overte-JulianGro/interface/src/Audio.cpp
matsukaze 46f2ab73bc Job #19766 BUG: Stop or reload all scripts crashes interface fixed, part 3
Move the conversion of scriptName to QUrl to the beginning of
Application::loadScript. Use the scriptURLString to query the
_scriptEngineHash map.
2014-06-10 22:29:58 -04:00

1476 lines
61 KiB
C++

//
// Audio.cpp
// interface/src
//
// Created by Stephen Birarda on 1/22/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <cstring>
#include <sys/stat.h>
#include <math.h>
#ifdef __APPLE__
#include <CoreAudio/AudioHardware.h>
#endif
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <Mmsystem.h>
#include <mmdeviceapi.h>
#include <devicetopology.h>
#include <Functiondiscoverykeys_devpkey.h>
#endif
#include <QtCore/QBuffer>
#include <QtMultimedia/QAudioInput>
#include <QtMultimedia/QAudioOutput>
#include <QSvgRenderer>
#include <NodeList.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include <StdDev.h>
#include <UUID.h>
#include <glm/glm.hpp>
#include "Application.h"
#include "Audio.h"
#include "Menu.h"
#include "Util.h"
static const float AUDIO_CALLBACK_MSECS = (float) NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float)SAMPLE_RATE * 1000.0;
static const int NUMBER_OF_NOISE_SAMPLE_FRAMES = 300;
// Mute icon configration
static const int MUTE_ICON_SIZE = 24;
Audio::Audio(int16_t initialJitterBufferSamples, QObject* parent) :
AbstractAudioInterface(parent),
_audioInput(NULL),
_desiredInputFormat(),
_inputFormat(),
_numInputCallbackBytes(0),
_audioOutput(NULL),
_desiredOutputFormat(),
_outputFormat(),
_outputDevice(NULL),
_numOutputCallbackBytes(0),
_loopbackAudioOutput(NULL),
_loopbackOutputDevice(NULL),
_proceduralAudioOutput(NULL),
_proceduralOutputDevice(NULL),
_inputRingBuffer(0),
_ringBuffer(NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL),
_isStereoInput(false),
_averagedLatency(0.0),
_measuredJitter(0),
_jitterBufferSamples(initialJitterBufferSamples),
_lastInputLoudness(0),
_timeSinceLastClip(-1.0),
_dcOffset(0),
_noiseGateMeasuredFloor(0),
_noiseGateSampleCounter(0),
_noiseGateOpen(false),
_noiseGateEnabled(true),
_toneInjectionEnabled(false),
_noiseGateFramesToClose(0),
_totalPacketsReceived(0),
_totalInputAudioSamples(0),
_collisionSoundMagnitude(0.0f),
_collisionSoundFrequency(0.0f),
_collisionSoundNoise(0.0f),
_collisionSoundDuration(0.0f),
_proceduralEffectSample(0),
_numFramesDisplayStarve(0),
_muted(false),
_processSpatialAudio(false),
_spatialAudioStart(0),
_spatialAudioFinish(0),
_spatialAudioRingBuffer(NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL, true), // random access mode
_scopeEnabled(false),
_scopeEnabledPause(false),
_scopeInputOffset(0),
_scopeOutputOffset(0),
_framesPerScope(DEFAULT_FRAMES_PER_SCOPE),
_samplesPerScope(NETWORK_SAMPLES_PER_FRAME * _framesPerScope),
_scopeInput(0),
_scopeOutputLeft(0),
_scopeOutputRight(0)
{
// clear the array of locally injected samples
memset(_localProceduralSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
// Create the noise sample array
_noiseSampleFrames = new float[NUMBER_OF_NOISE_SAMPLE_FRAMES];
}
void Audio::init(QGLWidget *parent) {
_micTextureId = parent->bindTexture(QImage(Application::resourcesPath() + "images/mic.svg"));
_muteTextureId = parent->bindTexture(QImage(Application::resourcesPath() + "images/mic-mute.svg"));
_boxTextureId = parent->bindTexture(QImage(Application::resourcesPath() + "images/audio-box.svg"));
}
void Audio::reset() {
_ringBuffer.reset();
}
QAudioDeviceInfo getNamedAudioDeviceForMode(QAudio::Mode mode, const QString& deviceName) {
QAudioDeviceInfo result;
foreach(QAudioDeviceInfo audioDevice, QAudioDeviceInfo::availableDevices(mode)) {
qDebug() << audioDevice.deviceName() << " " << deviceName;
if (audioDevice.deviceName().trimmed() == deviceName.trimmed()) {
result = audioDevice;
}
}
return result;
}
QAudioDeviceInfo defaultAudioDeviceForMode(QAudio::Mode mode) {
#ifdef __APPLE__
if (QAudioDeviceInfo::availableDevices(mode).size() > 1) {
AudioDeviceID defaultDeviceID = 0;
uint32_t propertySize = sizeof(AudioDeviceID);
AudioObjectPropertyAddress propertyAddress = {
kAudioHardwarePropertyDefaultInputDevice,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
if (mode == QAudio::AudioOutput) {
propertyAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
}
OSStatus getPropertyError = AudioObjectGetPropertyData(kAudioObjectSystemObject,
&propertyAddress,
0,
NULL,
&propertySize,
&defaultDeviceID);
if (!getPropertyError && propertySize) {
CFStringRef deviceName = NULL;
propertySize = sizeof(deviceName);
propertyAddress.mSelector = kAudioDevicePropertyDeviceNameCFString;
getPropertyError = AudioObjectGetPropertyData(defaultDeviceID, &propertyAddress, 0,
NULL, &propertySize, &deviceName);
if (!getPropertyError && propertySize) {
// find a device in the list that matches the name we have and return it
foreach(QAudioDeviceInfo audioDevice, QAudioDeviceInfo::availableDevices(mode)) {
if (audioDevice.deviceName() == CFStringGetCStringPtr(deviceName, kCFStringEncodingMacRoman)) {
return audioDevice;
}
}
}
}
}
#endif
#ifdef WIN32
QString deviceName;
//Check for Windows Vista or higher, IMMDeviceEnumerator doesn't work below that.
OSVERSIONINFO osvi;
ZeroMemory(&osvi, sizeof(OSVERSIONINFO));
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
GetVersionEx(&osvi);
const DWORD VISTA_MAJOR_VERSION = 6;
if (osvi.dwMajorVersion < VISTA_MAJOR_VERSION) {// lower then vista
if (mode == QAudio::AudioInput) {
WAVEINCAPS wic;
// first use WAVE_MAPPER to get the default devices manufacturer ID
waveInGetDevCaps(WAVE_MAPPER, &wic, sizeof(wic));
//Use the received manufacturer id to get the device's real name
waveInGetDevCaps(wic.wMid, &wic, sizeof(wic));
qDebug() << "input device:" << wic.szPname;
deviceName = wic.szPname;
} else {
WAVEOUTCAPS woc;
// first use WAVE_MAPPER to get the default devices manufacturer ID
waveOutGetDevCaps(WAVE_MAPPER, &woc, sizeof(woc));
//Use the received manufacturer id to get the device's real name
waveOutGetDevCaps(woc.wMid, &woc, sizeof(woc));
qDebug() << "output device:" << woc.szPname;
deviceName = woc.szPname;
}
} else {
HRESULT hr = S_OK;
CoInitialize(NULL);
IMMDeviceEnumerator* pMMDeviceEnumerator = NULL;
CoCreateInstance(__uuidof(MMDeviceEnumerator), NULL, CLSCTX_ALL, __uuidof(IMMDeviceEnumerator), (void**)&pMMDeviceEnumerator);
IMMDevice* pEndpoint;
hr = pMMDeviceEnumerator->GetDefaultAudioEndpoint(mode == QAudio::AudioOutput ? eRender : eCapture, eMultimedia, &pEndpoint);
if (hr == E_NOTFOUND) {
printf("Audio Error: device not found\n");
deviceName = QString("NONE");
} else {
IPropertyStore* pPropertyStore;
pEndpoint->OpenPropertyStore(STGM_READ, &pPropertyStore);
pEndpoint->Release();
pEndpoint = NULL;
PROPVARIANT pv;
PropVariantInit(&pv);
hr = pPropertyStore->GetValue(PKEY_Device_FriendlyName, &pv);
pPropertyStore->Release();
pPropertyStore = NULL;
//QAudio devices seems to only take the 31 first characters of the Friendly Device Name.
