryCache::renderSphere(gpu::Batch& batch, float radius, int slices, int stacks, const glm::vec4& color, bool solid, int id) {
bool registered = (id != UNKNOWN_ID);
Vec2Pair radiusKey(glm::vec2(radius, slices), glm::vec2(stacks, 0));
IntPair slicesStacksKey(slices, stacks);
Vec3Pair colorKey(glm::vec3(color.x, color.y, slices), glm::vec3(color.z, color.w, stacks));
int vertices = slices * (stacks - 1) + 2;
int indices = slices * (stacks - 1) * NUM_VERTICES_PER_TRIANGULATED_QUAD;
if ((registered && (!_registeredSphereVertices.contains(id) || _lastRegisteredSphereVertices[id] != radiusKey))
|| (!registered && !_sphereVertices.contains(radiusKey))) {
if (registered && _registeredSphereVertices.contains(id)) {
_registeredSphereVertices[id].reset();
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderSphere()... RELEASING REGISTERED VERTICES BUFFER";
#endif
}
auto verticesBuffer = std::make_shared<gpu::Buffer>();
if (registered) {
_registeredSphereVertices[id] = verticesBuffer;
_lastRegisteredSphereVertices[id] = radiusKey;
} else {
_sphereVertices[radiusKey] = verticesBuffer;
}
GLfloat* vertexData = new GLfloat[vertices * NUM_COORDS_PER_VERTEX];
GLfloat* vertex = vertexData;
// south pole
*(vertex++) = 0.0f;
*(vertex++) = 0.0f;
*(vertex++) = -1.0f * radius;
//add stacks vertices climbing up Y axis
for (int i = 1; i < stacks; i++) {
float phi = PI * (float)i / (float)(stacks) - PI_OVER_TWO;
float z = sinf(phi) * radius;
float stackRadius = cosf(phi) * radius;
for (int j = 0; j < slices; j++) {
float theta = TWO_PI * (float)j / (float)slices;
*(vertex++) = sinf(theta) * stackRadius;
*(vertex++) = cosf(theta) * stackRadius;
*(vertex++) = z;
}
}
// north pole
*(vertex++) = 0.0f;
*(vertex++) = 0.0f;
*(vertex++) = 1.0f * radius;
verticesBuffer->append(sizeof(GLfloat) * vertices * NUM_COORDS_PER_VERTEX, (gpu::Byte*) vertexData);
delete[] vertexData;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "GeometryCache::renderSphere()... --- CREATING VERTICES BUFFER";
qCDebug(renderutils) << " radius:" << radius;
qCDebug(renderutils) << " slices:" << slices;
qCDebug(renderutils) << " stacks:" << stacks;
qCDebug(renderutils) << " _sphereVertices.size():" << _sphereVertices.size();
#endif
}
#ifdef WANT_DEBUG
else if (registered) {
qCDebug(renderutils) << "renderSphere()... REUSING PREVIOUSLY REGISTERED VERTICES BUFFER";
}
#endif
if ((registered && (!_registeredSphereIndices.contains(id) || _lastRegisteredSphereIndices[id] != slicesStacksKey))
|| (!registered && !_sphereIndices.contains(slicesStacksKey))) {
if (registered && _registeredSphereIndices.contains(id)) {
_registeredSphereIndices[id].reset();
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderSphere()... RELEASING REGISTERED INDICES BUFFER";
#endif
}
auto indicesBuffer = std::make_shared<gpu::Buffer>();
if (registered) {
_registeredSphereIndices[id] = indicesBuffer;
_lastRegisteredSphereIndices[id] = slicesStacksKey;
} else {
_sphereIndices[slicesStacksKey] = indicesBuffer;
}
GLushort* indexData = new GLushort[indices];
GLushort* index = indexData;
int indexCount = 0;
// South cap
GLushort bottom = 0;
GLushort top = 1;
for (int i = 0; i < slices; i++) {
*(index++) = bottom;
*(index++) = top + i;
*(index++) = top + (i + 1) % slices;
indexCount += 3;
}
// (stacks - 2) ribbons
for (int i = 0; i < stacks - 2; i++) {
bottom = i * slices + 1;
top = bottom + slices;
for (int j = 0; j < slices; j++) {
int next = (j + 1) % slices;
*(index++) = top + next;
*(index++) = bottom + j;
*(index++) = top + j;
indexCount += 3;
*(index++) = bottom + next;
*(index++) = bottom + j;
*(index++) = top + next;
indexCount += 3;
}
}
// north cap
bottom = (stacks - 2) * slices + 1;
top = bottom + slices;
for (int i = 0; i < slices; i++) {
*(index++) = bottom + (i + 1) % slices;
*(index++) = bottom + i;
*(index++) = top;
indexCount += 3;
}
indicesBuffer->append(sizeof(GLushort) * indices, (gpu::Byte*) indexData);
delete[] indexData;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "GeometryCache::renderSphere()... --- CREATING INDICES BUFFER";
qCDebug(renderutils) << " radius:" << radius;
qCDebug(renderutils) << " slices:" << slices;
qCDebug(renderutils) << " stacks:" << stacks;
qCDebug(renderutils) << "indexCount:" << indexCount;
qCDebug(renderutils) << " indices:" << indices;
qCDebug(renderutils) << " _sphereIndices.size():" << _sphereIndices.size();
#endif
}
#ifdef WANT_DEBUG
else if (registered) {
qCDebug(renderutils) << "renderSphere()... REUSING PREVIOUSLY REGISTERED INDICES BUFFER";
}
#endif
if ((registered && (!_registeredSphereColors.contains(id) || _lastRegisteredSphereColors[id] != colorKey))
|| (!registered && !_sphereColors.contains(colorKey))) {
if (registered && _registeredSphereColors.contains(id)) {
_registeredSphereColors[id].reset();
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderSphere()... RELEASING REGISTERED COLORS BUFFER";
#endif
}
auto colorBuffer = std::make_shared<gpu::Buffer>();
if (registered) {
_registeredSphereColors[id] = colorBuffer;
_lastRegisteredSphereColors[id] = colorKey;
} else {
_sphereColors[colorKey] = colorBuffer;
}
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int* colorData = new int[vertices];
int* colorDataAt = colorData;
for(int v = 0; v < vertices; v++) {
*(colorDataAt++) = compactColor;
}
colorBuffer->append(sizeof(int) * vertices, (gpu::Byte*) colorData);
delete[] colorData;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "GeometryCache::renderSphere()... --- CREATING COLORS BUFFER";
qCDebug(renderutils) << " vertices:" << vertices;
qCDebug(renderutils) << " color:" << color;
qCDebug(renderutils) << " slices:" << slices;
qCDebug(renderutils) << " stacks:" << stacks;
qCDebug(renderutils) << " _sphereColors.size():" << _sphereColors.size();
#endif
}
#ifdef WANT_DEBUG
else if (registered) {
qCDebug(renderutils) << "renderSphere()... REUSING PREVIOUSLY REGISTERED COLORS BUFFER";
}
#endif
gpu::BufferPointer verticesBuffer = registered ? _registeredSphereVertices[id] : _sphereVertices[radiusKey];
gpu::BufferPointer indicesBuffer = registered ? _registeredSphereIndices[id] : _sphereIndices[slicesStacksKey];
gpu::BufferPointer colorBuffer = registered ? _registeredSphereColors[id] : _sphereColors[colorKey];
const int VERTICES_SLOT = 0;
const int NORMALS_SLOT = 1;
const int COLOR_SLOT = 2;
static gpu::Stream::FormatPointer streamFormat;
static gpu::Element positionElement, normalElement, colorElement;
if (!streamFormat) {
streamFormat = std::make_shared<gpu::Stream::Format>(); // 1 for everyone
streamFormat->setAttribute(gpu::Stream::POSITION, VERTICES_SLOT, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
streamFormat->setAttribute(gpu::Stream::NORMAL, NORMALS_SLOT, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_SLOT, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
positionElement = streamFormat->getAttributes().at(gpu::Stream::POSITION)._element;
normalElement = streamFormat->getAttributes().at(gpu::Stream::NORMAL)._element;
colorElement = streamFormat->getAttributes().at(gpu::Stream::COLOR)._element;
}
gpu::BufferView verticesView(verticesBuffer, positionElement);
gpu::BufferView normalsView(verticesBuffer, normalElement);
gpu::BufferView colorView(colorBuffer, colorElement);
batch.setInputFormat(streamFormat);
batch.setInputBuffer(VERTICES_SLOT, verticesView);
batch.setInputBuffer(NORMALS_SLOT, normalsView);
batch.setInputBuffer(COLOR_SLOT, colorView);
batch.setIndexBuffer(gpu::UINT16, indicesBuffer, 0);
if (solid) {
batch.drawIndexed(gpu::TRIANGLES, indices);
} else {
batch.drawIndexed(gpu::LINES, indices);
}
}
void GeometryCache::renderGrid(gpu::Batch& batch, int xDivisions, int yDivisions, const glm::vec4& color) {
IntPair key(xDivisions, yDivisions);
Vec3Pair colorKey(glm::vec3(color.x, color.y, yDivisions), glm::vec3(color.z, color.y, xDivisions));
int vertices = (xDivisions + 1 + yDivisions + 1) * 2;
if (!_gridBuffers.contains(key)) {
auto verticesBuffer = std::make_shared<gpu::Buffer>();
GLfloat* vertexData = new GLfloat[vertices * 2];
GLfloat* vertex = vertexData;
for (int i = 0; i <= xDivisions; i++) {
float x = (float)i / xDivisions;
*(vertex++) = x;
*(vertex++) = 0.0f;
*(vertex++) = x;
*(vertex++) = 1.0f;
}
for (int i = 0; i <= yDivisions; i++) {
float y = (float)i / yDivisions;
*(vertex++) = 0.0f;
*(vertex++) = y;
*(vertex++) = 1.0f;
*(vertex++) = y;
}
verticesBuffer->append(sizeof(GLfloat) * vertices * 2, (gpu::Byte*) vertexData);
delete[] vertexData;
_gridBuffers[key] = verticesBuffer;
}
if (!_gridColors.contains(colorKey)) {
auto colorBuffer = std::make_shared<gpu::Buffer>();
_gridColors[colorKey] = colorBuffer;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int* colorData = new int[vertices];
int* colorDataAt = colorData;
for(int v = 0; v < vertices; v++) {
*(colorDataAt++) = compactColor;
}
colorBuffer->append(sizeof(int) * vertices, (gpu::Byte*) colorData);
delete[] colorData;
}
gpu::BufferPointer verticesBuffer = _gridBuffers[key];
gpu::BufferPointer colorBuffer = _gridColors[colorKey];
const int VERTICES_SLOT = 0;
const int COLOR_SLOT = 1;
auto streamFormat = std::make_shared<gpu::Stream::Format>(); // 1 for everyone
streamFormat->setAttribute(gpu::Stream::POSITION, VERTICES_SLOT, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0);
streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_SLOT, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
gpu::BufferView verticesView(verticesBuffer, 0, verticesBuffer->getSize(), streamFormat->getAttributes().at(gpu::Stream::POSITION)._element);
gpu::BufferView colorView(colorBuffer, streamFormat->getAttributes().at(gpu::Stream::COLOR)._element);
batch.setInputFormat(streamFormat);
batch.setInputBuffer(VERTICES_SLOT, verticesView);
batch.setInputBuffer(COLOR_SLOT, colorView);
batch.draw(gpu::LINES, vertices, 0);
}
// TODO: why do we seem to create extra BatchItemDetails when we resize the window?? what's that??
