overte-JulianGro/assignment-client/src/audio/AudioMixer.cpp
2013-10-17 11:58:52 -07:00

417 lines
No EOL
21 KiB
C++

//
// AudioMixer.cpp
// hifi
//
// Created by Stephen Birarda on 8/22/13.
// Copyright (c) 2013 HighFidelity, Inc. All rights reserved.
//
#include <errno.h>
#include <fcntl.h>
#include <fstream>
#include <iostream>
#include <limits>
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
#include "Syssocket.h"
#include "Systime.h"
#include <math.h>
#else
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <sys/socket.h>
#endif //_WIN32
#include <glm/glm.hpp>
#include <glm/gtx/norm.hpp>
#include <glm/gtx/vector_angle.hpp>
#include <Logging.h>
#include <NodeList.h>
#include <Node.h>
#include <NodeTypes.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include <StdDev.h>
#include <UUID.h>
#include "AudioRingBuffer.h"
#include "AvatarAudioRingBuffer.h"
#include "InjectedAudioRingBuffer.h"
#include "AudioMixer.h"
const unsigned short MIXER_LISTEN_PORT = 55443;
const short JITTER_BUFFER_MSECS = 12;
const short JITTER_BUFFER_SAMPLES = JITTER_BUFFER_MSECS * (SAMPLE_RATE / 1000.0);
const unsigned int BUFFER_SEND_INTERVAL_USECS = floorf((BUFFER_LENGTH_SAMPLES_PER_CHANNEL / SAMPLE_RATE) * 1000000);
const int MAX_SAMPLE_VALUE = std::numeric_limits<int16_t>::max();
const int MIN_SAMPLE_VALUE = std::numeric_limits<int16_t>::min();
const char AUDIO_MIXER_LOGGING_TARGET_NAME[] = "audio-mixer";
void attachNewBufferToNode(Node *newNode) {
if (!newNode->getLinkedData()) {
if (newNode->getType() == NODE_TYPE_AGENT) {
newNode->setLinkedData(new AvatarAudioRingBuffer());
} else {
newNode->setLinkedData(new InjectedAudioRingBuffer());
}
}
}
AudioMixer::AudioMixer(const unsigned char* dataBuffer, int numBytes) : Assignment(dataBuffer, numBytes) {
}
void AudioMixer::run() {
// change the logging target name while this is running
Logging::setTargetName(AUDIO_MIXER_LOGGING_TARGET_NAME);
NodeList *nodeList = NodeList::getInstance();
nodeList->setOwnerType(NODE_TYPE_AUDIO_MIXER);
ssize_t receivedBytes = 0;
nodeList->linkedDataCreateCallback = attachNewBufferToNode;
nodeList->startSilentNodeRemovalThread();
unsigned char* packetData = new unsigned char[MAX_PACKET_SIZE];
sockaddr* nodeAddress = new sockaddr;
// make sure our node socket is non-blocking
nodeList->getNodeSocket()->setBlocking(false);
int nextFrame = 0;
timeval startTime;
int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MIXED_AUDIO);
unsigned char clientPacket[BUFFER_LENGTH_BYTES_STEREO + numBytesPacketHeader];
populateTypeAndVersion(clientPacket, PACKET_TYPE_MIXED_AUDIO);
int16_t clientSamples[BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2] = {};
gettimeofday(&startTime, NULL);
timeval lastDomainServerCheckIn = {};
timeval beginSendTime, endSendTime;
float sumFrameTimePercentages = 0.0f;
int numStatCollections = 0;
stk::StkFrames stkFrameBuffer(BUFFER_LENGTH_SAMPLES_PER_CHANNEL, 1);
// if we'll be sending stats, call the Logstash::socket() method to make it load the logstash IP outside the loop
if (Logging::shouldSendStats()) {
Logging::socket();
}
while (true) {
if (NodeList::getInstance()->getNumNoReplyDomainCheckIns() == MAX_SILENT_DOMAIN_SERVER_CHECK_INS) {
break;
}
if (Logging::shouldSendStats()) {
gettimeofday(&beginSendTime, NULL);
}
// send a check in packet to the domain server if DOMAIN_SERVER_CHECK_IN_USECS has elapsed
if (usecTimestampNow() - usecTimestamp(&lastDomainServerCheckIn) >= DOMAIN_SERVER_CHECK_IN_USECS) {
gettimeofday(&lastDomainServerCheckIn, NULL);
NodeList::getInstance()->sendDomainServerCheckIn();
if (Logging::shouldSendStats() && numStatCollections > 0) {
// if we should be sending stats to Logstash send the appropriate average now
const char MIXER_LOGSTASH_METRIC_NAME[] = "audio-mixer-frame-time-usage";
float averageFrameTimePercentage = sumFrameTimePercentages / numStatCollections;
Logging::stashValue(STAT_TYPE_TIMER, MIXER_LOGSTASH_METRIC_NAME, averageFrameTimePercentage);