//const DWORD QT_WIN_MAX_AUDIO_DEVICENAME_LEN = 31;
// deviceName = QString::fromWCharArray((wchar_t*)pv.pwszVal).left(QT_WIN_MAX_AUDIO_DEVICENAME_LEN);
deviceName = QString::fromWCharArray((wchar_t*)pv.pwszVal);
qDebug() << (mode == QAudio::AudioOutput ? "output" : "input") << " device:" << deviceName;
PropVariantClear(&pv);
}
pMMDeviceEnumerator->Release();
pMMDeviceEnumerator = NULL;
CoUninitialize();
}
qDebug() << "DEBUG [" << deviceName << "] [" << getNamedAudioDeviceForMode(mode, deviceName).deviceName() << "]";
return getNamedAudioDeviceForMode(mode, deviceName);
#endif
// fallback for failed lookup is the default device
return (mode == QAudio::AudioInput) ? QAudioDeviceInfo::defaultInputDevice() : QAudioDeviceInfo::defaultOutputDevice();
}
bool adjustedFormatForAudioDevice(const QAudioDeviceInfo& audioDevice,
const QAudioFormat& desiredAudioFormat,
QAudioFormat& adjustedAudioFormat) {
if (!audioDevice.isFormatSupported(desiredAudioFormat)) {
qDebug() << "The desired format for audio I/O is" << desiredAudioFormat;
qDebug("The desired audio format is not supported by this device");
if (desiredAudioFormat.channelCount() == 1) {
adjustedAudioFormat = desiredAudioFormat;
adjustedAudioFormat.setChannelCount(2);
if (audioDevice.isFormatSupported(adjustedAudioFormat)) {
return true;
} else {
adjustedAudioFormat.setChannelCount(1);
}
}
if (audioDevice.supportedSampleRates().contains(SAMPLE_RATE * 2)) {
// use 48, which is a sample downsample, upsample
adjustedAudioFormat = desiredAudioFormat;
adjustedAudioFormat.setSampleRate(SAMPLE_RATE * 2);
// return the nearest in case it needs 2 channels
adjustedAudioFormat = audioDevice.nearestFormat(adjustedAudioFormat);
return true;
}
return false;
} else {
// set the adjustedAudioFormat to the desiredAudioFormat, since it will work
adjustedAudioFormat = desiredAudioFormat;
return true;
}
}
void linearResampling(int16_t* sourceSamples, int16_t* destinationSamples,
unsigned int numSourceSamples, unsigned int numDestinationSamples,
const QAudioFormat& sourceAudioFormat, const QAudioFormat& destinationAudioFormat) {
if (sourceAudioFormat == destinationAudioFormat) {
memcpy(destinationSamples, sourceSamples, numSourceSamples * sizeof(int16_t));
} else {
float sourceToDestinationFactor = (sourceAudioFormat.sampleRate() / (float) destinationAudioFormat.sampleRate())
* (sourceAudioFormat.channelCount() / (float) destinationAudioFormat.channelCount());
// take into account the number of channels in source and destination
// accomodate for the case where have an output with > 2 channels
// this is the case with our HDMI capture
if (sourceToDestinationFactor >= 2) {
// we need to downsample from 48 to 24
// for now this only supports a mono output - this would be the case for audio input
if (destinationAudioFormat.channelCount() == 1) {
for (unsigned int i = sourceAudioFormat.channelCount(); i < numSourceSamples; i += 2 * sourceAudioFormat.channelCount()) {
if (i + (sourceAudioFormat.channelCount()) >= numSourceSamples) {
destinationSamples[(i - sourceAudioFormat.channelCount()) / (int) sourceToDestinationFactor] =
(sourceSamples[i - sourceAudioFormat.channelCount()] / 2)
+ (sourceSamples[i] / 2);
} else {
destinationSamples[(i - sourceAudioFormat.channelCount()) / (int) sourceToDestinationFactor] =
(sourceSamples[i - sourceAudioFormat.channelCount()] / 4)
+ (sourceSamples[i] / 2)
+ (sourceSamples[i + sourceAudioFormat.channelCount()] / 4);
}
}
} else {
// this is a 48 to 24 resampling but both source and destination are two channels
// squish two samples into one in each channel
for (int i = 0; i < numSourceSamples; i += 4) {
destinationSamples[i / 2] = (sourceSamples[i] / 2) + (sourceSamples[i + 2] / 2);
destinationSamples[(i / 2) + 1] = (sourceSamples[i + 1] / 2) + (sourceSamples[i + 3] / 2);
}
}
} else {
if (sourceAudioFormat.sampleRate() == destinationAudioFormat.sampleRate()) {
// mono to stereo, same sample rate
if (!(sourceAudioFormat.channelCount() == 1 && destinationAudioFormat.channelCount() == 2)) {
qWarning() << "Unsupported format conversion" << sourceAudioFormat << destinationAudioFormat;
return;
}
for (const int16_t* sourceEnd = sourceSamples + numSourceSamples; sourceSamples != sourceEnd;
sourceSamples++) {
*destinationSamples++ = *sourceSamples;
*destinationSamples++ = *sourceSamples;
}
return;
}
// upsample from 24 to 48
// for now this only supports a stereo to stereo conversion - this is our case for network audio to output
int sourceIndex = 0;
int dtsSampleRateFactor = (destinationAudioFormat.sampleRate() / sourceAudioFormat.sampleRate());
int sampleShift = destinationAudioFormat.channelCount() * dtsSampleRateFactor;
int destinationToSourceFactor = (1 / sourceToDestinationFactor);
for (unsigned int i = 0; i < numDestinationSamples; i += sampleShift) {
sourceIndex = (i / destinationToSourceFactor);
// fill the L/R channels and make the rest silent
for (unsigned int j = i; j < i + sampleShift; j++) {
if (j % destinationAudioFormat.channelCount() == 0) {
// left channel
destinationSamples[j] = sourceSamples[sourceIndex];
} else if (j % destinationAudioFormat.channelCount() == 1) {
// right channel
destinationSamples[j] = sourceSamples[sourceIndex + (sourceAudioFormat.channelCount() > 1 ? 1 : 0)];
} else {
// channels above 2, fill with silence
destinationSamples[j] = 0;
}
}
}
}
}
}
void Audio::start() {
// set up the desired audio format
_desiredInputFormat.setSampleRate(SAMPLE_RATE);
_desiredInputFormat.setSampleSize(16);
_desiredInputFormat.setCodec("audio/pcm");
_desiredInputFormat.setSampleType(QAudioFormat::SignedInt);
_desiredInputFormat.setByteOrder(QAudioFormat::LittleEndian);
_desiredInputFormat.setChannelCount(1);