void GeometryCache::renderGrid(gpu::Batch& batch, int x, int y, int width, int height, int rows, int cols, const glm::vec4& color, int id) {
#ifdef WANT_DEBUG
qCDebug(renderutils) << "GeometryCache::renderGrid(x["<<x<<"], "
"y["<<y<<"],"
"w["<<width<<"],"
"h["<<height<<"],"
"rows["<<rows<<"],"
"cols["<<cols<<"],"
" id:"<<id<<")...";
#endif
bool registered = (id != UNKNOWN_ID);
Vec3Pair key(glm::vec3(x, y, width), glm::vec3(height, rows, cols));
Vec3Pair colorKey(glm::vec3(color.x, color.y, rows), glm::vec3(color.z, color.y, cols));
int vertices = (cols + 1 + rows + 1) * 2;
if ((registered && (!_registeredAlternateGridBuffers.contains(id) || _lastRegisteredAlternateGridBuffers[id] != key))
|| (!registered && !_alternateGridBuffers.contains(key))) {
if (registered && _registeredAlternateGridBuffers.contains(id)) {
_registeredAlternateGridBuffers[id].reset();
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderGrid()... RELEASING REGISTERED VERTICES BUFFER";
#endif
}
auto verticesBuffer = std::make_shared<gpu::Buffer>();
if (registered) {
_registeredAlternateGridBuffers[id] = verticesBuffer;
_lastRegisteredAlternateGridBuffers[id] = key;
} else {
_alternateGridBuffers[key] = verticesBuffer;
}
GLfloat* vertexData = new GLfloat[vertices * 2];
GLfloat* vertex = vertexData;
int dx = width / cols;
int dy = height / rows;
int tx = x;
int ty = y;
// Draw horizontal grid lines
for (int i = rows + 1; --i >= 0; ) {
*(vertex++) = x;
*(vertex++) = ty;
*(vertex++) = x + width;
*(vertex++) = ty;
ty += dy;
}
// Draw vertical grid lines
for (int i = cols + 1; --i >= 0; ) {
*(vertex++) = tx;
*(vertex++) = y;
*(vertex++) = tx;
*(vertex++) = y + height;
tx += dx;
}
verticesBuffer->append(sizeof(GLfloat) * vertices * 2, (gpu::Byte*) vertexData);
delete[] vertexData;
}
if (!_gridColors.contains(colorKey)) {
auto colorBuffer = std::make_shared<gpu::Buffer>();
_gridColors[colorKey] = colorBuffer;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int* colorData = new int[vertices];
int* colorDataAt = colorData;
for(int v = 0; v < vertices; v++) {
*(colorDataAt++) = compactColor;
}
colorBuffer->append(sizeof(int) * vertices, (gpu::Byte*) colorData);
delete[] colorData;
}
gpu::BufferPointer verticesBuffer = registered ? _registeredAlternateGridBuffers[id] : _alternateGridBuffers[key];
gpu::BufferPointer colorBuffer = _gridColors[colorKey];
const int VERTICES_SLOT = 0;
const int COLOR_SLOT = 1;
auto streamFormat = std::make_shared<gpu::Stream::Format>(); // 1 for everyone
streamFormat->setAttribute(gpu::Stream::POSITION, VERTICES_SLOT, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0);
streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_SLOT, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
gpu::BufferView verticesView(verticesBuffer, 0, verticesBuffer->getSize(), streamFormat->getAttributes().at(gpu::Stream::POSITION)._element);
gpu::BufferView colorView(colorBuffer, streamFormat->getAttributes().at(gpu::Stream::COLOR)._element);
batch.setInputFormat(streamFormat);
batch.setInputBuffer(VERTICES_SLOT, verticesView);
batch.setInputBuffer(COLOR_SLOT, colorView);
batch.draw(gpu::LINES, vertices, 0);
}
void GeometryCache::updateVertices(int id, const QVector<glm::vec2>& points, const glm::vec4& color) {
BatchItemDetails& details = _registeredVertices[id];
if (details.isCreated) {
details.clear();
#ifdef WANT_DEBUG
qCDebug(renderutils) << "updateVertices()... RELEASING REGISTERED";
#endif // def WANT_DEBUG
}
const int FLOATS_PER_VERTEX = 2;
details.isCreated = true;
details.vertices = points.size();
details.vertexSize = FLOATS_PER_VERTEX;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
details.vertices = points.size();
details.vertexSize = FLOATS_PER_VERTEX;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
GLfloat* vertexData = new GLfloat[details.vertices * FLOATS_PER_VERTEX];
GLfloat* vertex = vertexData;
int* colorData = new int[details.vertices];
int* colorDataAt = colorData;
foreach (const glm::vec2& point, points) {
*(vertex++) = point.x;
*(vertex++) = point.y;
*(colorDataAt++) = compactColor;
}
details.verticesBuffer->append(sizeof(GLfloat) * FLOATS_PER_VERTEX * details.vertices, (gpu::Byte*) vertexData);
details.colorBuffer->append(sizeof(int) * details.vertices, (gpu::Byte*) colorData);
delete[] vertexData;
delete[] colorData;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "new registered linestrip buffer made -- _registeredVertices.size():" << _registeredVertices.size();
#endif
}
void GeometryCache::updateVertices(int id, const QVector<glm::vec3>& points, const glm::vec4& color) {
BatchItemDetails& details = _registeredVertices[id];
if (details.isCreated) {
details.clear();
#ifdef WANT_DEBUG
qCDebug(renderutils) << "updateVertices()... RELEASING REGISTERED";
#endif // def WANT_DEBUG
}
const int FLOATS_PER_VERTEX = 3;
details.isCreated = true;
details.vertices = points.size();
details.vertexSize = FLOATS_PER_VERTEX;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
details.vertices = points.size();
details.vertexSize = FLOATS_PER_VERTEX;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
GLfloat* vertexData = new GLfloat[details.vertices * FLOATS_PER_VERTEX];
GLfloat* vertex = vertexData;
int* colorData = new int[details.vertices];
int* colorDataAt = colorData;
foreach (const glm::vec3& point, points) {
*(vertex++) = point.x;
*(vertex++) = point.y;
*(vertex++) = point.z;
*(colorDataAt++) = compactColor;
}
details.verticesBuffer->append(sizeof(GLfloat) * FLOATS_PER_VERTEX * details.vertices, (gpu::Byte*) vertexData);
details.colorBuffer->append(sizeof(int) * details.vertices, (gpu::Byte*) colorData);
delete[] vertexData;
delete[] colorData;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "new registered linestrip buffer made -- _registeredVertices.size():" << _registeredVertices.size();
#endif
}
void GeometryCache::updateVertices(int id, const QVector<glm::vec3>& points, const QVector<glm::vec2>& texCoords, const glm::vec4& color) {
BatchItemDetails& details = _registeredVertices[id];
if (details.isCreated) {
details.clear();
#ifdef WANT_DEBUG
qCDebug(renderutils) << "updateVertices()... RELEASING REGISTERED";
#endif // def WANT_DEBUG
}
const int FLOATS_PER_VERTEX = 5;
details.isCreated = true;
details.vertices = points.size();
details.vertexSize = FLOATS_PER_VERTEX;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::TEXCOORD, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV), 3 * sizeof(float));
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
assert(points.size() == texCoords.size());
details.vertices = points.size();
details.vertexSize = FLOATS_PER_VERTEX;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
GLfloat* vertexData = new GLfloat[details.vertices * FLOATS_PER_VERTEX];
GLfloat* vertex = vertexData;
int* colorData = new int[details.vertices];
int* colorDataAt = colorData;
for (int i = 0; i < points.size(); i++) {
glm::vec3 point = points[i];
glm::vec2 texCoord = texCoords[i];
*(vertex++) = point.x;
*(vertex++) = point.y;
*(vertex++) = point.z;
*(vertex++) = texCoord.x;
*(vertex++) = texCoord.y;
*(colorDataAt++) = compactColor;
}
details.verticesBuffer->append(sizeof(GLfloat) * FLOATS_PER_VERTEX * details.vertices, (gpu::Byte*) vertexData);
details.colorBuffer->append(sizeof(int) * details.vertices, (gpu::Byte*) colorData);
delete[] vertexData;
delete[] colorData;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "new registered linestrip buffer made -- _registeredVertices.size():" << _registeredVertices.size();
#endif
}
void GeometryCache::renderVertices(gpu::Batch& batch, gpu::Primitive primitiveType, int id) {
BatchItemDetails& details = _registeredVertices[id];
if (details.isCreated) {
batch.setInputFormat(details.streamFormat);
batch.setInputStream(0, *details.stream);
batch.draw(primitiveType, details.vertices, 0);
}
}
void GeometryCache::renderSolidCube(gpu::Batch& batch, float size, const glm::vec4& color) {
Vec2Pair colorKey(glm::vec2(color.x, color.y), glm::vec2(color.z, color.y));
const int FLOATS_PER_VERTEX = 3;
const int VERTICES_PER_FACE = 4;
const int NUMBER_OF_FACES = 6;
const int TRIANGLES_PER_FACE = 2;
