overte-JulianGro/libraries/entities-renderer/src/RenderableModelEntityItem.cpp

1220 lines
50 KiB
C++

//
// RenderableModelEntityItem.cpp
// interface/src
//
// Created by Brad Hefta-Gaub on 8/6/14.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <glm/gtx/quaternion.hpp>
#include <set>
#include <QJsonDocument>
#include <QtCore/QThread>
#include <glm/gtx/transform.hpp>
#include <AbstractViewStateInterface.h>
#include <CollisionRenderMeshCache.h>
#include <Model.h>
#include <PerfStat.h>
#include <render/Scene.h>
#include <DependencyManager.h>
#include "EntityTreeRenderer.h"
#include "EntitiesRendererLogging.h"
#include "RenderableEntityItem.h"
#include "RenderableModelEntityItem.h"
#include "RenderableEntityItem.h"
static CollisionRenderMeshCache collisionMeshCache;
EntityItemPointer RenderableModelEntityItem::factory(const EntityItemID& entityID, const EntityItemProperties& properties) {
EntityItemPointer entity{ new RenderableModelEntityItem(entityID, properties.getDimensionsInitialized()) };
entity->setProperties(properties);
return entity;
}
RenderableModelEntityItem::RenderableModelEntityItem(const EntityItemID& entityItemID, bool dimensionsInitialized) :
ModelEntityItem(entityItemID),
_dimensionsInitialized(dimensionsInitialized) {
}
RenderableModelEntityItem::~RenderableModelEntityItem() {
assert(_myRenderer || !_model); // if we have a model, we need to know our renderer
if (_myRenderer && _model) {
_myRenderer->releaseModel(_model);
_model = NULL;
}
}
void RenderableModelEntityItem::setModelURL(const QString& url) {
auto& currentURL = getParsedModelURL();
ModelEntityItem::setModelURL(url);
if (currentURL != getParsedModelURL()) {
_needsModelReload = true;
}
if (_needsModelReload || !_model) {
EntityTreePointer tree = getTree();
if (tree) {
QMetaObject::invokeMethod(tree.get(), "callLoader", Qt::QueuedConnection, Q_ARG(EntityItemID, getID()));
}
}
}
void RenderableModelEntityItem::loader() {
_needsModelReload = true;
auto renderer = DependencyManager::get<EntityTreeRenderer>();
assert(renderer);
{
PerformanceTimer perfTimer("getModel");
getModel(renderer);
}
}
void RenderableModelEntityItem::setDimensions(const glm::vec3& value) {
_dimensionsInitialized = true;
ModelEntityItem::setDimensions(value);
}
bool RenderableModelEntityItem::setProperties(const EntityItemProperties& properties) {
QString oldModelURL = getModelURL();
bool somethingChanged = ModelEntityItem::setProperties(properties);
if (somethingChanged && oldModelURL != getModelURL()) {
_needsModelReload = true;
}
return somethingChanged;
}
int RenderableModelEntityItem::readEntitySubclassDataFromBuffer(const unsigned char* data, int bytesLeftToRead,
ReadBitstreamToTreeParams& args,
EntityPropertyFlags& propertyFlags, bool overwriteLocalData,
bool& somethingChanged) {
QString oldModelURL = getModelURL();
int bytesRead = ModelEntityItem::readEntitySubclassDataFromBuffer(data, bytesLeftToRead,
args, propertyFlags,
overwriteLocalData, somethingChanged);
if (oldModelURL != getModelURL()) {
_needsModelReload = true;
}
return bytesRead;
}
QVariantMap RenderableModelEntityItem::parseTexturesToMap(QString textures) {
// If textures are unset, revert to original textures
if (textures.isEmpty()) {
return _originalTextures;
}
// Legacy: a ,\n-delimited list of filename:"texturepath"
if (*textures.cbegin() != '{') {
textures = "{\"" + textures.replace(":\"", "\":\"").replace(",\n", ",\"") + "}";
}
QJsonParseError error;
QJsonDocument texturesJson = QJsonDocument::fromJson(textures.toUtf8(), &error);
// If textures are invalid, revert to original textures
if (error.error != QJsonParseError::NoError) {
qCWarning(entitiesrenderer) << "Could not evaluate textures property value:" << textures;
return _originalTextures;
}
QVariantMap texturesMap = texturesJson.toVariant().toMap();
// If textures are unset, revert to original textures
if (texturesMap.isEmpty()) {
return _originalTextures;
}
return texturesJson.toVariant().toMap();
}
void RenderableModelEntityItem::remapTextures() {
if (!_model) {
return; // nothing to do if we don't have a model
}
if (!_model->isLoaded()) {
return; // nothing to do if the model has not yet loaded
}
if (!_originalTexturesRead) {
_originalTextures = _model->getTextures();
_originalTexturesRead = true;
// Default to _originalTextures to avoid remapping immediately and lagging on load
_currentTextures = _originalTextures;
}
auto textures = getTextures();
if (textures == _lastTextures) {
return;
}
_lastTextures = textures;
auto newTextures = parseTexturesToMap(textures);
if (newTextures != _currentTextures) {
_model->setTextures(newTextures);
_currentTextures = newTextures;
}
}
void RenderableModelEntityItem::doInitialModelSimulation() {
// The machinery for updateModelBounds will give existing models the opportunity to fix their
// translation/rotation/scale/registration. The first two are straightforward, but the latter two have guards to
// make sure they don't happen after they've already been set. Here we reset those guards. This doesn't cause the
// entity values to change -- it just allows the model to match once it comes in.