_desiredOutputFormat = _desiredInputFormat;
_desiredOutputFormat.setChannelCount(2);
QAudioDeviceInfo inputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioInput);
qDebug() << "The default audio input device is" << inputDeviceInfo.deviceName();
bool inputFormatSupported = switchInputToAudioDevice(inputDeviceInfo);
QAudioDeviceInfo outputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioOutput);
qDebug() << "The default audio output device is" << outputDeviceInfo.deviceName();
bool outputFormatSupported = switchOutputToAudioDevice(outputDeviceInfo);
if (!inputFormatSupported) {
qDebug() << "Unable to set up audio input because of a problem with input format.";
}
if (!outputFormatSupported) {
qDebug() << "Unable to set up audio output because of a problem with output format.";
}
}
void Audio::stop() {
// "switch" to invalid devices in order to shut down the state
switchInputToAudioDevice(QAudioDeviceInfo());
switchOutputToAudioDevice(QAudioDeviceInfo());
}
QString Audio::getDefaultDeviceName(QAudio::Mode mode) {
QAudioDeviceInfo deviceInfo = defaultAudioDeviceForMode(mode);
return deviceInfo.deviceName();
}
QVector<QString> Audio::getDeviceNames(QAudio::Mode mode) {
QVector<QString> deviceNames;
foreach(QAudioDeviceInfo audioDevice, QAudioDeviceInfo::availableDevices(mode)) {
deviceNames << audioDevice.deviceName().trimmed();
}
return deviceNames;
}
bool Audio::switchInputToAudioDevice(const QString& inputDeviceName) {
qDebug() << "DEBUG [" << inputDeviceName << "] [" << getNamedAudioDeviceForMode(QAudio::AudioInput, inputDeviceName).deviceName() << "]";
return switchInputToAudioDevice(getNamedAudioDeviceForMode(QAudio::AudioInput, inputDeviceName));
}
bool Audio::switchOutputToAudioDevice(const QString& outputDeviceName) {
qDebug() << "DEBUG [" << outputDeviceName << "] [" << getNamedAudioDeviceForMode(QAudio::AudioOutput, outputDeviceName).deviceName() << "]";
return switchOutputToAudioDevice(getNamedAudioDeviceForMode(QAudio::AudioOutput, outputDeviceName));
}
void Audio::handleAudioInput() {
static char audioDataPacket[MAX_PACKET_SIZE];
static int numBytesPacketHeader = numBytesForPacketHeaderGivenPacketType(PacketTypeMicrophoneAudioNoEcho);
static int leadingBytes = numBytesPacketHeader + sizeof(glm::vec3) + sizeof(glm::quat) + sizeof(quint8);
static int16_t* networkAudioSamples = (int16_t*) (audioDataPacket + leadingBytes);
float inputToNetworkInputRatio = calculateDeviceToNetworkInputRatio(_numInputCallbackBytes);
unsigned int inputSamplesRequired = NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL * inputToNetworkInputRatio;
QByteArray inputByteArray = _inputDevice->readAll();
if (Menu::getInstance()->isOptionChecked(MenuOption::EchoLocalAudio) && !_muted && _audioOutput) {
// if this person wants local loopback add that to the locally injected audio
if (!_loopbackOutputDevice && _loopbackAudioOutput) {
// we didn't have the loopback output device going so set that up now
_loopbackOutputDevice = _loopbackAudioOutput->start();
}
if (_inputFormat == _outputFormat) {
if (_loopbackOutputDevice) {
_loopbackOutputDevice->write(inputByteArray);
}
} else {
float loopbackOutputToInputRatio = (_outputFormat.sampleRate() / (float) _inputFormat.sampleRate())
* (_outputFormat.channelCount() / _inputFormat.channelCount());
QByteArray loopBackByteArray(inputByteArray.size() * loopbackOutputToInputRatio, 0);
linearResampling((int16_t*) inputByteArray.data(), (int16_t*) loopBackByteArray.data(),
inputByteArray.size() / sizeof(int16_t),
loopBackByteArray.size() / sizeof(int16_t), _inputFormat, _outputFormat);
if (_loopbackOutputDevice) {
_loopbackOutputDevice->write(loopBackByteArray);
}
}
}
_inputRingBuffer.writeData(inputByteArray.data(), inputByteArray.size());
while (_inputRingBuffer.samplesAvailable() > inputSamplesRequired) {
int16_t* inputAudioSamples = new int16_t[inputSamplesRequired];
_inputRingBuffer.readSamples(inputAudioSamples, inputSamplesRequired);
int numNetworkBytes = _isStereoInput ? NETWORK_BUFFER_LENGTH_BYTES_STEREO : NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL;
int numNetworkSamples = _isStereoInput ? NETWORK_BUFFER_LENGTH_SAMPLES_STEREO : NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
// zero out the monoAudioSamples array and the locally injected audio
memset(networkAudioSamples, 0, numNetworkBytes);
if (!_muted) {
// we aren't muted, downsample the input audio
linearResampling((int16_t*) inputAudioSamples, networkAudioSamples,
inputSamplesRequired, numNetworkSamples,
_inputFormat, _desiredInputFormat);
// only impose the noise gate and perform tone injection if we sending mono audio
if (!_isStereoInput) {
//
// Impose Noise Gate
//
// The Noise Gate is used to reject constant background noise by measuring the noise
// floor observed at the microphone and then opening the 'gate' to allow microphone
// signals to be transmitted when the microphone samples average level exceeds a multiple
// of the noise floor.
//
// NOISE_GATE_HEIGHT: How loud you have to speak relative to noise background to open the gate.
// Make this value lower for more sensitivity and less rejection of noise.
// NOISE_GATE_WIDTH: The number of samples in an audio frame for which the height must be exceeded
// to open the gate.
// NOISE_GATE_CLOSE_FRAME_DELAY: Once the noise is below the gate height for the frame, how many frames
// will we wait before closing the gate.
// NOISE_GATE_FRAMES_TO_AVERAGE: How many audio frames should we average together to compute noise floor.
// More means better rejection but also can reject continuous things like singing.
// NUMBER_OF_NOISE_SAMPLE_FRAMES: How often should we re-evaluate the noise floor?
