overte-JulianGro/interface/src/VoxelSystem.cpp
2013-05-01 22:57:19 -07:00

485 lines
18 KiB
C++

//
// Cube.cpp
// interface
//
// Created by Philip on 12/31/12.
// Copyright (c) 2012 High Fidelity, Inc. All rights reserved.
//
#ifdef _WIN32
#define _timeval_
#define _USE_MATH_DEFINES
#endif
#include <cstring>
#include <cmath>
#include <iostream> // to load voxels from file
#include <fstream> // to load voxels from file
#include <SharedUtil.h>
#include <PacketHeaders.h>
#include <OctalCode.h>
#include <pthread.h>
#include "Log.h"
#include "VoxelConstants.h"
#include "VoxelSystem.h"
float identityVertices[] = { 0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1,
0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1,
0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1 };
GLfloat identityNormals[] = { 0,0,-1, 0,0,-1, 0,0,-1, 0,0,-1,
0,0,+1, 0,0,+1, 0,0,+1, 0,0,+1,
0,-1,0, 0,-1,0, 0,+1,0, 0,+1,0,
0,-1,0, 0,-1,0, 0,+1,0, 0,+1,0,
-1,0,0, +1,0,0, +1,0,0, -1,0,0,
-1,0,0, +1,0,0, +1,0,0, -1,0,0 };
GLubyte identityIndices[] = { 0,2,1, 0,3,2, // Z- .
8,9,13, 8,13,12, // Y-
16,23,19, 16,20,23, // X-
17,18,22, 17,22,21, // X+
10,11,15, 10,15,14, // Y+
4,5,6, 4,6,7 }; // Z+ .
VoxelSystem::VoxelSystem() {
_voxelsInArrays = _voxelsUpdated = 0;
_tree = new VoxelTree();
pthread_mutex_init(&_bufferWriteLock, NULL);
}
VoxelSystem::~VoxelSystem() {
delete[] _readVerticesArray;
delete[] _writeVerticesArray;
delete[] _readColorsArray;
delete[] _writeColorsArray;
delete[] _voxelDirtyArray;
delete _tree;
pthread_mutex_destroy(&_bufferWriteLock);
}
void VoxelSystem::loadVoxelsFile(const char* fileName, bool wantColorRandomizer) {
_tree->loadVoxelsFile(fileName, wantColorRandomizer);
copyWrittenDataToReadArrays();
}
void VoxelSystem::createSphere(float r,float xc, float yc, float zc, float s, bool solid, bool wantColorRandomizer) {
_tree->createSphere(r, xc, yc, zc, s, solid, wantColorRandomizer);
setupNewVoxelsForDrawing();
}
long int VoxelSystem::getVoxelsCreated() {
return _tree->voxelsCreated;
}
float VoxelSystem::getVoxelsCreatedPerSecondAverage() {
return (1 / _tree->voxelsCreatedStats.getEventDeltaAverage());
}
long int VoxelSystem::getVoxelsColored() {
return _tree->voxelsColored;
}
float VoxelSystem::getVoxelsColoredPerSecondAverage() {
return (1 / _tree->voxelsColoredStats.getEventDeltaAverage());
}
long int VoxelSystem::getVoxelsBytesRead() {
return _tree->voxelsBytesRead;
}
float VoxelSystem::getVoxelsBytesReadPerSecondAverage() {
return _tree->voxelsBytesReadStats.getAverageSampleValuePerSecond();
}
int VoxelSystem::parseData(unsigned char* sourceBuffer, int numBytes) {
unsigned char command = *sourceBuffer;
unsigned char *voxelData = sourceBuffer + 1;
switch(command) {
case PACKET_HEADER_VOXEL_DATA:
// ask the VoxelTree to read the bitstream into the tree
_tree->readBitstreamToTree(voxelData, numBytes - 1);
break;
case PACKET_HEADER_ERASE_VOXEL:
// ask the tree to read the "remove" bitstream
_tree->processRemoveVoxelBitstream(sourceBuffer, numBytes);
break;
case PACKET_HEADER_Z_COMMAND:
// the Z command is a special command that allows the sender to send high level semantic
// requests, like erase all, or add sphere scene, different receivers may handle these
// messages differently
char* packetData = (char *)sourceBuffer;
char* command = &packetData[1]; // start of the command
int commandLength = strlen(command); // commands are null terminated strings
int totalLength = 1+commandLength+1;
printLog("got Z message len(%d)= %s\n", numBytes, command);
while (totalLength <= numBytes) {
if (0==strcmp(command,(char*)"erase all")) {
printLog("got Z message == erase all\n");
_tree->eraseAllVoxels();
_voxelsInArrays = 0; // better way to do this??