_model->setScaleToFit(false, getDimensions());
_model->setSnapModelToRegistrationPoint(false, getRegistrationPoint());
// now recalculate the bounds and registration
_model->setScaleToFit(true, getDimensions());
_model->setSnapModelToRegistrationPoint(true, getRegistrationPoint());
_model->setRotation(getRotation());
_model->setTranslation(getPosition());
{
PerformanceTimer perfTimer("_model->simulate");
_model->simulate(0.0f);
}
_needsInitialSimulation = false;
}
class RenderableModelEntityItemMeta {
public:
RenderableModelEntityItemMeta(EntityItemPointer entity) : entity(entity){ }
typedef render::Payload<RenderableModelEntityItemMeta> Payload;
typedef Payload::DataPointer Pointer;
EntityItemPointer entity;
};
namespace render {
template <> const ItemKey payloadGetKey(const RenderableModelEntityItemMeta::Pointer& payload) {
return ItemKey::Builder::opaqueShape();
}
template <> const Item::Bound payloadGetBound(const RenderableModelEntityItemMeta::Pointer& payload) {
if (payload && payload->entity) {
bool success;
auto result = payload->entity->getAABox(success);
if (!success) {
return render::Item::Bound();
}
return result;
}
return render::Item::Bound();
}
template <> void payloadRender(const RenderableModelEntityItemMeta::Pointer& payload, RenderArgs* args) {
if (args) {
if (payload && payload->entity) {
PROFILE_RANGE("MetaModelRender");
payload->entity->render(args);
}
}
}
}
bool RenderableModelEntityItem::addToScene(EntityItemPointer self, std::shared_ptr<render::Scene> scene,
render::PendingChanges& pendingChanges) {
_myMetaItem = scene->allocateID();
auto renderData = std::make_shared<RenderableModelEntityItemMeta>(self);
auto renderPayload = std::make_shared<RenderableModelEntityItemMeta::Payload>(renderData);
pendingChanges.resetItem(_myMetaItem, renderPayload);
if (_model) {
render::Item::Status::Getters statusGetters;
makeEntityItemStatusGetters(getThisPointer(), statusGetters);
// note: we don't mind if the model fails to add, we'll retry (in render()) until it succeeds
_model->addToScene(scene, pendingChanges, statusGetters);
}
// we've successfully added _myMetaItem so we always return true
return true;
}
void RenderableModelEntityItem::removeFromScene(EntityItemPointer self, std::shared_ptr<render::Scene> scene,
render::PendingChanges& pendingChanges) {
pendingChanges.removeItem(_myMetaItem);
render::Item::clearID(_myMetaItem);
if (_model) {
_model->removeFromScene(scene, pendingChanges);
}
}
void RenderableModelEntityItem::resizeJointArrays(int newSize) {
if (newSize < 0) {
if (_model && _model->isActive() && _model->isLoaded() && !_needsInitialSimulation) {
newSize = _model->getJointStateCount();
}
}
ModelEntityItem::resizeJointArrays(newSize);
}
bool RenderableModelEntityItem::getAnimationFrame() {
bool newFrame = false;
if (!_model || !_model->isActive() || !_model->isLoaded() || _needsInitialSimulation) {
return false;
}
if (!hasRenderAnimation() || !_jointMappingCompleted) {
return false;
}
if (_animation && _animation->isLoaded()) {
const QVector<FBXAnimationFrame>& frames = _animation->getFramesReference(); // NOTE: getFrames() is too heavy
auto& fbxJoints = _animation->getGeometry().joints;
int frameCount = frames.size();
if (frameCount > 0) {
int animationCurrentFrame = (int)(glm::floor(getAnimationCurrentFrame())) % frameCount;
if (animationCurrentFrame < 0 || animationCurrentFrame > frameCount) {
animationCurrentFrame = 0;
}
if (animationCurrentFrame != _lastKnownCurrentFrame) {
_lastKnownCurrentFrame = animationCurrentFrame;
newFrame = true;
resizeJointArrays();
if (_jointMapping.size() != _model->getJointStateCount()) {
qDebug() << "RenderableModelEntityItem::getAnimationFrame -- joint count mismatch"
<< _jointMapping.size() << _model->getJointStateCount();
assert(false);
return false;
}
const QVector<glm::quat>& rotations = frames[animationCurrentFrame].rotations;
const QVector<glm::vec3>& translations = frames[animationCurrentFrame].translations;
for (int j = 0; j < _jointMapping.size(); j++) {
int index = _jointMapping[j];
if (index >= 0) {
glm::mat4 translationMat;
if (index < translations.size()) {
translationMat = glm::translate(translations[index]);
}
glm::mat4 rotationMat;
if (index < rotations.size()) {
rotationMat = glm::mat4_cast(fbxJoints[index].preRotation * rotations[index] * fbxJoints[index].postRotation);
} else {
rotationMat = glm::mat4_cast(fbxJoints[index].preRotation * fbxJoints[index].postRotation);
}
glm::mat4 finalMat = (translationMat * fbxJoints[index].preTransform *
rotationMat * fbxJoints[index].postTransform);
_localJointTranslations[j] = extractTranslation(finalMat);
_localJointTranslationsSet[j] = true;
_localJointTranslationsDirty[j] = true;
_localJointRotations[j] = glmExtractRotation(finalMat);
_localJointRotationsSet[j] = true;
_localJointRotationsDirty[j] = true;
}
}
}
}
}
return newFrame;
}
void RenderableModelEntityItem::updateModelBounds() {
if (!hasModel() || !_model) {
return;
}
if (!_dimensionsInitialized || !_model->isActive()) {
return;
}
bool movingOrAnimating = isMovingRelativeToParent() || isAnimatingSomething();
glm::vec3 dimensions = getDimensions();
bool success;
auto transform = getTransform(success);
if (movingOrAnimating ||
_needsInitialSimulation ||
_needsJointSimulation ||
_model->getTranslation() != transform.getTranslation() ||
_model->getScaleToFitDimensions() != dimensions ||
_model->getRotation() != transform.getRotation() ||
_model->getRegistrationPoint() != getRegistrationPoint()) {
doInitialModelSimulation();
_needsJointSimulation = false;
}
}
// NOTE: this only renders the "meta" portion of the Model, namely it renders debugging items, and it handles
// the per frame simulation/update that might be required if the models properties changed.