const int VERTICES_PER_TRIANGLE = 3;
const int vertices = NUMBER_OF_FACES * VERTICES_PER_FACE;
const int indices = NUMBER_OF_FACES * TRIANGLES_PER_FACE * VERTICES_PER_TRIANGLE;
const int vertexPoints = vertices * FLOATS_PER_VERTEX;
const int VERTEX_STRIDE = sizeof(GLfloat) * FLOATS_PER_VERTEX * 2; // vertices and normals
const int NORMALS_OFFSET = sizeof(GLfloat) * FLOATS_PER_VERTEX;
if (!_solidCubeVertices.contains(size)) {
auto verticesBuffer = std::make_shared<gpu::Buffer>();
_solidCubeVertices[size] = verticesBuffer;
GLfloat* vertexData = new GLfloat[vertexPoints * 2]; // vertices and normals
GLfloat* vertex = vertexData;
float halfSize = size / 2.0f;
static GLfloat cannonicalVertices[vertexPoints] =
{ 1, 1, 1, -1, 1, 1, -1,-1, 1, 1,-1, 1, // v0,v1,v2,v3 (front)
1, 1, 1, 1,-1, 1, 1,-1,-1, 1, 1,-1, // v0,v3,v4,v5 (right)
1, 1, 1, 1, 1,-1, -1, 1,-1, -1, 1, 1, // v0,v5,v6,v1 (top)
-1, 1, 1, -1, 1,-1, -1,-1,-1, -1,-1, 1, // v1,v6,v7,v2 (left)
-1,-1,-1, 1,-1,-1, 1,-1, 1, -1,-1, 1, // v7,v4,v3,v2 (bottom)
1,-1,-1, -1,-1,-1, -1, 1,-1, 1, 1,-1 }; // v4,v7,v6,v5 (back)
// normal array
static GLfloat cannonicalNormals[vertexPoints] =
{ 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, // v0,v1,v2,v3 (front)
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, // v0,v3,v4,v5 (right)
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, // v0,v5,v6,v1 (top)
-1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, // v1,v6,v7,v2 (left)
0,-1, 0, 0,-1, 0, 0,-1, 0, 0,-1, 0, // v7,v4,v3,v2 (bottom)
0, 0,-1, 0, 0,-1, 0, 0,-1, 0, 0,-1 }; // v4,v7,v6,v5 (back)
GLfloat* cannonicalVertex = &cannonicalVertices[0];
GLfloat* cannonicalNormal = &cannonicalNormals[0];
for (int i = 0; i < vertices; i++) {
// vertices
*(vertex++) = halfSize * *cannonicalVertex++;
*(vertex++) = halfSize * *cannonicalVertex++;
*(vertex++) = halfSize * *cannonicalVertex++;
//normals
*(vertex++) = *cannonicalNormal++;
*(vertex++) = *cannonicalNormal++;
*(vertex++) = *cannonicalNormal++;
}
verticesBuffer->append(sizeof(GLfloat) * vertexPoints * 2, (gpu::Byte*) vertexData);
}
if (!_solidCubeIndexBuffer) {
static GLubyte cannonicalIndices[indices] =
{ 0, 1, 2, 2, 3, 0, // front
4, 5, 6, 6, 7, 4, // right
8, 9,10, 10,11, 8, // top
12,13,14, 14,15,12, // left
16,17,18, 18,19,16, // bottom
20,21,22, 22,23,20 }; // back
auto indexBuffer = std::make_shared<gpu::Buffer>();
_solidCubeIndexBuffer = indexBuffer;
_solidCubeIndexBuffer->append(sizeof(cannonicalIndices), (gpu::Byte*) cannonicalIndices);
}
if (!_solidCubeColors.contains(colorKey)) {
auto colorBuffer = std::make_shared<gpu::Buffer>();
_solidCubeColors[colorKey] = colorBuffer;
const int NUM_COLOR_SCALARS_PER_CUBE = 24;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int colors[NUM_COLOR_SCALARS_PER_CUBE] = { compactColor, compactColor, compactColor, compactColor,
compactColor, compactColor, compactColor, compactColor,
compactColor, compactColor, compactColor, compactColor,
compactColor, compactColor, compactColor, compactColor,
compactColor, compactColor, compactColor, compactColor,
compactColor, compactColor, compactColor, compactColor };
colorBuffer->append(sizeof(colors), (gpu::Byte*) colors);
}
gpu::BufferPointer verticesBuffer = _solidCubeVertices[size];
gpu::BufferPointer colorBuffer = _solidCubeColors[colorKey];
const int VERTICES_SLOT = 0;
const int NORMALS_SLOT = 1;
const int COLOR_SLOT = 2;
static gpu::Stream::FormatPointer streamFormat;
static gpu::Element positionElement, normalElement, colorElement;
if (!streamFormat) {
streamFormat = std::make_shared<gpu::Stream::Format>(); // 1 for everyone
streamFormat->setAttribute(gpu::Stream::POSITION, VERTICES_SLOT, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
streamFormat->setAttribute(gpu::Stream::NORMAL, NORMALS_SLOT, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_SLOT, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
positionElement = streamFormat->getAttributes().at(gpu::Stream::POSITION)._element;
normalElement = streamFormat->getAttributes().at(gpu::Stream::NORMAL)._element;
colorElement = streamFormat->getAttributes().at(gpu::Stream::COLOR)._element;
}
gpu::BufferView verticesView(verticesBuffer, 0, verticesBuffer->getSize(), VERTEX_STRIDE, positionElement);
gpu::BufferView normalsView(verticesBuffer, NORMALS_OFFSET, verticesBuffer->getSize(), VERTEX_STRIDE, normalElement);
gpu::BufferView colorView(colorBuffer, streamFormat->getAttributes().at(gpu::Stream::COLOR)._element);
batch.setInputFormat(streamFormat);
batch.setInputBuffer(VERTICES_SLOT, verticesView);
batch.setInputBuffer(NORMALS_SLOT, normalsView);
batch.setInputBuffer(COLOR_SLOT, colorView);
batch.setIndexBuffer(gpu::UINT8, _solidCubeIndexBuffer, 0);
batch.drawIndexed(gpu::TRIANGLES, indices);
}
void GeometryCache::renderWireCube(gpu::Batch& batch, float size, const glm::vec4& color) {
Vec2Pair colorKey(glm::vec2(color.x, color.y),glm::vec2(color.z, color.y));
const int FLOATS_PER_VERTEX = 3;
const int VERTICES_PER_EDGE = 2;
const int TOP_EDGES = 4;
const int BOTTOM_EDGES = 4;
const int SIDE_EDGES = 4;
const int vertices = 8;
const int indices = (TOP_EDGES + BOTTOM_EDGES + SIDE_EDGES) * VERTICES_PER_EDGE;
if (!_cubeVerticies.contains(size)) {
auto verticesBuffer = std::make_shared<gpu::Buffer>();
_cubeVerticies[size] = verticesBuffer;
int vertexPoints = vertices * FLOATS_PER_VERTEX;
GLfloat* vertexData = new GLfloat[vertexPoints]; // only vertices, no normals because we're a wire cube
GLfloat* vertex = vertexData;
float halfSize = size / 2.0f;
static GLfloat cannonicalVertices[] =
{ 1, 1, 1, 1, 1,-1, -1, 1,-1, -1, 1, 1, // v0, v1, v2, v3 (top)
1,-1, 1, 1,-1,-1, -1,-1,-1, -1,-1, 1 // v4, v5, v6, v7 (bottom)
};
for (int i = 0; i < vertexPoints; i++) {
vertex[i] = cannonicalVertices[i] * halfSize;
}
verticesBuffer->append(sizeof(GLfloat) * vertexPoints, (gpu::Byte*) vertexData); // I'm skeptical that this is right
}
if (!_wireCubeIndexBuffer) {
static GLubyte cannonicalIndices[indices] = {
0, 1, 1, 2, 2, 3, 3, 0, // (top)
4, 5, 5, 6, 6, 7, 7, 4, // (bottom)
0, 4, 1, 5, 2, 6, 3, 7, // (side edges)
};
auto indexBuffer = std::make_shared<gpu::Buffer>();
_wireCubeIndexBuffer = indexBuffer;
_wireCubeIndexBuffer->append(sizeof(cannonicalIndices), (gpu::Byte*) cannonicalIndices);
}
if (!_cubeColors.contains(colorKey)) {
auto colorBuffer = std::make_shared<gpu::Buffer>();
_cubeColors[colorKey] = colorBuffer;
const int NUM_COLOR_SCALARS_PER_CUBE = 8;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int colors[NUM_COLOR_SCALARS_PER_CUBE] = { compactColor, compactColor, compactColor, compactColor,
compactColor, compactColor, compactColor, compactColor };
colorBuffer->append(sizeof(colors), (gpu::Byte*) colors);
}
gpu::BufferPointer verticesBuffer = _cubeVerticies[size];
gpu::BufferPointer colorBuffer = _cubeColors[colorKey];
const int VERTICES_SLOT = 0;
const int COLOR_SLOT = 1;
static gpu::Stream::FormatPointer streamFormat;
static gpu::Element positionElement, colorElement;
if (!streamFormat) {
streamFormat = std::make_shared<gpu::Stream::Format>(); // 1 for everyone
streamFormat->setAttribute(gpu::Stream::POSITION, VERTICES_SLOT, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_SLOT, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
positionElement = streamFormat->getAttributes().at(gpu::Stream::POSITION)._element;
colorElement = streamFormat->getAttributes().at(gpu::Stream::COLOR)._element;
}
gpu::BufferView verticesView(verticesBuffer, positionElement);
gpu::BufferView colorView(colorBuffer, colorElement);
batch.setInputFormat(streamFormat);
batch.setInputBuffer(VERTICES_SLOT, verticesView);
batch.setInputBuffer(COLOR_SLOT, colorView);
batch.setIndexBuffer(gpu::UINT8, _wireCubeIndexBuffer, 0);
batch.drawIndexed(gpu::LINES, indices);
}
void GeometryCache::renderBevelCornersRect(gpu::Batch& batch, int x, int y, int width, int height, int bevelDistance, const glm::vec4& color, int id) {
bool registered = (id != UNKNOWN_ID);
Vec3Pair key(glm::vec3(x, y, 0.0f), glm::vec3(width, height, bevelDistance));
BatchItemDetails& details = registered ? _registeredBevelRects[id] : _bevelRects[key];