float loudness = 0;
float thisSample = 0;
int samplesOverNoiseGate = 0;
const float NOISE_GATE_HEIGHT = 7.0f;
const int NOISE_GATE_WIDTH = 5;
const int NOISE_GATE_CLOSE_FRAME_DELAY = 5;
const int NOISE_GATE_FRAMES_TO_AVERAGE = 5;
const float DC_OFFSET_AVERAGING = 0.99f;
const float CLIPPING_THRESHOLD = 0.90f;
//
// Check clipping, adjust DC offset, and check if should open noise gate
//
float measuredDcOffset = 0.0f;
// Increment the time since the last clip
if (_timeSinceLastClip >= 0.0f) {
_timeSinceLastClip += (float) NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float) SAMPLE_RATE;
}
for (int i = 0; i < NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL; i++) {
measuredDcOffset += networkAudioSamples[i];
networkAudioSamples[i] -= (int16_t) _dcOffset;
thisSample = fabsf(networkAudioSamples[i]);
if (thisSample >= (32767.0f * CLIPPING_THRESHOLD)) {
_timeSinceLastClip = 0.0f;
}
loudness += thisSample;
// Noise Reduction: Count peaks above the average loudness
if (_noiseGateEnabled && (thisSample > (_noiseGateMeasuredFloor * NOISE_GATE_HEIGHT))) {
samplesOverNoiseGate++;
}
}
measuredDcOffset /= NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
if (_dcOffset == 0.0f) {
// On first frame, copy over measured offset
_dcOffset = measuredDcOffset;
} else {
_dcOffset = DC_OFFSET_AVERAGING * _dcOffset + (1.0f - DC_OFFSET_AVERAGING) * measuredDcOffset;
}
// Add tone injection if enabled
const float TONE_FREQ = 220.0f / SAMPLE_RATE * TWO_PI;
const float QUARTER_VOLUME = 8192.0f;
if (_toneInjectionEnabled) {
loudness = 0.0f;
for (int i = 0; i < NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL; i++) {
networkAudioSamples[i] = QUARTER_VOLUME * sinf(TONE_FREQ * (float)(i + _proceduralEffectSample));
loudness += fabsf(networkAudioSamples[i]);
}
}
_lastInputLoudness = fabs(loudness / NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
// If Noise Gate is enabled, check and turn the gate on and off
if (!_toneInjectionEnabled && _noiseGateEnabled) {
float averageOfAllSampleFrames = 0.0f;
_noiseSampleFrames[_noiseGateSampleCounter++] = _lastInputLoudness;
if (_noiseGateSampleCounter == NUMBER_OF_NOISE_SAMPLE_FRAMES) {
float smallestSample = FLT_MAX;
for (int i = 0; i <= NUMBER_OF_NOISE_SAMPLE_FRAMES - NOISE_GATE_FRAMES_TO_AVERAGE; i += NOISE_GATE_FRAMES_TO_AVERAGE) {
float thisAverage = 0.0f;
for (int j = i; j < i + NOISE_GATE_FRAMES_TO_AVERAGE; j++) {
thisAverage += _noiseSampleFrames[j];
averageOfAllSampleFrames += _noiseSampleFrames[j];
}
thisAverage /= NOISE_GATE_FRAMES_TO_AVERAGE;
if (thisAverage < smallestSample) {
smallestSample = thisAverage;
}
}
averageOfAllSampleFrames /= NUMBER_OF_NOISE_SAMPLE_FRAMES;
_noiseGateMeasuredFloor = smallestSample;
_noiseGateSampleCounter = 0;
}
if (samplesOverNoiseGate > NOISE_GATE_WIDTH) {
_noiseGateOpen = true;
_noiseGateFramesToClose = NOISE_GATE_CLOSE_FRAME_DELAY;
} else {
if (--_noiseGateFramesToClose == 0) {
_noiseGateOpen = false;
}
}
if (!_noiseGateOpen) {
memset(networkAudioSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
_lastInputLoudness = 0;
}
}
} else {
float loudness = 0.0f;
for (int i = 0; i < NETWORK_BUFFER_LENGTH_SAMPLES_STEREO; i++) {
loudness += fabsf(networkAudioSamples[i]);
}
_lastInputLoudness = fabs(loudness / NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
}
} else {
// our input loudness is 0, since we're muted
_lastInputLoudness = 0;
}
// at this point we have clean monoAudioSamples, which match our target output...
// this is what we should send to our interested listeners
if (_processSpatialAudio && !_muted && !_isStereoInput && _audioOutput) {
QByteArray monoInputData((char*)networkAudioSamples, NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL * sizeof(int16_t));
emit processLocalAudio(_spatialAudioStart, monoInputData, _desiredInputFormat);
}
if (!_isStereoInput && _proceduralAudioOutput) {
processProceduralAudio(networkAudioSamples, NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
}
if (!_isStereoInput && _scopeEnabled && !_scopeEnabledPause) {
unsigned int numMonoAudioChannels = 1;
unsigned int monoAudioChannel = 0;
addBufferToScope(_scopeInput, _scopeInputOffset, networkAudioSamples, monoAudioChannel, numMonoAudioChannels);
_scopeInputOffset += NETWORK_SAMPLES_PER_FRAME;
_scopeInputOffset %= _samplesPerScope;
}
NodeList* nodeList = NodeList::getInstance();
SharedNodePointer audioMixer = nodeList->soloNodeOfType(NodeType::AudioMixer);
if (audioMixer && audioMixer->getActiveSocket()) {
MyAvatar* interfaceAvatar = Application::getInstance()->getAvatar();
glm::vec3 headPosition = interfaceAvatar->getHead()->getPosition();
glm::quat headOrientation = interfaceAvatar->getHead()->getFinalOrientationInWorldFrame();
quint8 isStereo = _isStereoInput ? 1 : 0;
int numAudioBytes = 0;
PacketType packetType;
if (_lastInputLoudness == 0) {
packetType = PacketTypeSilentAudioFrame;
// we need to indicate how many silent samples this is to the audio mixer
audioDataPacket[0] = _isStereoInput
? NETWORK_BUFFER_LENGTH_SAMPLES_STEREO
: NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
numAudioBytes = sizeof(int16_t);
} else {
numAudioBytes = _isStereoInput ? NETWORK_BUFFER_LENGTH_BYTES_STEREO : NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL;
if (Menu::getInstance()->isOptionChecked(MenuOption::EchoServerAudio)) {
packetType = PacketTypeMicrophoneAudioWithEcho;
} else {
packetType = PacketTypeMicrophoneAudioNoEcho;
}
}
char* currentPacketPtr = audioDataPacket + populatePacketHeader(audioDataPacket, packetType);
// set the mono/stereo byte
*currentPacketPtr++ = isStereo;
// memcpy the three float positions
memcpy(currentPacketPtr, &headPosition, sizeof(headPosition));
currentPacketPtr += (sizeof(headPosition));
// memcpy our orientation
memcpy(currentPacketPtr, &headOrientation, sizeof(headOrientation));
currentPacketPtr += sizeof(headOrientation);
nodeList->writeDatagram(audioDataPacket, numAudioBytes + leadingBytes, audioMixer);
Application::getInstance()->getBandwidthMeter()->outputStream(BandwidthMeter::AUDIO)
.updateValue(numAudioBytes + leadingBytes);
}
delete[] inputAudioSamples;
}
}
void Audio::addReceivedAudioToBuffer(const QByteArray& audioByteArray) {
const int NUM_INITIAL_PACKETS_DISCARD = 3;
const int STANDARD_DEVIATION_SAMPLE_COUNT = 500;
_totalPacketsReceived++;
double timeDiff = (double)_timeSinceLastReceived.nsecsElapsed() / 1000000.0; // ns to ms
_timeSinceLastReceived.start();
// Discard first few received packets for computing jitter (often they pile up on start)
if (_totalPacketsReceived > NUM_INITIAL_PACKETS_DISCARD) {
_stdev.addValue(timeDiff);
}
if (_stdev.getSamples() > STANDARD_DEVIATION_SAMPLE_COUNT) {
_measuredJitter = _stdev.getStDev();
_stdev.reset();
// Set jitter buffer to be a multiple of the measured standard deviation
const int MAX_JITTER_BUFFER_SAMPLES = _ringBuffer.getSampleCapacity() / 2;
const float NUM_STANDARD_DEVIATIONS = 3.0f;
if (Menu::getInstance()->getAudioJitterBufferSamples() == 0) {
float newJitterBufferSamples = (NUM_STANDARD_DEVIATIONS * _measuredJitter) / 1000.0f * SAMPLE_RATE;
setJitterBufferSamples(glm::clamp((int)newJitterBufferSamples, 0, MAX_JITTER_BUFFER_SAMPLES));
}
}
if (_audioOutput) {
// Audio output must exist and be correctly set up if we're going to process received audio
processReceivedAudio(audioByteArray);
}
Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::AUDIO).updateValue(audioByteArray.size());
}
// NOTE: numSamples is the total number of single channel samples, since callers will always call this with stereo
// data we know that we will have 2x samples for each stereo time sample at the format's sample rate
void Audio::addSpatialAudioToBuffer(unsigned int sampleTime, const QByteArray& spatialAudio, unsigned int numSamples) {
// Calculate the number of remaining samples available. The source spatial audio buffer will get
// clipped if there are insufficient samples available in the accumulation buffer.