void RenderableModelEntityItem::render(RenderArgs* args) {
PerformanceTimer perfTimer("RMEIrender");
assert(getType() == EntityTypes::Model);
// When the individual mesh parts of a model finish fading, they will mark their Model as needing updating
// we will watch for that and ask the model to update it's render items
if (_model && _model->getRenderItemsNeedUpdate()) {
_model->updateRenderItems();
}
if (hasModel()) {
// Prepare the current frame
{
if (!_model || _needsModelReload) {
// TODO: this getModel() appears to be about 3% of model render time. We should optimize
PerformanceTimer perfTimer("getModel");
auto renderer = qSharedPointerCast<EntityTreeRenderer>(args->_renderer);
getModel(renderer);
// Remap textures immediately after loading to avoid flicker
remapTextures();
}
if (_model) {
if (hasRenderAnimation()) {
if (!jointsMapped()) {
QStringList modelJointNames = _model->getJointNames();
mapJoints(modelJointNames);
}
}
_jointDataLock.withWriteLock([&] {
getAnimationFrame();
// relay any inbound joint changes from scripts/animation/network to the model/rig
for (int index = 0; index < _localJointRotations.size(); index++) {
if (_localJointRotationsDirty[index]) {
glm::quat rotation = _localJointRotations[index];
_model->setJointRotation(index, true, rotation, 1.0f);
_localJointRotationsDirty[index] = false;
}
}
for (int index = 0; index < _localJointTranslations.size(); index++) {
if (_localJointTranslationsDirty[index]) {
glm::vec3 translation = _localJointTranslations[index];
_model->setJointTranslation(index, true, translation, 1.0f);
_localJointTranslationsDirty[index] = false;
}
}
});
updateModelBounds();
}
}
// Enqueue updates for the next frame
if (_model) {
render::ScenePointer scene = AbstractViewStateInterface::instance()->getMain3DScene();
// FIXME: this seems like it could be optimized if we tracked our last known visible state in
// the renderable item. As it stands now the model checks it's visible/invisible state
// so most of the time we don't do anything in this function.
_model->setVisibleInScene(getVisible(), scene);
// Remap textures for the next frame to avoid flicker
remapTextures();
// update whether the model should be showing collision mesh (this may flag for fixupInScene)
bool showingCollisionGeometry = (bool)(args->_debugFlags & (int)RenderArgs::RENDER_DEBUG_HULLS);
if (showingCollisionGeometry != _showCollisionGeometry) {
ShapeType type = getShapeType();
_showCollisionGeometry = showingCollisionGeometry;
if (_showCollisionGeometry && type != SHAPE_TYPE_STATIC_MESH && type != SHAPE_TYPE_NONE) {
// NOTE: it is OK if _collisionMeshKey is nullptr
model::MeshPointer mesh = collisionMeshCache.getMesh(_collisionMeshKey);
// NOTE: the model will render the collisionGeometry if it has one
_model->setCollisionMesh(mesh);
} else {
// release mesh
if (_collisionMeshKey) {
collisionMeshCache.releaseMesh(_collisionMeshKey);
}
// clear model's collision geometry
model::MeshPointer mesh = nullptr;
_model->setCollisionMesh(mesh);
}
}
if (_model->needsFixupInScene()) {
render::PendingChanges pendingChanges;
_model->removeFromScene(scene, pendingChanges);
render::Item::Status::Getters statusGetters;
makeEntityItemStatusGetters(getThisPointer(), statusGetters);
_model->addToScene(scene, pendingChanges, statusGetters);
scene->enqueuePendingChanges(pendingChanges);
}
auto& currentURL = getParsedModelURL();
if (currentURL != _model->getURL()) {
// Defer setting the url to the render thread
getModel(_myRenderer);
}
}
} else {
static glm::vec4 greenColor(0.0f, 1.0f, 0.0f, 1.0f);
gpu::Batch& batch = *args->_batch;
bool success;
auto shapeTransform = getTransformToCenter(success);
if (success) {
batch.setModelTransform(shapeTransform); // we want to include the scale as well
DependencyManager::get<GeometryCache>()->renderWireCubeInstance(batch, greenColor);
}
}
}
ModelPointer RenderableModelEntityItem::getModel(QSharedPointer<EntityTreeRenderer> renderer) {
if (!renderer) {
return nullptr;
}
// make sure our renderer is setup
if (!_myRenderer) {
_myRenderer = renderer;
}
assert(_myRenderer == renderer); // you should only ever render on one renderer
if (!_myRenderer || QThread::currentThread() != _myRenderer->thread()) {
return _model;
}
_needsModelReload = false; // this is the reload
// If we have a URL, then we will want to end up returning a model...
if (!getModelURL().isEmpty()) {
// If we don't have a model, allocate one *immediately*
if (!_model) {
_model = _myRenderer->allocateModel(getModelURL(), renderer->getEntityLoadingPriority(*this));
_needsInitialSimulation = true;
// If we need to change URLs, update it *after rendering* (to avoid access violations)
} else if (QUrl(getModelURL()) != _model->getURL()) {
QMetaObject::invokeMethod(_myRenderer.data(), "updateModel", Qt::QueuedConnection,
Q_ARG(ModelPointer, _model),
Q_ARG(const QString&, getModelURL()));
_needsInitialSimulation = true;
}
// Else we can just return the _model
// If we have no URL, then we can delete any model we do have...