// if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed
if (registered && details.isCreated) {
Vec3Pair& lastKey = _lastRegisteredBevelRects[id];
if (lastKey != key) {
details.clear();
_lastRegisteredBevelRects[id] = key;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderBevelCornersRect()... RELEASING REGISTERED";
#endif // def WANT_DEBUG
}
#ifdef WANT_DEBUG
else {
qCDebug(renderutils) << "renderBevelCornersRect()... REUSING PREVIOUSLY REGISTERED";
}
#endif // def WANT_DEBUG
}
if (!details.isCreated) {
static const int FLOATS_PER_VERTEX = 2; // vertices
static const int NUM_VERTICES = 8;
static const int NUM_FLOATS = NUM_VERTICES * FLOATS_PER_VERTEX;
details.isCreated = true;
details.vertices = NUM_VERTICES;
details.vertexSize = FLOATS_PER_VERTEX;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ));
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
GLfloat vertexBuffer[NUM_FLOATS]; // only vertices, no normals because we're a 2D quad
int vertexPoint = 0;
// Triangle strip points
// 3 ------ 5 //
// / \ //
// 1 7 //
// | | //
// 2 8 //
// \ / //
// 4 ------ 6 //
// 1
vertexBuffer[vertexPoint++] = x;
vertexBuffer[vertexPoint++] = y + height - bevelDistance;
// 2
vertexBuffer[vertexPoint++] = x;
vertexBuffer[vertexPoint++] = y + bevelDistance;
// 3
vertexBuffer[vertexPoint++] = x + bevelDistance;
vertexBuffer[vertexPoint++] = y + height;
// 4
vertexBuffer[vertexPoint++] = x + bevelDistance;
vertexBuffer[vertexPoint++] = y;
// 5
vertexBuffer[vertexPoint++] = x + width - bevelDistance;
vertexBuffer[vertexPoint++] = y + height;
// 6
vertexBuffer[vertexPoint++] = x + width - bevelDistance;
vertexBuffer[vertexPoint++] = y;
// 7
vertexBuffer[vertexPoint++] = x + width;
vertexBuffer[vertexPoint++] = y + height - bevelDistance;
// 8
vertexBuffer[vertexPoint++] = x + width;
vertexBuffer[vertexPoint++] = y + bevelDistance;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int colors[NUM_VERTICES] = { compactColor, compactColor, compactColor, compactColor,
compactColor, compactColor, compactColor, compactColor };
details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer);
details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors);
}
batch.setInputFormat(details.streamFormat);
batch.setInputStream(0, *details.stream);
batch.draw(gpu::TRIANGLE_STRIP, details.vertices, 0);
}
void GeometryCache::renderQuad(gpu::Batch& batch, const glm::vec2& minCorner, const glm::vec2& maxCorner, const glm::vec4& color, int id) {
bool registered = (id != UNKNOWN_ID);
Vec4Pair key(glm::vec4(minCorner.x, minCorner.y, maxCorner.x, maxCorner.y), color);
BatchItemDetails& details = registered ? _registeredQuad2D[id] : _quad2D[key];
// if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed
if (registered && details.isCreated) {
Vec4Pair & lastKey = _lastRegisteredQuad2D[id];
if (lastKey != key) {
details.clear();
_lastRegisteredQuad2D[id] = key;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderQuad() 2D ... RELEASING REGISTERED";
#endif // def WANT_DEBUG
}
#ifdef WANT_DEBUG
else {
qCDebug(renderutils) << "renderQuad() 2D ... REUSING PREVIOUSLY REGISTERED";
}
#endif // def WANT_DEBUG
}
const int FLOATS_PER_VERTEX = 2; // vertices
const int VERTICES = 4; // 1 quad = 4 vertices
if (!details.isCreated) {
details.isCreated = true;
details.vertices = VERTICES;
details.vertexSize = FLOATS_PER_VERTEX;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
float vertexBuffer[VERTICES * FLOATS_PER_VERTEX] = {
minCorner.x, minCorner.y,
maxCorner.x, minCorner.y,
minCorner.x, maxCorner.y,
maxCorner.x, maxCorner.y,
};
const int NUM_COLOR_SCALARS_PER_QUAD = 4;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int colors[NUM_COLOR_SCALARS_PER_QUAD] = { compactColor, compactColor, compactColor, compactColor };
details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer);
details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors);
}
batch.setInputFormat(details.streamFormat);
batch.setInputStream(0, *details.stream);
batch.draw(gpu::TRIANGLE_STRIP, 4, 0);
}
void GeometryCache::renderUnitCube(gpu::Batch& batch) {
static const glm::vec4 color(1);
renderSolidCube(batch, 1, color);
}
void GeometryCache::renderUnitQuad(gpu::Batch& batch, const glm::vec4& color, int id) {
static const glm::vec2 topLeft(-1, 1);
static const glm::vec2 bottomRight(1, -1);
static const glm::vec2 texCoordTopLeft(0.0f, 1.0f);
static const glm::vec2 texCoordBottomRight(1.0f, 0.0f);
renderQuad(batch, topLeft, bottomRight, texCoordTopLeft, texCoordBottomRight, color, id);
}
void GeometryCache::renderQuad(gpu::Batch& batch, const glm::vec2& minCorner, const glm::vec2& maxCorner,
const glm::vec2& texCoordMinCorner, const glm::vec2& texCoordMaxCorner,
const glm::vec4& color, int id) {
bool registered = (id != UNKNOWN_ID);
Vec4PairVec4 key(Vec4Pair(glm::vec4(minCorner.x, minCorner.y, maxCorner.x, maxCorner.y),
glm::vec4(texCoordMinCorner.x, texCoordMinCorner.y, texCoordMaxCorner.x, texCoordMaxCorner.y)),
color);
BatchItemDetails& details = registered ? _registeredQuad2DTextures[id] : _quad2DTextures[key];
// if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed
if (registered && details.isCreated) {
Vec4PairVec4& lastKey = _lastRegisteredQuad2DTexture[id];
if (lastKey != key) {
details.clear();
_lastRegisteredQuad2DTexture[id] = key;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderQuad() 2D+texture ... RELEASING REGISTERED";
#endif // def WANT_DEBUG
}
#ifdef WANT_DEBUG
else {
qCDebug(renderutils) << "renderQuad() 2D+texture ... REUSING PREVIOUSLY REGISTERED";
}
#endif // def WANT_DEBUG
}
const int FLOATS_PER_VERTEX = 2 * 2; // text coords & vertices
const int VERTICES = 4; // 1 quad = 4 vertices
const int NUM_POS_COORDS = 2;
const int VERTEX_TEXCOORD_OFFSET = NUM_POS_COORDS * sizeof(float);
if (!details.isCreated) {
details.isCreated = true;
details.vertices = VERTICES;
details.vertexSize = FLOATS_PER_VERTEX;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::TEXCOORD, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV), VERTEX_TEXCOORD_OFFSET);
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
float vertexBuffer[VERTICES * FLOATS_PER_VERTEX] = {
minCorner.x, minCorner.y, texCoordMinCorner.x, texCoordMinCorner.y,
maxCorner.x, minCorner.y, texCoordMaxCorner.x, texCoordMinCorner.y,
minCorner.x, maxCorner.y, texCoordMinCorner.x, texCoordMaxCorner.y,
maxCorner.x, maxCorner.y, texCoordMaxCorner.x, texCoordMaxCorner.y,
};
const int NUM_COLOR_SCALARS_PER_QUAD = 4;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int colors[NUM_COLOR_SCALARS_PER_QUAD] = { compactColor, compactColor, compactColor, compactColor };
details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer);
details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors);
}
batch.setInputFormat(details.streamFormat);
batch.setInputStream(0, *details.stream);
batch.draw(gpu::TRIANGLE_STRIP, 4, 0);
}
void GeometryCache::renderQuad(gpu::Batch& batch, const glm::vec3& minCorner, const glm::vec3& maxCorner, const glm::vec4& color, int id) {
bool registered = (id != UNKNOWN_ID);
Vec3PairVec4 key(Vec3Pair(minCorner, maxCorner), color);
BatchItemDetails& details = registered ? _registeredQuad3D[id] : _quad3D[key];
// if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed
if (registered && details.isCreated) {
Vec3PairVec4& lastKey = _lastRegisteredQuad3D[id];
if (lastKey != key) {
details.clear();
_lastRegisteredQuad3D[id] = key;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderQuad() 3D ... RELEASING REGISTERED";
#endif // def WANT_DEBUG
}
#ifdef WANT_DEBUG
else {
qCDebug(renderutils) << "renderQuad() 3D ... REUSING PREVIOUSLY REGISTERED";
}
#endif // def WANT_DEBUG
}
const int FLOATS_PER_VERTEX = 3; // vertices
const int VERTICES = 4; // 1 quad = 4 vertices
if (!details.isCreated) {
details.isCreated = true;
details.vertices = VERTICES;
details.vertexSize = FLOATS_PER_VERTEX;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
float vertexBuffer[VERTICES * FLOATS_PER_VERTEX] = {
minCorner.x, minCorner.y, minCorner.z,
maxCorner.x, minCorner.y, minCorner.z,
minCorner.x, maxCorner.y, maxCorner.z,