}
if (0==strcmp(command,(char*)"add scene")) {
printLog("got Z message == add scene - NOT SUPPORTED ON INTERFACE\n");
}
totalLength += commandLength+1;
}
break;
}
setupNewVoxelsForDrawing();
return numBytes;
}
void VoxelSystem::setupNewVoxelsForDrawing() {
_voxelsUpdated = newTreeToArrays(_tree->rootNode);
if (_voxelsUpdated) {
_voxelsDirty=true;
}
// copy the newly written data to the arrays designated for reading
copyWrittenDataToReadArrays();
}
void VoxelSystem::copyWrittenDataToReadArrays() {
if (_voxelsDirty) {
// lock on the buffer write lock so we can't modify the data when the GPU is reading it
pthread_mutex_lock(&_bufferWriteLock);
int bytesOfVertices = (_voxelsInArrays * VERTEX_POINTS_PER_VOXEL) * sizeof(GLfloat);
int bytesOfColors = (_voxelsInArrays * VERTEX_POINTS_PER_VOXEL) * sizeof(GLubyte);
memcpy(_readVerticesArray, _writeVerticesArray, bytesOfVertices);
memcpy(_readColorsArray, _writeColorsArray, bytesOfColors );
pthread_mutex_unlock(&_bufferWriteLock);
}
}
int VoxelSystem::newTreeToArrays(VoxelNode* node) {
assert(_viewFrustum); // you must set up _viewFrustum before calling this
int voxelsUpdated = 0;
float distanceToNode = node->distanceToCamera(*_viewFrustum);
float boundary = boundaryDistanceForRenderLevel(*node->octalCode + 1);
float childBoundary = boundaryDistanceForRenderLevel(*node->octalCode + 2);
bool inBoundary = (distanceToNode <= boundary);
bool inChildBoundary = (distanceToNode <= childBoundary);
bool shouldRender = node->isColored() && ((node->isLeaf() && inChildBoundary) || (inBoundary && !inChildBoundary));
node->setShouldRender(shouldRender);
// let children figure out their renderness
for (int i = 0; i < 8; i++) {
if (node->children[i]) {
voxelsUpdated += newTreeToArrays(node->children[i]);
}
}
// Now, if we've changed any attributes (our renderness, our color, etc) then update the Arrays... for us
if (node->isDirty() && (shouldRender || node->isKnownBufferIndex())) {
glm::vec3 startVertex;
float voxelScale = 0;
// If we're should render, use our legit location and scale,
if (node->getShouldRender()) {
copyFirstVertexForCode(node->octalCode, (float*)&startVertex);
voxelScale = (1 / powf(2, *node->octalCode));
} else {
// if we shouldn't render then set out location to some infinitely distant location,
// and our scale as infinitely small
startVertex[0] = startVertex[1] = startVertex[2] = FLT_MAX;
voxelScale = 0;
}
// If this node has not yet been written to the array, then add it to the end of the array.