} else if (_model) {
// remove from scene
render::ScenePointer scene = AbstractViewStateInterface::instance()->getMain3DScene();
render::PendingChanges pendingChanges;
_model->removeFromScene(scene, pendingChanges);
scene->enqueuePendingChanges(pendingChanges);
// release interest
_myRenderer->releaseModel(_model);
_model = nullptr;
_needsInitialSimulation = true;
}
return _model;
}
bool RenderableModelEntityItem::needsToCallUpdate() const {
return !_dimensionsInitialized || _needsInitialSimulation || ModelEntityItem::needsToCallUpdate();
}
void RenderableModelEntityItem::update(const quint64& now) {
if (!_dimensionsInitialized) {
if (_model) {
if (_model->isActive() && _model->isLoaded()) {
EntityItemProperties properties;
properties.setLastEdited(usecTimestampNow()); // we must set the edit time since we're editing it
auto extents = _model->getMeshExtents();
properties.setDimensions(extents.maximum - extents.minimum);
qCDebug(entitiesrenderer) << "Autoresizing:" << (!getName().isEmpty() ? getName() : getModelURL());
QMetaObject::invokeMethod(DependencyManager::get<EntityScriptingInterface>().data(), "editEntity",
Qt::QueuedConnection,
Q_ARG(QUuid, getEntityItemID()),
Q_ARG(EntityItemProperties, properties));
}
} else if (_needsModelReload) {
EntityTreePointer tree = getTree();
if (tree) {
QMetaObject::invokeMethod(tree.get(), "callLoader", Qt::QueuedConnection, Q_ARG(EntityItemID, getID()));
}
}
}
// make a copy of the animation properites
_renderAnimationProperties = _animationProperties;
ModelEntityItem::update(now);
}
EntityItemProperties RenderableModelEntityItem::getProperties(EntityPropertyFlags desiredProperties) const {
EntityItemProperties properties = ModelEntityItem::getProperties(desiredProperties); // get the properties from our base class
if (_originalTexturesRead) {
properties.setTextureNames(_originalTextures);
}
if (_model) {
properties.setRenderInfoVertexCount(_model->getRenderInfoVertexCount());
properties.setRenderInfoTextureCount(_model->getRenderInfoTextureCount());
properties.setRenderInfoTextureSize(_model->getRenderInfoTextureSize());
properties.setRenderInfoDrawCalls(_model->getRenderInfoDrawCalls());
properties.setRenderInfoHasTransparent(_model->getRenderInfoHasTransparent());
}
return properties;
}
bool RenderableModelEntityItem::findDetailedRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
bool& keepSearching, OctreeElementPointer& element, float& distance, BoxFace& face,
glm::vec3& surfaceNormal, void** intersectedObject, bool precisionPicking) const {
if (!_model) {
return true;
}
// qCDebug(entitiesrenderer) << "RenderableModelEntityItem::findDetailedRayIntersection() precisionPicking:"
// << precisionPicking;
QString extraInfo;
return _model->findRayIntersectionAgainstSubMeshes(origin, direction, distance,
face, surfaceNormal, extraInfo, precisionPicking);
}
void RenderableModelEntityItem::setShapeType(ShapeType type) {
ModelEntityItem::setShapeType(type);
if (_shapeType == SHAPE_TYPE_COMPOUND) {
if (!_compoundShapeResource && !_compoundShapeURL.isEmpty()) {
_compoundShapeResource = DependencyManager::get<ModelCache>()->getGeometryResource(getCompoundShapeURL());
}
} else if (_compoundShapeResource && !_compoundShapeURL.isEmpty()) {
// the compoundURL has been set but the shapeType does not agree
_compoundShapeResource.reset();
}
}
void RenderableModelEntityItem::setCompoundShapeURL(const QString& url) {
auto currentCompoundShapeURL = getCompoundShapeURL();
ModelEntityItem::setCompoundShapeURL(url);
if (getCompoundShapeURL() != currentCompoundShapeURL || !_model) {
EntityTreePointer tree = getTree();
if (tree) {
QMetaObject::invokeMethod(tree.get(), "callLoader", Qt::QueuedConnection, Q_ARG(EntityItemID, getID()));
}
if (_shapeType == SHAPE_TYPE_COMPOUND) {
_compoundShapeResource = DependencyManager::get<ModelCache>()->getGeometryResource(url);
}
}
}
bool RenderableModelEntityItem::isReadyToComputeShape() {
ShapeType type = getShapeType();
if (type == SHAPE_TYPE_COMPOUND) {
if (!_model || _compoundShapeURL.isEmpty()) {
EntityTreePointer tree = getTree();
if (tree) {
QMetaObject::invokeMethod(tree.get(), "callLoader", Qt::QueuedConnection, Q_ARG(EntityItemID, getID()));
}
return false;
}
if (_model->getURL().isEmpty()) {
// we need a render geometry with a scale to proceed, so give up.
return false;
}
if (_model->isLoaded()) {
if (_compoundShapeResource && _compoundShapeResource->isLoaded()) {
// we have both URLs AND both geometries AND they are both fully loaded.