maxCorner.x, maxCorner.y, maxCorner.z,
};
const int NUM_COLOR_SCALARS_PER_QUAD = 4;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int colors[NUM_COLOR_SCALARS_PER_QUAD] = { compactColor, compactColor, compactColor, compactColor };
details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer);
details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors);
}
batch.setInputFormat(details.streamFormat);
batch.setInputStream(0, *details.stream);
batch.draw(gpu::TRIANGLE_STRIP, 4, 0);
}
void GeometryCache::renderQuad(gpu::Batch& batch, const glm::vec3& topLeft, const glm::vec3& bottomLeft,
const glm::vec3& bottomRight, const glm::vec3& topRight,
const glm::vec2& texCoordTopLeft, const glm::vec2& texCoordBottomLeft,
const glm::vec2& texCoordBottomRight, const glm::vec2& texCoordTopRight,
const glm::vec4& color, int id) {
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderQuad() vec3 + texture VBO...";
qCDebug(renderutils) << " topLeft:" << topLeft;
qCDebug(renderutils) << " bottomLeft:" << bottomLeft;
qCDebug(renderutils) << " bottomRight:" << bottomRight;
qCDebug(renderutils) << " topRight:" << topRight;
qCDebug(renderutils) << " texCoordTopLeft:" << texCoordTopLeft;
qCDebug(renderutils) << " texCoordBottomRight:" << texCoordBottomRight;
qCDebug(renderutils) << " color:" << color;
#endif //def WANT_DEBUG
bool registered = (id != UNKNOWN_ID);
Vec3PairVec4Pair key(Vec3Pair(topLeft, bottomRight),
Vec4Pair(glm::vec4(texCoordTopLeft.x,texCoordTopLeft.y,texCoordBottomRight.x,texCoordBottomRight.y),
color));
BatchItemDetails& details = registered ? _registeredQuad3DTextures[id] : _quad3DTextures[key];
// if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed
if (registered && details.isCreated) {
Vec3PairVec4Pair& lastKey = _lastRegisteredQuad3DTexture[id];
if (lastKey != key) {
details.clear();
_lastRegisteredQuad3DTexture[id] = key;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderQuad() 3D+texture ... RELEASING REGISTERED";
#endif // def WANT_DEBUG
}
#ifdef WANT_DEBUG
else {
qCDebug(renderutils) << "renderQuad() 3D+texture ... REUSING PREVIOUSLY REGISTERED";
}
#endif // def WANT_DEBUG
}
const int FLOATS_PER_VERTEX = 3 + 2; // 3d vertices + text coords
const int VERTICES = 4; // 1 quad = 4 vertices
const int NUM_POS_COORDS = 3;
const int VERTEX_TEXCOORD_OFFSET = NUM_POS_COORDS * sizeof(float);
if (!details.isCreated) {
details.isCreated = true;
details.vertices = VERTICES;
details.vertexSize = FLOATS_PER_VERTEX; // NOTE: this isn't used for BatchItemDetails maybe we can get rid of it
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::TEXCOORD, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV), VERTEX_TEXCOORD_OFFSET);
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
float vertexBuffer[VERTICES * FLOATS_PER_VERTEX] = {
bottomLeft.x, bottomLeft.y, bottomLeft.z, texCoordBottomLeft.x, texCoordBottomLeft.y,
bottomRight.x, bottomRight.y, bottomRight.z, texCoordBottomRight.x, texCoordBottomRight.y,
topLeft.x, topLeft.y, topLeft.z, texCoordTopLeft.x, texCoordTopLeft.y,
topRight.x, topRight.y, topRight.z, texCoordTopRight.x, texCoordTopRight.y,
};
const int NUM_COLOR_SCALARS_PER_QUAD = 4;
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
int colors[NUM_COLOR_SCALARS_PER_QUAD] = { compactColor, compactColor, compactColor, compactColor };
details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer);
details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors);
}
batch.setInputFormat(details.streamFormat);
batch.setInputStream(0, *details.stream);
batch.draw(gpu::TRIANGLE_STRIP, 4, 0);
}
void GeometryCache::renderDashedLine(gpu::Batch& batch, const glm::vec3& start, const glm::vec3& end, const glm::vec4& color,
const float dash_length, const float gap_length, int id) {
bool registered = (id != UNKNOWN_ID);
Vec3PairVec2Pair key(Vec3Pair(start, end), Vec2Pair(glm::vec2(color.x, color.y), glm::vec2(color.z, color.w)));
BatchItemDetails& details = registered ? _registeredDashedLines[id] : _dashedLines[key];
// if this is a registered , and we have buffers, then check to see if the geometry changed and rebuild if needed
if (registered && details.isCreated) {
if (_lastRegisteredDashedLines[id] != key) {
details.clear();
_lastRegisteredDashedLines[id] = key;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderDashedLine()... RELEASING REGISTERED";
#endif // def WANT_DEBUG
}
}
if (!details.isCreated) {
int compactColor = ((int(color.x * 255.0f) & 0xFF)) |
((int(color.y * 255.0f) & 0xFF) << 8) |
((int(color.z * 255.0f) & 0xFF) << 16) |
((int(color.w * 255.0f) & 0xFF) << 24);
// draw each line segment with appropriate gaps
const float SEGMENT_LENGTH = dash_length + gap_length;
float length = glm::distance(start, end);
float segmentCount = length / SEGMENT_LENGTH;
int segmentCountFloor = (int)glm::floor(segmentCount);
glm::vec3 segmentVector = (end - start) / segmentCount;
glm::vec3 dashVector = segmentVector / SEGMENT_LENGTH * dash_length;
glm::vec3 gapVector = segmentVector / SEGMENT_LENGTH * gap_length;
const int FLOATS_PER_VERTEX = 3;
details.vertices = (segmentCountFloor + 1) * 2;
details.vertexSize = FLOATS_PER_VERTEX;
details.isCreated = true;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
int* colorData = new int[details.vertices];
int* colorDataAt = colorData;
GLfloat* vertexData = new GLfloat[details.vertices * FLOATS_PER_VERTEX];
GLfloat* vertex = vertexData;
glm::vec3 point = start;
*(vertex++) = point.x;
*(vertex++) = point.y;
*(vertex++) = point.z;
*(colorDataAt++) = compactColor;
for (int i = 0; i < segmentCountFloor; i++) {
point += dashVector;
*(vertex++) = point.x;
*(vertex++) = point.y;
*(vertex++) = point.z;
*(colorDataAt++) = compactColor;
point += gapVector;
*(vertex++) = point.x;
*(vertex++) = point.y;
*(vertex++) = point.z;
*(colorDataAt++) = compactColor;
}
*(vertex++) = end.x;
*(vertex++) = end.y;
*(vertex++) = end.z;
*(colorDataAt++) = compactColor;
details.verticesBuffer->append(sizeof(GLfloat) * FLOATS_PER_VERTEX * details.vertices, (gpu::Byte*) vertexData);
details.colorBuffer->append(sizeof(int) * details.vertices, (gpu::Byte*) colorData);
delete[] vertexData;
delete[] colorData;
#ifdef WANT_DEBUG
if (registered) {
qCDebug(renderutils) << "new registered dashed line buffer made -- _registeredVertices:" << _registeredDashedLines.size();
} else {
qCDebug(renderutils) << "new dashed lines buffer made -- _dashedLines:" << _dashedLines.size();
}
#endif
}
batch.setInputFormat(details.streamFormat);
batch.setInputStream(0, *details.stream);
batch.draw(gpu::LINES, details.vertices, 0);
}
int GeometryCache::BatchItemDetails::population = 0;
GeometryCache::BatchItemDetails::BatchItemDetails() :
verticesBuffer(NULL),
colorBuffer(NULL),
streamFormat(NULL),
stream(NULL),
vertices(0),
vertexSize(0),
isCreated(false)
{
population++;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "BatchItemDetails()... population:" << population << "**********************************";
#endif
}
GeometryCache::BatchItemDetails::BatchItemDetails(const GeometryCache::BatchItemDetails& other) :
verticesBuffer(other.verticesBuffer),
colorBuffer(other.colorBuffer),
streamFormat(other.streamFormat),
stream(other.stream),
vertices(other.vertices),
vertexSize(other.vertexSize),
isCreated(other.isCreated)
{
population++;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "BatchItemDetails()... population:" << population << "**********************************";
#endif
}
GeometryCache::BatchItemDetails::~BatchItemDetails() {
population--;
clear();
#ifdef WANT_DEBUG
qCDebug(renderutils) << "~BatchItemDetails()... population:" << population << "**********************************";
#endif
}
void GeometryCache::BatchItemDetails::clear() {
isCreated = false;
verticesBuffer.reset();
colorBuffer.reset();
streamFormat.reset();
stream.reset();
}
void GeometryCache::renderLine(gpu::Batch& batch, const glm::vec3& p1, const glm::vec3& p2,
const glm::vec4& color1, const glm::vec4& color2, int id) {
bool registered = (id != UNKNOWN_ID);
Vec3Pair key(p1, p2);
BatchItemDetails& details = registered ? _registeredLine3DVBOs[id] : _line3DVBOs[key];