unsigned int remaining = _spatialAudioRingBuffer.getSampleCapacity() - _spatialAudioRingBuffer.samplesAvailable();
// Locate where in the accumulation buffer the new samples need to go
if (sampleTime >= _spatialAudioFinish) {
if (_spatialAudioStart == _spatialAudioFinish) {
// Nothing in the spatial audio ring buffer yet, Just do a straight copy, clipping if necessary
unsigned int sampleCount = (remaining < numSamples) ? remaining : numSamples;
if (sampleCount) {
_spatialAudioRingBuffer.writeSamples((int16_t*)spatialAudio.data(), sampleCount);
}
_spatialAudioFinish = _spatialAudioStart + sampleCount / _desiredOutputFormat.channelCount();
} else {
// Spatial audio ring buffer already has data, but there is no overlap with the new sample.
// Compute the appropriate time delay and pad with silence until the new start time.
unsigned int delay = sampleTime - _spatialAudioFinish;
unsigned int delayCount = delay * _desiredOutputFormat.channelCount();
unsigned int silentCount = (remaining < delayCount) ? remaining : delayCount;
if (silentCount) {
_spatialAudioRingBuffer.addSilentFrame(silentCount);
}
// Recalculate the number of remaining samples
remaining -= silentCount;
unsigned int sampleCount = (remaining < numSamples) ? remaining : numSamples;
// Copy the new spatial audio to the accumulation ring buffer
if (sampleCount) {
_spatialAudioRingBuffer.writeSamples((int16_t*)spatialAudio.data(), sampleCount);
}
_spatialAudioFinish += (sampleCount + silentCount) / _desiredOutputFormat.channelCount();
}
} else {
// There is overlap between the spatial audio buffer and the new sample, mix the overlap
// Calculate the offset from the buffer's current read position, which should be located at _spatialAudioStart
unsigned int offset = (sampleTime - _spatialAudioStart) * _desiredOutputFormat.channelCount();
unsigned int mixedSamplesCount = (_spatialAudioFinish - sampleTime) * _desiredOutputFormat.channelCount();
mixedSamplesCount = (mixedSamplesCount < numSamples) ? mixedSamplesCount : numSamples;
const int16_t* spatial = reinterpret_cast<const int16_t*>(spatialAudio.data());
for (unsigned int i = 0; i < mixedSamplesCount; i++) {
int existingSample = _spatialAudioRingBuffer[i + offset];
int newSample = spatial[i];
int sumOfSamples = existingSample + newSample;
_spatialAudioRingBuffer[i + offset] = static_cast<int16_t>(glm::clamp<int>(sumOfSamples,
std::numeric_limits<short>::min(), std::numeric_limits<short>::max()));
}
// Copy the remaining unoverlapped spatial audio to the spatial audio buffer, if any
unsigned int nonMixedSampleCount = numSamples - mixedSamplesCount;
nonMixedSampleCount = (remaining < nonMixedSampleCount) ? remaining : nonMixedSampleCount;
if (nonMixedSampleCount) {
_spatialAudioRingBuffer.writeSamples((int16_t*)spatialAudio.data() + mixedSamplesCount, nonMixedSampleCount);
// Extend the finish time by the amount of unoverlapped samples
_spatialAudioFinish += nonMixedSampleCount / _desiredOutputFormat.channelCount();
}
}
}
bool Audio::mousePressEvent(int x, int y) {
if (_iconBounds.contains(x, y)) {
toggleMute();
return true;
}
return false;
}
void Audio::toggleMute() {
_muted = !_muted;
muteToggled();
}
void Audio::toggleAudioNoiseReduction() {
_noiseGateEnabled = !_noiseGateEnabled;
}
void Audio::toggleStereoInput() {
int oldChannelCount = _desiredInputFormat.channelCount();
QAction* stereoAudioOption = Menu::getInstance()->getActionForOption(MenuOption::StereoAudio);
if (stereoAudioOption->isChecked()) {
_desiredInputFormat.setChannelCount(2);
_isStereoInput = true;
} else {
_desiredInputFormat.setChannelCount(1);
_isStereoInput = false;
}
if (oldChannelCount != _desiredInputFormat.channelCount()) {
// change in channel count for desired input format, restart the input device
switchInputToAudioDevice(_inputAudioDeviceName);
}
}
void Audio::processReceivedAudio(const QByteArray& audioByteArray) {
_ringBuffer.parseData(audioByteArray);
float networkOutputToOutputRatio = (_desiredOutputFormat.sampleRate() / (float) _outputFormat.sampleRate())
* (_desiredOutputFormat.channelCount() / (float) _outputFormat.channelCount());
if (!_ringBuffer.isStarved() && _audioOutput && _audioOutput->bytesFree() == _audioOutput->bufferSize()) {
// we don't have any audio data left in the output buffer
// we just starved
//qDebug() << "Audio output just starved.";
_ringBuffer.setIsStarved(true);
_numFramesDisplayStarve = 10;
}
// if there is anything in the ring buffer, decide what to do
if (_ringBuffer.samplesAvailable() > 0) {
int numNetworkOutputSamples = _ringBuffer.samplesAvailable();
int numDeviceOutputSamples = numNetworkOutputSamples / networkOutputToOutputRatio;
QByteArray outputBuffer;
outputBuffer.resize(numDeviceOutputSamples * sizeof(int16_t));
int numSamplesNeededToStartPlayback = NETWORK_BUFFER_LENGTH_SAMPLES_STEREO + (_jitterBufferSamples * 2);
if (!_ringBuffer.isNotStarvedOrHasMinimumSamples(numSamplesNeededToStartPlayback)) {
// We are still waiting for enough samples to begin playback
// qDebug() << numNetworkOutputSamples << " samples so far, waiting for " << numSamplesNeededToStartPlayback;
} else {
// We are either already playing back, or we have enough audio to start playing back.