if (_needsInitialSimulation) {
// the _model's offset will be wrong until _needsInitialSimulation is false
PerformanceTimer perfTimer("_model->simulate");
doInitialModelSimulation();
}
return true;
} else if (!_compoundShapeURL.isEmpty()) {
_compoundShapeResource = DependencyManager::get<ModelCache>()->getGeometryResource(_compoundShapeURL);
}
}
// the model is still being downloaded.
return false;
} else if (type >= SHAPE_TYPE_SIMPLE_HULL && type <= SHAPE_TYPE_STATIC_MESH) {
return (_model && _model->isLoaded());
}
return true;
}
void RenderableModelEntityItem::computeShapeInfo(ShapeInfo& shapeInfo) {
const uint32_t TRIANGLE_STRIDE = 3;
const uint32_t QUAD_STRIDE = 4;
ShapeType type = getShapeType();
glm::vec3 dimensions = getDimensions();
if (type == SHAPE_TYPE_COMPOUND) {
updateModelBounds();
// should never fall in here when collision model not fully loaded
// hence we assert that all geometries exist and are loaded
assert(_model && _model->isLoaded() && _compoundShapeResource && _compoundShapeResource->isLoaded());
const FBXGeometry& collisionGeometry = _compoundShapeResource->getFBXGeometry();
ShapeInfo::PointCollection& pointCollection = shapeInfo.getPointCollection();
pointCollection.clear();
uint32_t i = 0;
// the way OBJ files get read, each section under a "g" line is its own meshPart. We only expect
// to find one actual "mesh" (with one or more meshParts in it), but we loop over the meshes, just in case.
foreach (const FBXMesh& mesh, collisionGeometry.meshes) {
// each meshPart is a convex hull
foreach (const FBXMeshPart &meshPart, mesh.parts) {
pointCollection.push_back(QVector<glm::vec3>());
ShapeInfo::PointList& pointsInPart = pointCollection[i];
// run through all the triangles and (uniquely) add each point to the hull
uint32_t numIndices = (uint32_t)meshPart.triangleIndices.size();
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices % TRIANGLE_STRIDE == 0);
numIndices -= numIndices % TRIANGLE_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
for (uint32_t j = 0; j < numIndices; j += TRIANGLE_STRIDE) {
glm::vec3 p0 = mesh.vertices[meshPart.triangleIndices[j]];
glm::vec3 p1 = mesh.vertices[meshPart.triangleIndices[j + 1]];
glm::vec3 p2 = mesh.vertices[meshPart.triangleIndices[j + 2]];
if (!pointsInPart.contains(p0)) {
pointsInPart << p0;
}
if (!pointsInPart.contains(p1)) {
pointsInPart << p1;
}
if (!pointsInPart.contains(p2)) {
pointsInPart << p2;
}
}
// run through all the quads and (uniquely) add each point to the hull
numIndices = (uint32_t)meshPart.quadIndices.size();
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices % QUAD_STRIDE == 0);
numIndices -= numIndices % QUAD_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
for (uint32_t j = 0; j < numIndices; j += QUAD_STRIDE) {
glm::vec3 p0 = mesh.vertices[meshPart.quadIndices[j]];
glm::vec3 p1 = mesh.vertices[meshPart.quadIndices[j + 1]];
glm::vec3 p2 = mesh.vertices[meshPart.quadIndices[j + 2]];
glm::vec3 p3 = mesh.vertices[meshPart.quadIndices[j + 3]];
if (!pointsInPart.contains(p0)) {
pointsInPart << p0;
}
if (!pointsInPart.contains(p1)) {
pointsInPart << p1;
}
if (!pointsInPart.contains(p2)) {
pointsInPart << p2;
}
if (!pointsInPart.contains(p3)) {
pointsInPart << p3;
}
}
if (pointsInPart.size() == 0) {
qCDebug(entitiesrenderer) << "Warning -- meshPart has no faces";
pointCollection.pop_back();
continue;
}
++i;
}
}
// We expect that the collision model will have the same units and will be displaced
// from its origin in the same way the visual model is. The visual model has
// been centered and probably scaled. We take the scaling and offset which were applied
// to the visual model and apply them to the collision model (without regard for the
// collision model's extents).
glm::vec3 scaleToFit = dimensions / _model->getFBXGeometry().getUnscaledMeshExtents().size();
// multiply each point by scale before handing the point-set off to the physics engine.
// also determine the extents of the collision model.