int compactColor1 = ((int(color1.x * 255.0f) & 0xFF)) |
((int(color1.y * 255.0f) & 0xFF) << 8) |
((int(color1.z * 255.0f) & 0xFF) << 16) |
((int(color1.w * 255.0f) & 0xFF) << 24);
int compactColor2 = ((int(color2.x * 255.0f) & 0xFF)) |
((int(color2.y * 255.0f) & 0xFF) << 8) |
((int(color2.z * 255.0f) & 0xFF) << 16) |
((int(color2.w * 255.0f) & 0xFF) << 24);
// if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed
if (registered && details.isCreated) {
Vec3Pair& lastKey = _lastRegisteredLine3D[id];
if (lastKey != key) {
details.clear();
_lastRegisteredLine3D[id] = key;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderLine() 3D ... RELEASING REGISTERED line";
#endif // def WANT_DEBUG
}
#ifdef WANT_DEBUG
else {
qCDebug(renderutils) << "renderLine() 3D ... REUSING PREVIOUSLY REGISTERED line";
}
#endif // def WANT_DEBUG
}
const int FLOATS_PER_VERTEX = 3;
const int vertices = 2;
if (!details.isCreated) {
details.isCreated = true;
details.vertices = vertices;
details.vertexSize = FLOATS_PER_VERTEX;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
float vertexBuffer[vertices * FLOATS_PER_VERTEX] = { p1.x, p1.y, p1.z, p2.x, p2.y, p2.z };
const int NUM_COLOR_SCALARS = 2;
int colors[NUM_COLOR_SCALARS] = { compactColor1, compactColor2 };
details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer);
details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors);
#ifdef WANT_DEBUG
if (id == UNKNOWN_ID) {
qCDebug(renderutils) << "new renderLine() 3D VBO made -- _line3DVBOs.size():" << _line3DVBOs.size();
} else {
qCDebug(renderutils) << "new registered renderLine() 3D VBO made -- _registeredLine3DVBOs.size():" << _registeredLine3DVBOs.size();
}
#endif
}
// this is what it takes to render a quad
batch.setInputFormat(details.streamFormat);
batch.setInputStream(0, *details.stream);
batch.draw(gpu::LINES, 2, 0);
}
void GeometryCache::renderLine(gpu::Batch& batch, const glm::vec2& p1, const glm::vec2& p2,
const glm::vec4& color1, const glm::vec4& color2, int id) {
bool registered = (id != UNKNOWN_ID);
Vec2Pair key(p1, p2);
BatchItemDetails& details = registered ? _registeredLine2DVBOs[id] : _line2DVBOs[key];
int compactColor1 = ((int(color1.x * 255.0f) & 0xFF)) |
((int(color1.y * 255.0f) & 0xFF) << 8) |
((int(color1.z * 255.0f) & 0xFF) << 16) |
((int(color1.w * 255.0f) & 0xFF) << 24);
int compactColor2 = ((int(color2.x * 255.0f) & 0xFF)) |
((int(color2.y * 255.0f) & 0xFF) << 8) |
((int(color2.z * 255.0f) & 0xFF) << 16) |
((int(color2.w * 255.0f) & 0xFF) << 24);
// if this is a registered quad, and we have buffers, then check to see if the geometry changed and rebuild if needed
if (registered && details.isCreated) {
Vec2Pair& lastKey = _lastRegisteredLine2D[id];
if (lastKey != key) {
details.clear();
_lastRegisteredLine2D[id] = key;
#ifdef WANT_DEBUG
qCDebug(renderutils) << "renderLine() 2D ... RELEASING REGISTERED line";
#endif // def WANT_DEBUG
}
#ifdef WANT_DEBUG
else {
qCDebug(renderutils) << "renderLine() 2D ... REUSING PREVIOUSLY REGISTERED line";
}
#endif // def WANT_DEBUG
}
const int FLOATS_PER_VERTEX = 2;
const int vertices = 2;
if (!details.isCreated) {
details.isCreated = true;
details.vertices = vertices;
details.vertexSize = FLOATS_PER_VERTEX;
auto verticesBuffer = std::make_shared<gpu::Buffer>();
auto colorBuffer = std::make_shared<gpu::Buffer>();
auto streamFormat = std::make_shared<gpu::Stream::Format>();
auto stream = std::make_shared<gpu::BufferStream>();
details.verticesBuffer = verticesBuffer;
details.colorBuffer = colorBuffer;
details.streamFormat = streamFormat;
details.stream = stream;
details.streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
details.streamFormat->setAttribute(gpu::Stream::COLOR, 1, gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA));
details.stream->addBuffer(details.verticesBuffer, 0, details.streamFormat->getChannels().at(0)._stride);
details.stream->addBuffer(details.colorBuffer, 0, details.streamFormat->getChannels().at(1)._stride);
float vertexBuffer[vertices * FLOATS_PER_VERTEX] = { p1.x, p1.y, p2.x, p2.y };
const int NUM_COLOR_SCALARS = 2;
int colors[NUM_COLOR_SCALARS] = { compactColor1, compactColor2 };
details.verticesBuffer->append(sizeof(vertexBuffer), (gpu::Byte*) vertexBuffer);
details.colorBuffer->append(sizeof(colors), (gpu::Byte*) colors);
#ifdef WANT_DEBUG
if (id == UNKNOWN_ID) {
qCDebug(renderutils) << "new renderLine() 2D VBO made -- _line3DVBOs.size():" << _line2DVBOs.size();
} else {
qCDebug(renderutils) << "new registered renderLine() 2D VBO made -- _registeredLine2DVBOs.size():" << _registeredLine2DVBOs.size();
}
#endif
}
// this is what it takes to render a quad
batch.setInputFormat(details.streamFormat);
batch.setInputStream(0, *details.stream);
batch.draw(gpu::LINES, 2, 0);
}
void GeometryCache::useSimpleDrawPipeline(gpu::Batch& batch, bool noBlend) {
if (!_standardDrawPipeline) {
auto vs = gpu::ShaderPointer(gpu::Shader::createVertex(std::string(standardTransformPNTC_vert)));
auto ps = gpu::ShaderPointer(gpu::Shader::createPixel(std::string(standardDrawTexture_frag)));
auto program = gpu::ShaderPointer(gpu::Shader::createProgram(vs, ps));
gpu::Shader::makeProgram((*program));
auto state = std::make_shared<gpu::State>();
// enable decal blend
state->setBlendFunction(true, gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA);
_standardDrawPipeline.reset(gpu::Pipeline::create(program, state));
auto stateNoBlend = std::make_shared<gpu::State>();
auto noBlendPS = gpu::StandardShaderLib::getDrawTextureOpaquePS();
auto programNoBlend = gpu::ShaderPointer(gpu::Shader::createProgram(vs, noBlendPS));
gpu::Shader::makeProgram((*programNoBlend));
_standardDrawPipelineNoBlend.reset(gpu::Pipeline::create(programNoBlend, stateNoBlend));
}
if (noBlend) {
batch.setPipeline(_standardDrawPipelineNoBlend);
} else {
batch.setPipeline(_standardDrawPipeline);
}
}
GeometryReader::GeometryReader(const QUrl& url, const QByteArray& data, const QVariantHash& mapping) :
_url(url),
_data(data),
_mapping(mapping) {
}
void GeometryReader::run() {
try {
if (_data.isEmpty()) {
throw QString("Reply is NULL ?!");
}
QString urlname = _url.path().toLower();
bool urlValid = true;
urlValid &= !urlname.isEmpty();
urlValid &= !_url.path().isEmpty();
urlValid &= _url.path().toLower().endsWith(".fbx") || _url.path().toLower().endsWith(".obj");
if (urlValid) {
// Let's read the binaries from the network
FBXGeometry* fbxgeo = nullptr;
if (_url.path().toLower().endsWith(".fbx")) {
const bool grabLightmaps = true;
const float lightmapLevel = 1.0f;
fbxgeo = readFBX(_data, _mapping, _url.path(), grabLightmaps, lightmapLevel);
} else if (_url.path().toLower().endsWith(".obj")) {
fbxgeo = OBJReader().readOBJ(_data, _mapping, _url);
} else {
QString errorStr("usupported format");
emit onError(NetworkGeometry::ModelParseError, errorStr);
}
emit onSuccess(fbxgeo);
} else {
throw QString("url is invalid");
}
} catch (const QString& error) {
qCDebug(renderutils) << "Error reading " << _url << ": " << error;
emit onError(NetworkGeometry::ModelParseError, error);
}
}
NetworkGeometry::NetworkGeometry(const QUrl& url, bool delayLoad, const QVariantHash& mapping, const QUrl& textureBaseUrl) :
_url(url),
_mapping(mapping),
_textureBaseUrl(textureBaseUrl.isValid() ? textureBaseUrl : url) {
if (delayLoad) {
_state = DelayState;
} else {
attemptRequestInternal();
}
}
NetworkGeometry::~NetworkGeometry() {
if (_resource) {
_resource->deleteLater();
}
}
void NetworkGeometry::attemptRequest() {
if (_state == DelayState) {
attemptRequestInternal();
}
}
void NetworkGeometry::attemptRequestInternal() {
if (_url.path().toLower().endsWith(".fst")) {
_mappingUrl = _url;
requestMapping(_url);
} else {
_modelUrl = _url;
requestModel(_url);
}
}
bool NetworkGeometry::isLoaded() const {
return _state == SuccessState;
}
bool NetworkGeometry::isLoadedWithTextures() const {
if (!isLoaded()) {
return false;
}
if (!_isLoadedWithTextures) {
for (auto&& material : _materials) {
if ((material->diffuseTexture && !material->diffuseTexture->isLoaded()) ||
(material->normalTexture && !material->normalTexture->isLoaded()) ||
(material->specularTexture && !material->specularTexture->isLoaded()) ||