glBufferIndex nodeIndex;
if (node->isKnownBufferIndex()) {
nodeIndex = node->getBufferIndex();
} else {
nodeIndex = _voxelsInArrays;
}
_voxelDirtyArray[nodeIndex] = true;
// populate the array with points for the 8 vertices
// and RGB color for each added vertex
for (int j = 0; j < VERTEX_POINTS_PER_VOXEL; j++ ) {
GLfloat* writeVerticesAt = _writeVerticesArray + (nodeIndex * VERTEX_POINTS_PER_VOXEL);
GLubyte* writeColorsAt = _writeColorsArray + (nodeIndex * VERTEX_POINTS_PER_VOXEL);
*(writeVerticesAt+j) = startVertex[j % 3] + (identityVertices[j] * voxelScale);
*(writeColorsAt +j) = node->getColor()[j % 3];
}
if (!node->isKnownBufferIndex()) {
node->setBufferIndex(nodeIndex);
_voxelsInArrays++; // our know vertices in the arrays
}
voxelsUpdated++;
node->clearDirtyBit();
}
return voxelsUpdated;
}
VoxelSystem* VoxelSystem::clone() const {
// this still needs to be implemented, will need to be used if VoxelSystem is attached to agent
return NULL;
}
void VoxelSystem::init() {
// When we change voxels representations in the arrays, we'll update this
_voxelsDirty = false;
_voxelsInArrays = 0;
// we will track individual dirty sections with this array of bools
_voxelDirtyArray = new bool[MAX_VOXELS_PER_SYSTEM];
memset(_voxelDirtyArray, false, MAX_VOXELS_PER_SYSTEM * sizeof(bool));
// prep the data structures for incoming voxel data
_writeVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
_readVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
_writeColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
_readColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
GLuint* indicesArray = new GLuint[INDICES_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
// populate the indicesArray
// this will not change given new voxels, so we can set it all up now
for (int n = 0; n < MAX_VOXELS_PER_SYSTEM; n++) {
// fill the indices array
int voxelIndexOffset = n * INDICES_PER_VOXEL;
GLuint* currentIndicesPos = indicesArray + voxelIndexOffset;
int startIndex = (n * VERTICES_PER_VOXEL);
for (int i = 0; i < INDICES_PER_VOXEL; i++) {
// add indices for this side of the cube
currentIndicesPos[i] = startIndex + identityIndices[i];
}
}
GLfloat* normalsArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
GLfloat* normalsArrayEndPointer = normalsArray;
// populate the normalsArray
for (int n = 0; n < MAX_VOXELS_PER_SYSTEM; n++) {
for (int i = 0; i < VERTEX_POINTS_PER_VOXEL; i++) {
*(normalsArrayEndPointer++) = identityNormals[i];
}
}
// VBO for the verticesArray
glGenBuffers(1, &_vboVerticesID);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
// VBO for the normalsArray
glGenBuffers(1, &_vboNormalsID);
glBindBuffer(GL_ARRAY_BUFFER, _vboNormalsID);
glBufferData(GL_ARRAY_BUFFER,
VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM,
normalsArray, GL_STATIC_DRAW);
// VBO for colorsArray
glGenBuffers(1, &_vboColorsID);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
// VBO for the indicesArray
glGenBuffers(1, &_vboIndicesID);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vboIndicesID);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
INDICES_PER_VOXEL * sizeof(GLuint) * MAX_VOXELS_PER_SYSTEM,
indicesArray, GL_STATIC_DRAW);
// delete the indices and normals arrays that are no longer needed
delete[] indicesArray;
delete[] normalsArray;
}
void VoxelSystem::updateVBOs() {
if (_voxelsDirty) {
glBufferIndex segmentStart = 0;
glBufferIndex segmentEnd = 0;
bool inSegment = false;
for (glBufferIndex i = 0; i < _voxelsInArrays; i++) {
if (!inSegment) {
if (_voxelDirtyArray[i]) {
segmentStart = i;
inSegment = true;
_voxelDirtyArray[i] = false; // consider us clean!
}
} else {
if (!_voxelDirtyArray[i] || (i == (_voxelsInArrays - 1)) ) {
segmentEnd = i;
inSegment = false;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
}
}
}
_voxelsDirty = false;
}
}
void VoxelSystem::render() {
glPushMatrix();
updateVBOs();
// tell OpenGL where to find vertex and color information
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glVertexPointer(3, GL_FLOAT, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, _vboNormalsID);
glNormalPointer(GL_FLOAT, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glColorPointer(3, GL_UNSIGNED_BYTE, 0, 0);
// draw the number of voxels we have
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vboIndicesID);
glScalef(10, 10, 10);
glDrawElements(GL_TRIANGLES, 36 * _voxelsInArrays, GL_UNSIGNED_INT, 0);
// deactivate vertex and color arrays after drawing
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
// bind with 0 to switch back to normal operation
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// scale back down to 1 so heads aren't massive
glPopMatrix();
}
int VoxelSystem::_nodeCount = 0;
bool VoxelSystem::randomColorOperation(VoxelNode* node, void* extraData) {
_nodeCount++;
if (node->isColored()) {
nodeColor newColor = { randomColorValue(150), randomColorValue(150), randomColorValue(150), 1 };
node->setColor(newColor);
}
return true;
}
void VoxelSystem::randomizeVoxelColors() {
_nodeCount = 0;
_tree->recurseTreeWithOperation(randomColorOperation);
printLog("setting randomized true color for %d nodes\n", _nodeCount);
setupNewVoxelsForDrawing();
}
bool VoxelSystem::falseColorizeRandomOperation(VoxelNode* node, void* extraData) {
_nodeCount++;
// always false colorize
node->setFalseColor(randomColorValue(150), randomColorValue(150), randomColorValue(150));
return true; // keep going!