glm::vec3 registrationOffset = dimensions * (ENTITY_ITEM_DEFAULT_REGISTRATION_POINT - getRegistrationPoint());
for (int32_t i = 0; i < pointCollection.size(); i++) {
for (int32_t j = 0; j < pointCollection[i].size(); j++) {
// back compensate for registration so we can apply that offset to the shapeInfo later
pointCollection[i][j] = scaleToFit * (pointCollection[i][j] + _model->getOffset()) - registrationOffset;
}
}
shapeInfo.setParams(type, dimensions, _compoundShapeURL);
} else if (type >= SHAPE_TYPE_SIMPLE_HULL && type <= SHAPE_TYPE_STATIC_MESH) {
// should never fall in here when model not fully loaded
assert(_model && _model->isLoaded());
updateModelBounds();
_model->updateGeometry();
// compute meshPart local transforms
QVector<glm::mat4> localTransforms;
const FBXGeometry& fbxGeometry = _model->getFBXGeometry();
int numFbxMeshes = fbxGeometry.meshes.size();
int totalNumVertices = 0;
glm::mat4 invRegistraionOffset = glm::translate(dimensions * (getRegistrationPoint() - ENTITY_ITEM_DEFAULT_REGISTRATION_POINT));
for (int i = 0; i < numFbxMeshes; i++) {
const FBXMesh& mesh = fbxGeometry.meshes.at(i);
if (mesh.clusters.size() > 0) {
const FBXCluster& cluster = mesh.clusters.at(0);
auto jointMatrix = _model->getRig()->getJointTransform(cluster.jointIndex);
// we backtranslate by the registration offset so we can apply that offset to the shapeInfo later
localTransforms.push_back(invRegistraionOffset * jointMatrix * cluster.inverseBindMatrix);
} else {
glm::mat4 identity;
localTransforms.push_back(invRegistraionOffset);
}
totalNumVertices += mesh.vertices.size();
}
const int32_t MAX_VERTICES_PER_STATIC_MESH = 1e6;
if (totalNumVertices > MAX_VERTICES_PER_STATIC_MESH) {
qWarning() << "model" << getModelURL() << "has too many vertices" << totalNumVertices << "and will collide as a box.";
shapeInfo.setParams(SHAPE_TYPE_BOX, 0.5f * dimensions);
return;
}
auto& meshes = _model->getGeometry()->getMeshes();
int32_t numMeshes = (int32_t)(meshes.size());
ShapeInfo::PointCollection& pointCollection = shapeInfo.getPointCollection();
pointCollection.clear();
if (type == SHAPE_TYPE_SIMPLE_COMPOUND) {
pointCollection.resize(numMeshes);
} else {
pointCollection.resize(1);
}
ShapeInfo::TriangleIndices& triangleIndices = shapeInfo.getTriangleIndices();
triangleIndices.clear();
Extents extents;
int32_t meshCount = 0;
int32_t pointListIndex = 0;
for (auto& mesh : meshes) {
if (!mesh) {
continue;
}
const gpu::BufferView& vertices = mesh->getVertexBuffer();
const gpu::BufferView& indices = mesh->getIndexBuffer();
const gpu::BufferView& parts = mesh->getPartBuffer();
ShapeInfo::PointList& points = pointCollection[pointListIndex];
// reserve room
int32_t sizeToReserve = (int32_t)(vertices.getNumElements());
if (type == SHAPE_TYPE_SIMPLE_COMPOUND) {
// a list of points for each mesh
pointListIndex++;
} else {
// only one list of points
sizeToReserve += (int32_t)((gpu::Size)points.size());
}
points.reserve(sizeToReserve);
// copy points
uint32_t meshIndexOffset = (uint32_t)points.size();
const glm::mat4& localTransform = localTransforms[meshCount];
gpu::BufferView::Iterator<const glm::vec3> vertexItr = vertices.cbegin<const glm::vec3>();
while (vertexItr != vertices.cend<const glm::vec3>()) {
glm::vec3 point = extractTranslation(localTransform * glm::translate(*vertexItr));
points.push_back(point);
extents.addPoint(point);
++vertexItr;
}
if (type == SHAPE_TYPE_STATIC_MESH) {
// copy into triangleIndices
triangleIndices.reserve((int32_t)((gpu::Size)(triangleIndices.size()) + indices.getNumElements()));
gpu::BufferView::Iterator<const model::Mesh::Part> partItr = parts.cbegin<const model::Mesh::Part>();
while (partItr != parts.cend<const model::Mesh::Part>()) {
auto numIndices = partItr->_numIndices;
if (partItr->_topology == model::Mesh::TRIANGLES) {
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices % TRIANGLE_STRIDE == 0);
numIndices -= numIndices % TRIANGLE_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
auto indexItr = indices.cbegin<const gpu::BufferView::Index>() + partItr->_startIndex;
auto indexEnd = indexItr + numIndices;
while (indexItr != indexEnd) {
triangleIndices.push_back(*indexItr + meshIndexOffset);
++indexItr;
}
} else if (partItr->_topology == model::Mesh::TRIANGLE_STRIP) {
// TODO: resurrect assert after we start sanitizing FBXMesh higher up
//assert(numIndices > 2);
uint32_t approxNumIndices = TRIANGLE_STRIDE * numIndices;
if (approxNumIndices > (uint32_t)(triangleIndices.capacity() - triangleIndices.size())) {
// we underestimated the final size of triangleIndices so we pre-emptively expand it
triangleIndices.reserve(triangleIndices.size() + approxNumIndices);
}