(material->emissiveTexture && !material->emissiveTexture->isLoaded())) {
return false;
}
}
_isLoadedWithTextures = true;
}
return true;
}
void NetworkGeometry::setTextureWithNameToURL(const QString& name, const QUrl& url) {
if (_meshes.size() > 0) {
auto textureCache = DependencyManager::get<TextureCache>();
for (auto&& material : _materials) {
QSharedPointer<NetworkTexture> matchingTexture = QSharedPointer<NetworkTexture>();
if (material->diffuseTextureName == name) {
// TODO: Find a solution to the eye case
material->diffuseTexture = textureCache->getTexture(url, DEFAULT_TEXTURE, /* _geometry->meshes[i].isEye*/ false);
} else if (material->normalTextureName == name) {
material->normalTexture = textureCache->getTexture(url);
} else if (material->specularTextureName == name) {
material->specularTexture = textureCache->getTexture(url);
} else if (material->emissiveTextureName == name) {
material->emissiveTexture = textureCache->getTexture(url);
}
}
} else {
qCWarning(renderutils) << "Ignoring setTextureWirthNameToURL() geometry not ready." << name << url;
}
_isLoadedWithTextures = false;
}
QStringList NetworkGeometry::getTextureNames() const {
QStringList result;
for (auto&& material : _materials) {
if (!material->diffuseTextureName.isEmpty() && material->diffuseTexture) {
QString textureURL = material->diffuseTexture->getURL().toString();
result << material->diffuseTextureName + ":" + textureURL;
}
if (!material->normalTextureName.isEmpty() && material->normalTexture) {
QString textureURL = material->normalTexture->getURL().toString();
result << material->normalTextureName + ":" + textureURL;
}
if (!material->specularTextureName.isEmpty() && material->specularTexture) {
QString textureURL = material->specularTexture->getURL().toString();
result << material->specularTextureName + ":" + textureURL;
}
if (!material->emissiveTextureName.isEmpty() && material->emissiveTexture) {
QString textureURL = material->emissiveTexture->getURL().toString();
result << material->emissiveTextureName + ":" + textureURL;
}
}
return result;
}
void NetworkGeometry::requestMapping(const QUrl& url) {
_state = RequestMappingState;
if (_resource) {
_resource->deleteLater();
}
_resource = new Resource(url, false);
connect(_resource, &Resource::loaded, this, &NetworkGeometry::mappingRequestDone);
connect(_resource, &Resource::failed, this, &NetworkGeometry::mappingRequestError);
}
void NetworkGeometry::requestModel(const QUrl& url) {
_state = RequestModelState;
if (_resource) {
_resource->deleteLater();
}
_modelUrl = url;
_resource = new Resource(url, false);
connect(_resource, &Resource::loaded, this, &NetworkGeometry::modelRequestDone);
connect(_resource, &Resource::failed, this, &NetworkGeometry::modelRequestError);
}
void NetworkGeometry::mappingRequestDone(const QByteArray& data) {
assert(_state == RequestMappingState);
// parse the mapping file
_mapping = FSTReader::readMapping(data);
QUrl replyUrl = _mappingUrl;
QString modelUrlStr = _mapping.value("filename").toString();
if (modelUrlStr.isNull()) {
qCDebug(renderutils) << "Mapping file " << _url << "has no \"filename\" entry";
emit onFailure(*this, MissingFilenameInMapping);
} else {
// read _textureBase from mapping file, if present
QString texdir = _mapping.value("texdir").toString();
if (!texdir.isNull()) {
if (!texdir.endsWith('/')) {
texdir += '/';
}
_textureBaseUrl = replyUrl.resolved(texdir);
}
_modelUrl = replyUrl.resolved(modelUrlStr);
requestModel(_modelUrl);
}
}
void NetworkGeometry::mappingRequestError(QNetworkReply::NetworkError error) {
assert(_state == RequestMappingState);
_state = ErrorState;
emit onFailure(*this, MappingRequestError);
}
void NetworkGeometry::modelRequestDone(const QByteArray& data) {
assert(_state == RequestModelState);
_state = ParsingModelState;
// asynchronously parse the model file.
GeometryReader* geometryReader = new GeometryReader(_modelUrl, data, _mapping);
connect(geometryReader, SIGNAL(onSuccess(FBXGeometry*)), SLOT(modelParseSuccess(FBXGeometry*)));
connect(geometryReader, SIGNAL(onError(int, QString)), SLOT(modelParseError(int, QString)));
QThreadPool::globalInstance()->start(geometryReader);
}
void NetworkGeometry::modelRequestError(QNetworkReply::NetworkError error) {
assert(_state == RequestModelState);
_state = ErrorState;
emit onFailure(*this, ModelRequestError);
}
static NetworkMesh* buildNetworkMesh(const FBXMesh& mesh, const QUrl& textureBaseUrl) {
auto textureCache = DependencyManager::get<TextureCache>();
NetworkMesh* networkMesh = new NetworkMesh();
int totalIndices = 0;
bool checkForTexcoordLightmap = false;
// process network parts
foreach (const FBXMeshPart& part, mesh.parts) {
totalIndices += (part.quadIndices.size() + part.triangleIndices.size());
}
// initialize index buffer
{
networkMesh->_indexBuffer = std::make_shared<gpu::Buffer>();
networkMesh->_indexBuffer->resize(totalIndices * sizeof(int));
int offset = 0;
foreach(const FBXMeshPart& part, mesh.parts) {
networkMesh->_indexBuffer->setSubData(offset, part.quadIndices.size() * sizeof(int),
(gpu::Byte*) part.quadIndices.constData());
offset += part.quadIndices.size() * sizeof(int);
networkMesh->_indexBuffer->setSubData(offset, part.triangleIndices.size() * sizeof(int),
(gpu::Byte*) part.triangleIndices.constData());
offset += part.triangleIndices.size() * sizeof(int);
}
}
// initialize vertex buffer
{
networkMesh->_vertexBuffer = std::make_shared<gpu::Buffer>();
// if we don't need to do any blending, the positions/normals can be static
if (mesh.blendshapes.isEmpty()) {
int normalsOffset = mesh.vertices.size() * sizeof(glm::vec3);
int tangentsOffset = normalsOffset + mesh.normals.size() * sizeof(glm::vec3);
int colorsOffset = tangentsOffset + mesh.tangents.size() * sizeof(glm::vec3);
int texCoordsOffset = colorsOffset + mesh.colors.size() * sizeof(glm::vec3);
int texCoords1Offset = texCoordsOffset + mesh.texCoords.size() * sizeof(glm::vec2);
int clusterIndicesOffset = texCoords1Offset + mesh.texCoords1.size() * sizeof(glm::vec2);
int clusterWeightsOffset = clusterIndicesOffset + mesh.clusterIndices.size() * sizeof(glm::vec4);
networkMesh->_vertexBuffer->resize(clusterWeightsOffset + mesh.clusterWeights.size() * sizeof(glm::vec4));
networkMesh->_vertexBuffer->setSubData(0, mesh.vertices.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.vertices.constData());
networkMesh->_vertexBuffer->setSubData(normalsOffset, mesh.normals.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.normals.constData());
networkMesh->_vertexBuffer->setSubData(tangentsOffset,
mesh.tangents.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.tangents.constData());
networkMesh->_vertexBuffer->setSubData(colorsOffset, mesh.colors.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.colors.constData());
networkMesh->_vertexBuffer->setSubData(texCoordsOffset,
mesh.texCoords.size() * sizeof(glm::vec2), (gpu::Byte*) mesh.texCoords.constData());
networkMesh->_vertexBuffer->setSubData(texCoords1Offset,
mesh.texCoords1.size() * sizeof(glm::vec2), (gpu::Byte*) mesh.texCoords1.constData());
networkMesh->_vertexBuffer->setSubData(clusterIndicesOffset,
mesh.clusterIndices.size() * sizeof(glm::vec4), (gpu::Byte*) mesh.clusterIndices.constData());
networkMesh->_vertexBuffer->setSubData(clusterWeightsOffset,
mesh.clusterWeights.size() * sizeof(glm::vec4), (gpu::Byte*) mesh.clusterWeights.constData());
// otherwise, at least the cluster indices/weights can be static
networkMesh->_vertexStream = std::make_shared<gpu::BufferStream>();
networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, 0, sizeof(glm::vec3));
if (mesh.normals.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, normalsOffset, sizeof(glm::vec3));
if (mesh.tangents.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, tangentsOffset, sizeof(glm::vec3));
if (mesh.colors.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, colorsOffset, sizeof(glm::vec3));
if (mesh.texCoords.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, texCoordsOffset, sizeof(glm::vec2));
if (mesh.texCoords1.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, texCoords1Offset, sizeof(glm::vec2));