//qDebug() << "pushing " << numNetworkOutputSamples;
_ringBuffer.setIsStarved(false);
int16_t* ringBufferSamples = new int16_t[numNetworkOutputSamples];
if (_processSpatialAudio) {
unsigned int sampleTime = _spatialAudioStart;
QByteArray buffer;
buffer.resize(numNetworkOutputSamples * sizeof(int16_t));
_ringBuffer.readSamples((int16_t*)buffer.data(), numNetworkOutputSamples);
// Accumulate direct transmission of audio from sender to receiver
if (Menu::getInstance()->isOptionChecked(MenuOption::AudioSpatialProcessingIncludeOriginal)) {
emit preProcessOriginalInboundAudio(sampleTime, buffer, _desiredOutputFormat);
addSpatialAudioToBuffer(sampleTime, buffer, numNetworkOutputSamples);
}
// Send audio off for spatial processing
emit processInboundAudio(sampleTime, buffer, _desiredOutputFormat);
// copy the samples we'll resample from the spatial audio ring buffer - this also
// pushes the read pointer of the spatial audio ring buffer forwards
_spatialAudioRingBuffer.readSamples(ringBufferSamples, numNetworkOutputSamples);
// Advance the start point for the next packet of audio to arrive
_spatialAudioStart += numNetworkOutputSamples / _desiredOutputFormat.channelCount();
} else {
// copy the samples we'll resample from the ring buffer - this also
// pushes the read pointer of the ring buffer forwards
_ringBuffer.readSamples(ringBufferSamples, numNetworkOutputSamples);
}
// copy the packet from the RB to the output
linearResampling(ringBufferSamples,
(int16_t*) outputBuffer.data(),
numNetworkOutputSamples,
numDeviceOutputSamples,
_desiredOutputFormat, _outputFormat);
if (_outputDevice) {
_outputDevice->write(outputBuffer);
}
if (_scopeEnabled && !_scopeEnabledPause) {
unsigned int numAudioChannels = _desiredOutputFormat.channelCount();
int16_t* samples = ringBufferSamples;
for (int numSamples = numNetworkOutputSamples / numAudioChannels; numSamples > 0; numSamples -= NETWORK_SAMPLES_PER_FRAME) {
unsigned int audioChannel = 0;
addBufferToScope(
_scopeOutputLeft,
_scopeOutputOffset,
samples, audioChannel, numAudioChannels);
audioChannel = 1;
addBufferToScope(
_scopeOutputRight,
_scopeOutputOffset,
samples, audioChannel, numAudioChannels);
_scopeOutputOffset += NETWORK_SAMPLES_PER_FRAME;
_scopeOutputOffset %= _samplesPerScope;
samples += NETWORK_SAMPLES_PER_FRAME * numAudioChannels;
}
}
delete[] ringBufferSamples;
}
}
}
void Audio::processProceduralAudio(int16_t* monoInput, int numSamples) {
// zero out the locally injected audio in preparation for audio procedural sounds
// This is correlated to numSamples, so it really needs to be numSamples * sizeof(sample)
memset(_localProceduralSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
// add procedural effects to the appropriate input samples
addProceduralSounds(monoInput, NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
if (!_proceduralOutputDevice) {
_proceduralOutputDevice = _proceduralAudioOutput->start();
}
// send whatever procedural sounds we want to locally loop back to the _proceduralOutputDevice
QByteArray proceduralOutput;
proceduralOutput.resize(NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL * _outputFormat.sampleRate() *
_outputFormat.channelCount() * sizeof(int16_t) / (_desiredInputFormat.sampleRate() *
_desiredInputFormat.channelCount()));
linearResampling(_localProceduralSamples,
reinterpret_cast<int16_t*>(proceduralOutput.data()),
NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL,
proceduralOutput.size() / sizeof(int16_t),
_desiredInputFormat, _outputFormat);
if (_proceduralOutputDevice) {
_proceduralOutputDevice->write(proceduralOutput);
}
}
void Audio::toggleToneInjection() {
_toneInjectionEnabled = !_toneInjectionEnabled;
}
void Audio::toggleAudioSpatialProcessing() {
_processSpatialAudio = !_processSpatialAudio;
if (_processSpatialAudio) {
_spatialAudioStart = 0;
_spatialAudioFinish = 0;
_spatialAudioRingBuffer.reset();
}
}
// Take a pointer to the acquired microphone input samples and add procedural sounds
void Audio::addProceduralSounds(int16_t* monoInput, int numSamples) {
float sample;
const float COLLISION_SOUND_CUTOFF_LEVEL = 0.01f;
const float COLLISION_SOUND_MAX_VOLUME = 1000.0f;
const float UP_MAJOR_FIFTH = powf(1.5f, 4.0f);
const float DOWN_TWO_OCTAVES = 4.0f;
const float DOWN_FOUR_OCTAVES = 16.0f;
float t;
if (_collisionSoundMagnitude > COLLISION_SOUND_CUTOFF_LEVEL) {
for (int i = 0; i < numSamples; i++) {
t = (float) _proceduralEffectSample + (float) i;
sample = sinf(t * _collisionSoundFrequency)
+ sinf(t * _collisionSoundFrequency / DOWN_TWO_OCTAVES)
+ sinf(t * _collisionSoundFrequency / DOWN_FOUR_OCTAVES * UP_MAJOR_FIFTH);
sample *= _collisionSoundMagnitude * COLLISION_SOUND_MAX_VOLUME;
int16_t collisionSample = (int16_t) sample;
_lastInputLoudness = 0;
monoInput[i] = glm::clamp(monoInput[i] + collisionSample, MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_lastInputLoudness += fabsf(monoInput[i]);
_lastInputLoudness /= numSamples;
_lastInputLoudness /= MAX_SAMPLE_VALUE;
_localProceduralSamples[i] = glm::clamp(_localProceduralSamples[i] + collisionSample,
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_collisionSoundMagnitude *= _collisionSoundDuration;
}
}
_proceduralEffectSample += numSamples;
// Add a drum sound
const float MAX_VOLUME = 32000.0f;
const float MAX_DURATION = 2.0f;
const float MIN_AUDIBLE_VOLUME = 0.001f;
const float NOISE_MAGNITUDE = 0.02f;
float frequency = (_drumSoundFrequency / SAMPLE_RATE) * TWO_PI;
if (_drumSoundVolume > 0.0f) {
for (int i = 0; i < numSamples; i++) {
t = (float) _drumSoundSample + (float) i;
sample = sinf(t * frequency);
sample += ((randFloat() - 0.5f) * NOISE_MAGNITUDE);
sample *= _drumSoundVolume * MAX_VOLUME;
int16_t collisionSample = (int16_t) sample;
_lastInputLoudness = 0;
monoInput[i] = glm::clamp(monoInput[i] + collisionSample, MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_lastInputLoudness += fabsf(monoInput[i]);
_lastInputLoudness /= numSamples;
_lastInputLoudness /= MAX_SAMPLE_VALUE;
_localProceduralSamples[i] = glm::clamp(_localProceduralSamples[i] + collisionSample,
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_drumSoundVolume *= (1.0f - _drumSoundDecay);
}
_drumSoundSample += numSamples;
_drumSoundDuration = glm::clamp(_drumSoundDuration - (AUDIO_CALLBACK_MSECS / 1000.0f), 0.0f, MAX_DURATION);
if (_drumSoundDuration == 0.0f || (_drumSoundVolume < MIN_AUDIBLE_VOLUME)) {
_drumSoundVolume = 0.0f;
}
}
}
// Starts a collision sound. magnitude is 0-1, with 1 the loudest possible sound.