auto indexItr = indices.cbegin<const gpu::BufferView::Index>() + partItr->_startIndex;
auto indexEnd = indexItr + (numIndices - 2);
// first triangle uses the first three indices
triangleIndices.push_back(*(indexItr++) + meshIndexOffset);
triangleIndices.push_back(*(indexItr++) + meshIndexOffset);
triangleIndices.push_back(*(indexItr++) + meshIndexOffset);
// the rest use previous and next index
uint32_t triangleCount = 1;
while (indexItr != indexEnd) {
if ((*indexItr) != model::Mesh::PRIMITIVE_RESTART_INDEX) {
if (triangleCount % 2 == 0) {
// even triangles use first two indices in order
triangleIndices.push_back(*(indexItr - 2) + meshIndexOffset);
triangleIndices.push_back(*(indexItr - 1) + meshIndexOffset);
} else {
// odd triangles swap order of first two indices
triangleIndices.push_back(*(indexItr - 1) + meshIndexOffset);
triangleIndices.push_back(*(indexItr - 2) + meshIndexOffset);
}
triangleIndices.push_back(*indexItr + meshIndexOffset);
++triangleCount;
}
++indexItr;
}
}
++partItr;
}
} else if (type == SHAPE_TYPE_SIMPLE_COMPOUND) {
// for each mesh copy unique part indices, separated by special bogus (flag) index values
gpu::BufferView::Iterator<const model::Mesh::Part> partItr = parts.cbegin<const model::Mesh::Part>();
while (partItr != parts.cend<const model::Mesh::Part>()) {
// collect unique list of indices for this part
std::set<int32_t> uniqueIndices;
auto numIndices = partItr->_numIndices;
if (partItr->_topology == model::Mesh::TRIANGLES) {
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices% TRIANGLE_STRIDE == 0);
numIndices -= numIndices % TRIANGLE_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
auto indexItr = indices.cbegin<const gpu::BufferView::Index>() + partItr->_startIndex;
auto indexEnd = indexItr + numIndices;
while (indexItr != indexEnd) {
uniqueIndices.insert(*indexItr);
++indexItr;
}
} else if (partItr->_topology == model::Mesh::TRIANGLE_STRIP) {
// TODO: resurrect assert after we start sanitizing FBXMesh higher up
//assert(numIndices > TRIANGLE_STRIDE - 1);
auto indexItr = indices.cbegin<const gpu::BufferView::Index>() + partItr->_startIndex;
auto indexEnd = indexItr + (numIndices - 2);
// first triangle uses the first three indices
uniqueIndices.insert(*(indexItr++));
uniqueIndices.insert(*(indexItr++));
uniqueIndices.insert(*(indexItr++));
// the rest use previous and next index
uint32_t triangleCount = 1;
while (indexItr != indexEnd) {
if ((*indexItr) != model::Mesh::PRIMITIVE_RESTART_INDEX) {
if (triangleCount % 2 == 0) {
// EVEN triangles use first two indices in order
uniqueIndices.insert(*(indexItr - 2));
uniqueIndices.insert(*(indexItr - 1));
} else {
// ODD triangles swap order of first two indices
uniqueIndices.insert(*(indexItr - 1));
uniqueIndices.insert(*(indexItr - 2));
}
uniqueIndices.insert(*indexItr);
++triangleCount;
}
++indexItr;
}
}
// store uniqueIndices in triangleIndices
triangleIndices.reserve(triangleIndices.size() + (int32_t)uniqueIndices.size());
for (auto index : uniqueIndices) {
triangleIndices.push_back(index);
}
// flag end of part
triangleIndices.push_back(END_OF_MESH_PART);
++partItr;
}
// flag end of mesh
triangleIndices.push_back(END_OF_MESH);
}
++meshCount;
}
// scale and shift
glm::vec3 extentsSize = extents.size();
glm::vec3 scaleToFit = dimensions / extentsSize;
for (int32_t i = 0; i < 3; ++i) {
if (extentsSize[i] < 1.0e-6f) {
scaleToFit[i] = 1.0f;
}
}
for (auto points : pointCollection) {
for (int32_t i = 0; i < points.size(); ++i) {
points[i] = (points[i] * scaleToFit);
}
}
shapeInfo.setParams(type, 0.5f * dimensions, _modelURL);
} else {
ModelEntityItem::computeShapeInfo(shapeInfo);
shapeInfo.setParams(type, 0.5f * dimensions);
}
// finally apply the registration offset to the shapeInfo
adjustShapeInfoByRegistration(shapeInfo);
}
void RenderableModelEntityItem::setCollisionShape(const btCollisionShape* shape) {
const void* key = static_cast<const void*>(shape);
if (_collisionMeshKey != key) {
if (_collisionMeshKey) {
collisionMeshCache.releaseMesh(_collisionMeshKey);
}
_collisionMeshKey = key;
// toggle _showCollisionGeometry forces re-evaluation later
_showCollisionGeometry = !_showCollisionGeometry;
}
}
bool RenderableModelEntityItem::contains(const glm::vec3& point) const {
if (EntityItem::contains(point) && _model && _compoundShapeResource && _compoundShapeResource->isLoaded()) {
return _compoundShapeResource->getFBXGeometry().convexHullContains(worldToEntity(point));
}
return false;
}
bool RenderableModelEntityItem::shouldBePhysical() const {
// If we have a model, make sure it hasn't failed to download.
// If it has, we'll report back that we shouldn't be physical so that physics aren't held waiting for us to be ready.