if (mesh.clusterIndices.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, clusterIndicesOffset, sizeof(glm::vec4));
if (mesh.clusterWeights.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, clusterWeightsOffset, sizeof(glm::vec4));
int channelNum = 0;
networkMesh->_vertexFormat = std::make_shared<gpu::Stream::Format>();
networkMesh->_vertexFormat->setAttribute(gpu::Stream::POSITION, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
if (mesh.normals.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::NORMAL, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
if (mesh.tangents.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::TANGENT, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
if (mesh.colors.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::COLOR, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::RGB));
if (mesh.texCoords.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::TEXCOORD, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV));
if (mesh.texCoords1.size()) {
networkMesh->_vertexFormat->setAttribute(gpu::Stream::TEXCOORD1, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV));
// } else if (checkForTexcoordLightmap && mesh.texCoords.size()) {
} else if (mesh.texCoords.size()) {
// need lightmap texcoord UV but doesn't have uv#1 so just reuse the same channel
networkMesh->_vertexFormat->setAttribute(gpu::Stream::TEXCOORD1, channelNum - 1, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV));
}
if (mesh.clusterIndices.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_INDEX, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW));
if (mesh.clusterWeights.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW));
}
else {
int colorsOffset = mesh.tangents.size() * sizeof(glm::vec3);
int texCoordsOffset = colorsOffset + mesh.colors.size() * sizeof(glm::vec3);
int clusterIndicesOffset = texCoordsOffset + mesh.texCoords.size() * sizeof(glm::vec2);
int clusterWeightsOffset = clusterIndicesOffset + mesh.clusterIndices.size() * sizeof(glm::vec4);
networkMesh->_vertexBuffer->resize(clusterWeightsOffset + mesh.clusterWeights.size() * sizeof(glm::vec4));
networkMesh->_vertexBuffer->setSubData(0, mesh.tangents.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.tangents.constData());
networkMesh->_vertexBuffer->setSubData(colorsOffset, mesh.colors.size() * sizeof(glm::vec3), (gpu::Byte*) mesh.colors.constData());
networkMesh->_vertexBuffer->setSubData(texCoordsOffset,
mesh.texCoords.size() * sizeof(glm::vec2), (gpu::Byte*) mesh.texCoords.constData());
networkMesh->_vertexBuffer->setSubData(clusterIndicesOffset,
mesh.clusterIndices.size() * sizeof(glm::vec4), (gpu::Byte*) mesh.clusterIndices.constData());
networkMesh->_vertexBuffer->setSubData(clusterWeightsOffset,
mesh.clusterWeights.size() * sizeof(glm::vec4), (gpu::Byte*) mesh.clusterWeights.constData());
networkMesh->_vertexStream = std::make_shared<gpu::BufferStream>();
if (mesh.tangents.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, 0, sizeof(glm::vec3));
if (mesh.colors.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, colorsOffset, sizeof(glm::vec3));
if (mesh.texCoords.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, texCoordsOffset, sizeof(glm::vec2));
if (mesh.clusterIndices.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, clusterIndicesOffset, sizeof(glm::vec4));
if (mesh.clusterWeights.size()) networkMesh->_vertexStream->addBuffer(networkMesh->_vertexBuffer, clusterWeightsOffset, sizeof(glm::vec4));
int channelNum = 0;
networkMesh->_vertexFormat = std::make_shared<gpu::Stream::Format>();
networkMesh->_vertexFormat->setAttribute(gpu::Stream::POSITION, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
if (mesh.normals.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::NORMAL, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
if (mesh.tangents.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::TANGENT, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
if (mesh.colors.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::COLOR, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::RGB));
if (mesh.texCoords.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::TEXCOORD, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV));
if (mesh.clusterIndices.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_INDEX, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW));
if (mesh.clusterWeights.size()) networkMesh->_vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW));
}
}
return networkMesh;
}
static NetworkMaterial* buildNetworkMaterial(const FBXMaterial& material, const QUrl& textureBaseUrl) {
auto textureCache = DependencyManager::get<TextureCache>();
NetworkMaterial* networkMaterial = new NetworkMaterial();
int totalIndices = 0;
bool checkForTexcoordLightmap = false;
networkMaterial->_material = material._material;
if (!material.diffuseTexture.filename.isEmpty()) {
// TODO: SOlve the eye case
networkMaterial->diffuseTexture = textureCache->getTexture(textureBaseUrl.resolved(QUrl(material.diffuseTexture.filename)), DEFAULT_TEXTURE,
/* mesh.isEye*/ false, material.diffuseTexture.content);
networkMaterial->diffuseTextureName = material.diffuseTexture.name;
networkMaterial->_diffuseTexTransform = material.diffuseTexture.transform;
auto diffuseMap = model::TextureMapPointer(new model::TextureMap());
diffuseMap->setTextureStorage(networkMaterial->diffuseTexture->_textureStorage);
material._material->setTextureMap(model::MaterialKey::DIFFUSE_MAP, diffuseMap);
}
if (!material.normalTexture.filename.isEmpty()) {
networkMaterial->normalTexture = textureCache->getTexture(textureBaseUrl.resolved(QUrl(material.normalTexture.filename)), NORMAL_TEXTURE,
false, material.normalTexture.content);
networkMaterial->normalTextureName = material.normalTexture.name;
}
if (!material.specularTexture.filename.isEmpty()) {
networkMaterial->specularTexture = textureCache->getTexture(textureBaseUrl.resolved(QUrl(material.specularTexture.filename)), SPECULAR_TEXTURE,
false, material.specularTexture.content);
networkMaterial->specularTextureName = material.specularTexture.name;
}
if (!material.emissiveTexture.filename.isEmpty()) {
networkMaterial->emissiveTexture = textureCache->getTexture(textureBaseUrl.resolved(QUrl(material.emissiveTexture.filename)), EMISSIVE_TEXTURE,
false, material.emissiveTexture.content);
networkMaterial->emissiveTextureName = material.emissiveTexture.name;
networkMaterial->_emissiveTexTransform = material.emissiveTexture.transform;
networkMaterial->_emissiveParams = material.emissiveParams;
checkForTexcoordLightmap = true;
}
return networkMaterial;
}
void NetworkGeometry::modelParseSuccess(FBXGeometry* geometry) {
// assume owner ship of geometry pointer
_geometry.reset(geometry);
foreach(const FBXMesh& mesh, _geometry->meshes) {
_meshes.emplace_back(buildNetworkMesh(mesh, _textureBaseUrl));
}
QHash<QString, int> fbxMatIDToMatID;
foreach(const FBXMaterial& material, _geometry->materials) {
fbxMatIDToMatID[material.materialID] = _materials.size();
_materials.emplace_back(buildNetworkMaterial(material, _textureBaseUrl));
}
int meshID = 0;
foreach(const FBXMesh& mesh, _geometry->meshes) {
int partID = 0;
foreach (const FBXMeshPart& part, mesh.parts) {
NetworkShape* networkShape = new NetworkShape();
networkShape->_meshID = meshID;
networkShape->_partID = partID;
networkShape->_materialID = fbxMatIDToMatID[part.materialID];
_shapes.emplace_back(networkShape);
partID++;
}
meshID++;
}
_state = SuccessState;
emit onSuccess(*this, *_geometry.get());
delete _resource;
_resource = nullptr;
}
void NetworkGeometry::modelParseError(int error, QString str) {
_state = ErrorState;
emit onFailure(*this, (NetworkGeometry::Error)error);
delete _resource;
_resource = nullptr;
}
const NetworkMaterial* NetworkGeometry::getShapeMaterial(int shapeID) {
if ((shapeID >= 0) && (shapeID < _shapes.size())) {
int materialID = _shapes[shapeID]->_materialID;
if ((materialID >= 0) && (materialID < _materials.size())) {
return _materials[materialID].get();
} else {
return 0;
}
} else {
return 0;
}
}