}
void VoxelSystem::falseColorizeRandom() {
_nodeCount = 0;
_tree->recurseTreeWithOperation(falseColorizeRandomOperation);
printLog("setting randomized false color for %d nodes\n", _nodeCount);
setupNewVoxelsForDrawing();
}
bool VoxelSystem::trueColorizeOperation(VoxelNode* node, void* extraData) {
_nodeCount++;
node->setFalseColored(false);
return true;
}
void VoxelSystem::trueColorize() {
_nodeCount = 0;
_tree->recurseTreeWithOperation(trueColorizeOperation);
printLog("setting true color for %d nodes\n", _nodeCount);
setupNewVoxelsForDrawing();
}
// Will false colorize voxels that are not in view
bool VoxelSystem::falseColorizeInViewOperation(VoxelNode* node, void* extraData) {
const ViewFrustum* viewFrustum = (const ViewFrustum*) extraData;
_nodeCount++;
if (node->isColored()) {
if (!node->isInView(*viewFrustum)) {
// Out of view voxels are colored RED
node->setFalseColor(255, 0, 0);
}
}
return true; // keep going!
}
void VoxelSystem::falseColorizeInView(ViewFrustum* viewFrustum) {
_nodeCount = 0;
_tree->recurseTreeWithOperation(falseColorizeInViewOperation,(void*)viewFrustum);
printLog("setting in view false color for %d nodes\n", _nodeCount);
setupNewVoxelsForDrawing();
}
// Will false colorize voxels based on distance from view
bool VoxelSystem::falseColorizeDistanceFromViewOperation(VoxelNode* node, void* extraData) {
ViewFrustum* viewFrustum = (ViewFrustum*) extraData;
if (node->isColored()) {
float distance = node->distanceToCamera(*viewFrustum);
_nodeCount++;
float distanceRatio = (_minDistance == _maxDistance) ? 1 : (distance - _minDistance) / (_maxDistance - _minDistance);
// We want to colorize this in 16 bug chunks of color
const unsigned char maxColor = 255;
const unsigned char colorBands = 16;
const unsigned char gradientOver = 128;
unsigned char colorBand = (colorBands * distanceRatio);
node->setFalseColor((colorBand * (gradientOver / colorBands)) + (maxColor - gradientOver), 0, 0);
}
return true; // keep going!
}
float VoxelSystem::_maxDistance = 0.0;
float VoxelSystem::_minDistance = FLT_MAX;
// Helper function will get the distance from view range, would be nice if you could just keep track
// of this as voxels are created and/or colored... seems like some transform math could do that so
// we wouldn't need to do two passes of the tree
bool VoxelSystem::getDistanceFromViewRangeOperation(VoxelNode* node, void* extraData) {
ViewFrustum* viewFrustum = (ViewFrustum*) extraData;
// only do this for truly colored voxels...
if (node->isColored()) {
float distance = node->distanceToCamera(*viewFrustum);
// calculate the range of distances
if (distance > _maxDistance) {
_maxDistance = distance;
}
if (distance < _minDistance) {
_minDistance = distance;
}
_nodeCount++;
}
return true; // keep going!
}
void VoxelSystem::falseColorizeDistanceFromView(ViewFrustum* viewFrustum) {
_nodeCount = 0;
_maxDistance = 0.0;
_minDistance = FLT_MAX;
_tree->recurseTreeWithOperation(getDistanceFromViewRangeOperation,(void*)viewFrustum);
printLog("determining distance range for %d nodes\n", _nodeCount);
_nodeCount = 0;
_tree->recurseTreeWithOperation(falseColorizeDistanceFromViewOperation,(void*)viewFrustum);
printLog("setting in distance false color for %d nodes\n", _nodeCount);
setupNewVoxelsForDrawing();
}