if (_model && getShapeType() == SHAPE_TYPE_COMPOUND && _model->didCollisionGeometryRequestFail()) {
return false;
} else if (_model && getShapeType() != SHAPE_TYPE_NONE && _model->didVisualGeometryRequestFail()) {
return false;
} else {
return ModelEntityItem::shouldBePhysical();
}
}
glm::quat RenderableModelEntityItem::getAbsoluteJointRotationInObjectFrame(int index) const {
if (_model) {
glm::quat result;
if (_model->getAbsoluteJointRotationInRigFrame(index, result)) {
return result;
}
}
return glm::quat();
}
glm::vec3 RenderableModelEntityItem::getAbsoluteJointTranslationInObjectFrame(int index) const {
if (_model) {
glm::vec3 result;
if (_model->getAbsoluteJointTranslationInRigFrame(index, result)) {
return result;
}
}
return glm::vec3(0.0f);
}
bool RenderableModelEntityItem::setAbsoluteJointRotationInObjectFrame(int index, const glm::quat& rotation) {
if (!_model) {
return false;
}
RigPointer rig = _model->getRig();
if (!rig) {
return false;
}
int jointParentIndex = rig->getJointParentIndex(index);
if (jointParentIndex == -1) {
return setLocalJointRotation(index, rotation);
}
bool success;
AnimPose jointParentPose;
success = rig->getAbsoluteJointPoseInRigFrame(jointParentIndex, jointParentPose);
if (!success) {
return false;
}
AnimPose jointParentInversePose = jointParentPose.inverse();
AnimPose jointAbsolutePose; // in rig frame
success = rig->getAbsoluteJointPoseInRigFrame(index, jointAbsolutePose);
if (!success) {
return false;
}
jointAbsolutePose.rot = rotation;
AnimPose jointRelativePose = jointParentInversePose * jointAbsolutePose;
return setLocalJointRotation(index, jointRelativePose.rot);
}
bool RenderableModelEntityItem::setAbsoluteJointTranslationInObjectFrame(int index, const glm::vec3& translation) {
if (!_model) {
return false;
}
RigPointer rig = _model->getRig();
if (!rig) {
return false;
}
int jointParentIndex = rig->getJointParentIndex(index);
if (jointParentIndex == -1) {
return setLocalJointTranslation(index, translation);
}
bool success;
AnimPose jointParentPose;
success = rig->getAbsoluteJointPoseInRigFrame(jointParentIndex, jointParentPose);
if (!success) {
return false;
}
AnimPose jointParentInversePose = jointParentPose.inverse();
AnimPose jointAbsolutePose; // in rig frame
success = rig->getAbsoluteJointPoseInRigFrame(index, jointAbsolutePose);
if (!success) {
return false;
}
jointAbsolutePose.trans = translation;
AnimPose jointRelativePose = jointParentInversePose * jointAbsolutePose;
return setLocalJointTranslation(index, jointRelativePose.trans);
}
glm::quat RenderableModelEntityItem::getLocalJointRotation(int index) const {
if (_model) {
glm::quat result;
if (_model->getJointRotation(index, result)) {
return result;
}
}
return glm::quat();
}
glm::vec3 RenderableModelEntityItem::getLocalJointTranslation(int index) const {
if (_model) {
glm::vec3 result;
if (_model->getJointTranslation(index, result)) {
return result;
}
}
return glm::vec3();
}
bool RenderableModelEntityItem::setLocalJointRotation(int index, const glm::quat& rotation) {
bool result = false;
_jointDataLock.withWriteLock([&] {
_jointRotationsExplicitlySet = true;
resizeJointArrays();
if (index >= 0 && index < _localJointRotations.size() &&
_localJointRotations[index] != rotation) {
_localJointRotations[index] = rotation;
_localJointRotationsSet[index] = true;
_localJointRotationsDirty[index] = true;
result = true;
_needsJointSimulation = true;
}
});
return result;
}
bool RenderableModelEntityItem::setLocalJointTranslation(int index, const glm::vec3& translation) {
bool result = false;
_jointDataLock.withWriteLock([&] {
_jointTranslationsExplicitlySet = true;
resizeJointArrays();
if (index >= 0 && index < _localJointTranslations.size() &&
_localJointTranslations[index] != translation) {
_localJointTranslations[index] = translation;
_localJointTranslationsSet[index] = true;
_localJointTranslationsDirty[index] = true;
result = true;
_needsJointSimulation = true;
}
});
return result;
}
void RenderableModelEntityItem::setJointRotations(const QVector<glm::quat>& rotations) {
ModelEntityItem::setJointRotations(rotations);
_needsJointSimulation = true;
}
void RenderableModelEntityItem::setJointRotationsSet(const QVector<bool>& rotationsSet) {
ModelEntityItem::setJointRotationsSet(rotationsSet);
_needsJointSimulation = true;
}
void RenderableModelEntityItem::setJointTranslations(const QVector<glm::vec3>& translations) {
ModelEntityItem::setJointTranslations(translations);
_needsJointSimulation = true;
}
void RenderableModelEntityItem::setJointTranslationsSet(const QVector<bool>& translationsSet) {
ModelEntityItem::setJointTranslationsSet(translationsSet);
_needsJointSimulation = true;
}
void RenderableModelEntityItem::locationChanged(bool tellPhysics) {
EntityItem::locationChanged(tellPhysics);
if (_model && _model->isActive()) {
_model->setRotation(getRotation());
_model->setTranslation(getPosition());
void* key = (void*)this;
std::weak_ptr<RenderableModelEntityItem> weakSelf =
std::static_pointer_cast<RenderableModelEntityItem>(getThisPointer());
AbstractViewStateInterface::instance()->pushPostUpdateLambda(key, [weakSelf]() {
auto self = weakSelf.lock();
if (!self) {
return;
}
render::ItemID myMetaItem = self->getMetaRenderItem();
if (myMetaItem == render::Item::INVALID_ITEM_ID) {
return;
}
render::ScenePointer scene = AbstractViewStateInterface::instance()->getMain3DScene();
render::PendingChanges pendingChanges;
pendingChanges.updateItem(myMetaItem);
scene->enqueuePendingChanges(pendingChanges);
});
}
}
int RenderableModelEntityItem::getJointIndex(const QString& name) const {
if (_model && _model->isActive()) {
RigPointer rig = _model->getRig();
return rig->indexOfJoint(name);
}
return -1;
}
QStringList RenderableModelEntityItem::getJointNames() const {
QStringList result;
if (_model && _model->isActive()) {
RigPointer rig = _model->getRig();
int jointCount = rig->getJointStateCount();
for (int jointIndex = 0; jointIndex < jointCount; jointIndex++) {
result << rig->nameOfJoint(jointIndex);
}
}
return result;
}