void Audio::startCollisionSound(float magnitude, float frequency, float noise, float duration, bool flashScreen) {
_collisionSoundMagnitude = magnitude;
_collisionSoundFrequency = frequency;
_collisionSoundNoise = noise;
_collisionSoundDuration = duration;
_collisionFlashesScreen = flashScreen;
}
void Audio::startDrumSound(float volume, float frequency, float duration, float decay) {
_drumSoundVolume = volume;
_drumSoundFrequency = frequency;
_drumSoundDuration = duration;
_drumSoundDecay = decay;
_drumSoundSample = 0;
}
void Audio::handleAudioByteArray(const QByteArray& audioByteArray) {
// TODO: either create a new audio device (up to the limit of the sound card or a hard limit)
// or send to the mixer and use delayed loopback
}
void Audio::renderToolBox(int x, int y, bool boxed) {
glEnable(GL_TEXTURE_2D);
if (boxed) {
bool isClipping = ((getTimeSinceLastClip() > 0.0f) && (getTimeSinceLastClip() < 1.0f));
const int BOX_LEFT_PADDING = 5;
const int BOX_TOP_PADDING = 10;
const int BOX_WIDTH = 266;
const int BOX_HEIGHT = 44;
QRect boxBounds = QRect(x - BOX_LEFT_PADDING, y - BOX_TOP_PADDING, BOX_WIDTH, BOX_HEIGHT);
glBindTexture(GL_TEXTURE_2D, _boxTextureId);
if (isClipping) {
glColor3f(1.0f, 0.0f, 0.0f);
} else {
glColor3f(0.41f, 0.41f, 0.41f);
}
glBegin(GL_QUADS);
glTexCoord2f(1, 1);
glVertex2f(boxBounds.left(), boxBounds.top());
glTexCoord2f(0, 1);
glVertex2f(boxBounds.right(), boxBounds.top());
glTexCoord2f(0, 0);
glVertex2f(boxBounds.right(), boxBounds.bottom());
glTexCoord2f(1, 0);
glVertex2f(boxBounds.left(), boxBounds.bottom());
glEnd();
}
_iconBounds = QRect(x, y, MUTE_ICON_SIZE, MUTE_ICON_SIZE);
static quint64 last = 0; // Hold the last time sample
if (!_muted) {
last = 0;
glColor3f(1,1,1);
glBindTexture(GL_TEXTURE_2D, _micTextureId);
} else {
quint64 usecTimestampNow();
static const float CYCLE_DURATION = 3.0f; // Seconds
quint64 now = usecTimestampNow();
float delta = (float)(now - last) / 1000000.0f;
float from = 1.0f; // Linear fade down (upper bound)
float to = 0.3f; // Linear fade down (lower bound)
if (delta > CYCLE_DURATION) {
last = now;
delta -= (int)delta;
} else if (delta > (CYCLE_DURATION * 0.5f)) {
// Linear fade up
from = 0.3f; // lower bound
to = 1.0f; // upper bound
}
// Compute a linear ramp to fade the color from full to partial saturation
float linearRamp = (from - to) * delta / CYCLE_DURATION + to;
glColor3f(linearRamp, linearRamp, linearRamp);
glBindTexture(GL_TEXTURE_2D, _muteTextureId);
}
glBegin(GL_QUADS);
glTexCoord2f(1, 1);
glVertex2f(_iconBounds.left(), _iconBounds.top());
glTexCoord2f(0, 1);
glVertex2f(_iconBounds.right(), _iconBounds.top());
glTexCoord2f(0, 0);
glVertex2f(_iconBounds.right(), _iconBounds.bottom());
glTexCoord2f(1, 0);
glVertex2f(_iconBounds.left(), _iconBounds.bottom());
glEnd();
glDisable(GL_TEXTURE_2D);
}
void Audio::toggleScope() {
_scopeEnabled = !_scopeEnabled;
if (_scopeEnabled) {
_scopeInputOffset = 0;
_scopeOutputOffset = 0;
allocateScope();
} else {
freeScope();
}
}
void Audio::toggleScopePause() {
_scopeEnabledPause = !_scopeEnabledPause;
}
void Audio::selectAudioScopeFiveFrames() {
if (Menu::getInstance()->isOptionChecked(MenuOption::AudioScopeFiveFrames)) {
reallocateScope(5);
}
}
void Audio::selectAudioScopeTwentyFrames() {
if (Menu::getInstance()->isOptionChecked(MenuOption::AudioScopeTwentyFrames)) {
reallocateScope(20);
}
}
void Audio::selectAudioScopeFiftyFrames() {
if (Menu::getInstance()->isOptionChecked(MenuOption::AudioScopeFiftyFrames)) {
reallocateScope(50);
}
}
void Audio::allocateScope() {
int num = _samplesPerScope * sizeof(int16_t);
_scopeInput = new QByteArray(num, 0);
_scopeOutputLeft = new QByteArray(num, 0);
_scopeOutputRight = new QByteArray(num, 0);
}
void Audio::reallocateScope(int frames) {
if (_framesPerScope != frames) {
_framesPerScope = frames;
_samplesPerScope = NETWORK_SAMPLES_PER_FRAME * _framesPerScope;
QMutexLocker lock(&_guard);
freeScope();
allocateScope();
}
}
void Audio::freeScope() {
if (_scopeInput) {
delete _scopeInput;
_scopeInput = 0;
}
if (_scopeOutputLeft) {
delete _scopeOutputLeft;
_scopeOutputLeft = 0;
}
if (_scopeOutputRight) {
delete _scopeOutputRight;
_scopeOutputRight = 0;
}
}
void Audio::addBufferToScope(
QByteArray* byteArray, unsigned int frameOffset, const int16_t* source, unsigned int sourceChannel, unsigned int sourceNumberOfChannels) {
// Constant multiplier to map sample value to vertical size of scope
float multiplier = (float)MULTIPLIER_SCOPE_HEIGHT / logf(2.0f);
// Temporary variable receives sample value
float sample;
// Temporary variable receives mapping of sample value
int16_t value;
QMutexLocker lock(&_guard);
// Short int pointer to mapped samples in byte array
int16_t* destination = (int16_t*) byteArray->data();
for (unsigned int i = 0; i < NETWORK_SAMPLES_PER_FRAME; i++) {
sample = (float)source[i * sourceNumberOfChannels + sourceChannel];
if (sample > 0) {
value = (int16_t)(multiplier * logf(sample));
} else if (sample < 0) {
value = (int16_t)(-multiplier * logf(-sample));
} else {
value = 0;
}
destination[i + frameOffset] = value;
}
}
void Audio::renderScope(int width, int height) {
if (!_scopeEnabled)
return;
static const float backgroundColor[4] = { 0.2f, 0.2f, 0.2f, 0.6f };
static const float gridColor[4] = { 0.3f, 0.3f, 0.3f, 0.6f };
static const float inputColor[4] = { 0.3f, .7f, 0.3f, 0.6f };
static const float outputLeftColor[4] = { 0.7f, .3f, 0.3f, 0.6f };
static const float outputRightColor[4] = { 0.3f, .3f, 0.7f, 0.6f };
static const int gridRows = 2;
int gridCols = _framesPerScope;
int x = (width - SCOPE_WIDTH) / 2;
int y = (height - SCOPE_HEIGHT) / 2;
int w = SCOPE_WIDTH;
int h = SCOPE_HEIGHT;
renderBackground(backgroundColor, x, y, w, h);
renderGrid(gridColor, x, y, w, h, gridRows, gridCols);
QMutexLocker lock(&_guard);
renderLineStrip(inputColor, x, y, _samplesPerScope, _scopeInputOffset, _scopeInput);
renderLineStrip(outputLeftColor, x, y, _samplesPerScope, _scopeOutputOffset, _scopeOutputLeft);
renderLineStrip(outputRightColor, x, y, _samplesPerScope, _scopeOutputOffset, _scopeOutputRight);
}
void Audio::renderBackground(const float* color, int x, int y, int width, int height) {
glColor4fv(color);
glBegin(GL_QUADS);
glVertex2i(x, y);
glVertex2i(x + width, y);
glVertex2i(x + width, y + height);
glVertex2i(x , y + height);
glEnd();
glColor4f(1, 1, 1, 1);
}
void Audio::renderGrid(const float* color, int x, int y, int width, int height, int rows, int cols) {
glColor4fv(color);
glBegin(GL_LINES);
int dx = width / cols;
int dy = height / rows;
int tx = x;
int ty = y;
// Draw horizontal grid lines
for (int i = rows + 1; --i >= 0; ) {
glVertex2i(x, ty);
glVertex2i(x + width, ty);
ty += dy;
}
// Draw vertical grid lines
for (int i = cols + 1; --i >= 0; ) {
glVertex2i(tx, y);
glVertex2i(tx, y + height);
tx += dx;
}
glEnd();
glColor4f(1, 1, 1, 1);
}
void Audio::renderLineStrip(const float* color, int x, int y, int n, int offset, const QByteArray* byteArray) {
glColor4fv(color);
glBegin(GL_LINE_STRIP);
int16_t sample;
int16_t* samples = ((int16_t*) byteArray->data()) + offset;
int numSamplesToAverage = _framesPerScope / DEFAULT_FRAMES_PER_SCOPE;
int count = (n - offset) / numSamplesToAverage;
int remainder = (n - offset) % numSamplesToAverage;
y += SCOPE_HEIGHT / 2;
// Compute and draw the sample averages from the offset position
for (int i = count; --i >= 0; ) {
sample = 0;
for (int j = numSamplesToAverage; --j >= 0; ) {
sample += *samples++;
}
sample /= numSamplesToAverage;
glVertex2i(x++, y - sample);
}
// Compute and draw the sample average across the wrap boundary
if (remainder != 0) {
sample = 0;
for (int j = remainder; --j >= 0; ) {
sample += *samples++;
}
samples = (int16_t*) byteArray->data();
for (int j = numSamplesToAverage - remainder; --j >= 0; ) {
sample += *samples++;
}
sample /= numSamplesToAverage;
glVertex2i(x++, y - sample);
} else {
samples = (int16_t*) byteArray->data();
}
// Compute and draw the sample average from the beginning to the offset
count = (offset - remainder) / numSamplesToAverage;
for (int i = count; --i >= 0; ) {
sample = 0;
for (int j = numSamplesToAverage; --j >= 0; ) {
sample += *samples++;
}
sample /= numSamplesToAverage;
glVertex2i(x++, y - sample);
}
glEnd();
glColor4f(1, 1, 1, 1);
}
bool Audio::switchInputToAudioDevice(const QAudioDeviceInfo& inputDeviceInfo) {
bool supportedFormat = false;
// cleanup any previously initialized device
if (_audioInput) {
_audioInput->stop();
disconnect(_inputDevice);
_inputDevice = NULL;
delete _audioInput;
_audioInput = NULL;
_numInputCallbackBytes = 0;
_inputAudioDeviceName = "";
}
if (!inputDeviceInfo.isNull()) {
qDebug() << "The audio input device " << inputDeviceInfo.deviceName() << "is available.";
_inputAudioDeviceName = inputDeviceInfo.deviceName().trimmed();
if (adjustedFormatForAudioDevice(inputDeviceInfo, _desiredInputFormat, _inputFormat)) {
qDebug() << "The format to be used for audio input is" << _inputFormat;
// if the user wants stereo but this device can't provide then bail
if (!_isStereoInput || _inputFormat.channelCount() == 2) {
_audioInput = new QAudioInput(inputDeviceInfo, _inputFormat, this);
_numInputCallbackBytes = calculateNumberOfInputCallbackBytes(_inputFormat);
_audioInput->setBufferSize(_numInputCallbackBytes);
// how do we want to handle input working, but output not working?
int numFrameSamples = calculateNumberOfFrameSamples(_numInputCallbackBytes);
_inputRingBuffer.resizeForFrameSize(numFrameSamples);
_inputDevice = _audioInput->start();
connect(_inputDevice, SIGNAL(readyRead()), this, SLOT(handleAudioInput()));
supportedFormat = true;
}
}
}
return supportedFormat;
}
bool Audio::switchOutputToAudioDevice(const QAudioDeviceInfo& outputDeviceInfo) {
bool supportedFormat = false;
// cleanup any previously initialized device
if (_audioOutput) {
_audioOutput->stop();
_outputDevice = NULL;
delete _audioOutput;
_audioOutput = NULL;
_loopbackOutputDevice = NULL;
delete _loopbackAudioOutput;
_loopbackAudioOutput = NULL;
_proceduralOutputDevice = NULL;
delete _proceduralAudioOutput;
_proceduralAudioOutput = NULL;
_outputAudioDeviceName = "";
}
if (!outputDeviceInfo.isNull()) {
qDebug() << "The audio output device " << outputDeviceInfo.deviceName() << "is available.";
_outputAudioDeviceName = outputDeviceInfo.deviceName().trimmed();
if (adjustedFormatForAudioDevice(outputDeviceInfo, _desiredOutputFormat, _outputFormat)) {
qDebug() << "The format to be used for audio output is" << _outputFormat;
// setup our general output device for audio-mixer audio
_audioOutput = new QAudioOutput(outputDeviceInfo, _outputFormat, this);
_audioOutput->setBufferSize(_ringBuffer.getSampleCapacity() * sizeof(int16_t));
qDebug() << "Ring Buffer capacity in samples: " << _ringBuffer.getSampleCapacity();
_outputDevice = _audioOutput->start();
// setup a loopback audio output device
_loopbackAudioOutput = new QAudioOutput(outputDeviceInfo, _outputFormat, this);
// setup a procedural audio output device
_proceduralAudioOutput = new QAudioOutput(outputDeviceInfo, _outputFormat, this);
_timeSinceLastReceived.start();
// setup spatial audio ringbuffer
int numFrameSamples = _outputFormat.sampleRate() * _desiredOutputFormat.channelCount();
_spatialAudioRingBuffer.resizeForFrameSize(numFrameSamples);
_spatialAudioStart = _spatialAudioFinish = 0;
supportedFormat = true;
}
}
return supportedFormat;
}
// The following constant is operating system dependent due to differences in
// the way input audio is handled. The audio input buffer size is inversely
// proportional to the accelerator ratio.
#ifdef Q_OS_WIN
const float Audio::CALLBACK_ACCELERATOR_RATIO = 0.4f;
#endif
#ifdef Q_OS_MAC
const float Audio::CALLBACK_ACCELERATOR_RATIO = 2.0f;
#endif
#ifdef Q_OS_LINUX
const float Audio::CALLBACK_ACCELERATOR_RATIO = 2.0f;
#endif
int Audio::calculateNumberOfInputCallbackBytes(const QAudioFormat& format) {
int numInputCallbackBytes = (int)(((NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL
* format.channelCount()
* (format.sampleRate() / SAMPLE_RATE))
/ CALLBACK_ACCELERATOR_RATIO) + 0.5f);
return numInputCallbackBytes;
}
float Audio::calculateDeviceToNetworkInputRatio(int numBytes) {
float inputToNetworkInputRatio = (int)((_numInputCallbackBytes
* CALLBACK_ACCELERATOR_RATIO
/ NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL) + 0.5f);
return inputToNetworkInputRatio;
}
int Audio::calculateNumberOfFrameSamples(int numBytes) {
int frameSamples = (int)(numBytes * CALLBACK_ACCELERATOR_RATIO + 0.5f) / sizeof(int16_t);
return frameSamples;
}