sumFrameTimePercentages = 0.0f;
numStatCollections = 0;
}
}
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
PositionalAudioRingBuffer* positionalRingBuffer = (PositionalAudioRingBuffer*) node->getLinkedData();
if (positionalRingBuffer && positionalRingBuffer->shouldBeAddedToMix(JITTER_BUFFER_SAMPLES)) {
// this is a ring buffer that is ready to go
// set its flag so we know to push its buffer when all is said and done
positionalRingBuffer->setWillBeAddedToMix(true);
}
}
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
const int PHASE_DELAY_AT_90 = 20;
if (node->getType() == NODE_TYPE_AGENT) {
AvatarAudioRingBuffer* nodeRingBuffer = (AvatarAudioRingBuffer*) node->getLinkedData();
// zero out the client mix for this node
memset(clientSamples, 0, sizeof(clientSamples));
// loop through all other nodes that have sufficient audio to mix
for (NodeList::iterator otherNode = nodeList->begin(); otherNode != nodeList->end(); otherNode++) {
if (((PositionalAudioRingBuffer*) otherNode->getLinkedData())->willBeAddedToMix()
&& (otherNode != node || (otherNode == node && nodeRingBuffer->shouldLoopbackForNode()))) {
PositionalAudioRingBuffer* otherNodeBuffer = (PositionalAudioRingBuffer*) otherNode->getLinkedData();
// based on our listen mode we will do this mixing...
float bearingRelativeAngleToSource = 0.0f;
float attenuationCoefficient = 1.0f;
int numSamplesDelay = 0;
float weakChannelAmplitudeRatio = 1.0f;
stk::TwoPole* otherNodeTwoPole = NULL;
if (otherNode != node) {
glm::vec3 listenerPosition = nodeRingBuffer->getPosition();
glm::vec3 relativePosition = otherNodeBuffer->getPosition() - nodeRingBuffer->getPosition();
glm::quat inverseOrientation = glm::inverse(nodeRingBuffer->getOrientation());
float distanceSquareToSource = glm::dot(relativePosition, relativePosition);
float radius = 0.0f;
if (otherNode->getType() == NODE_TYPE_AUDIO_INJECTOR) {
InjectedAudioRingBuffer* injectedBuffer = (InjectedAudioRingBuffer*) otherNodeBuffer;
radius = injectedBuffer->getRadius();
attenuationCoefficient *= injectedBuffer->getAttenuationRatio();
}
if (radius == 0 || (distanceSquareToSource > radius * radius)) {
// this is either not a spherical source, or the listener is outside the sphere
if (radius > 0) {
// this is a spherical source - the distance used for the coefficient
// needs to be the closest point on the boundary to the source
// ovveride the distance to the node with the distance to the point on the
// boundary of the sphere
distanceSquareToSource -= (radius * radius);
} else {
// calculate the angle delivery for off-axis attenuation
glm::vec3 rotatedListenerPosition = glm::inverse(otherNodeBuffer->getOrientation())
* relativePosition;
float angleOfDelivery = glm::angle(glm::vec3(0.0f, 0.0f, -1.0f),
glm::normalize(rotatedListenerPosition));
const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
const float OFF_AXIS_ATTENUATION_FORMULA_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION +
(OFF_AXIS_ATTENUATION_FORMULA_STEP * (angleOfDelivery / 90.0f));
// multiply the current attenuation coefficient by the calculated off axis coefficient
attenuationCoefficient *= offAxisCoefficient;
}
glm::vec3 rotatedSourcePosition = inverseOrientation * relativePosition;
const float DISTANCE_SCALE = 2.5f;
const float GEOMETRIC_AMPLITUDE_SCALAR = 0.3f;
const float DISTANCE_LOG_BASE = 2.5f;
const float DISTANCE_SCALE_LOG = logf(DISTANCE_SCALE) / logf(DISTANCE_LOG_BASE);
// calculate the distance coefficient using the distance to this node
float distanceCoefficient = powf(GEOMETRIC_AMPLITUDE_SCALAR,
DISTANCE_SCALE_LOG +
(0.5f * logf(distanceSquareToSource) / logf(DISTANCE_LOG_BASE)) - 1);
distanceCoefficient = std::min(1.0f, distanceCoefficient);
// multiply the current attenuation coefficient by the distance coefficient
attenuationCoefficient *= distanceCoefficient;
// project the rotated source position vector onto the XZ plane
rotatedSourcePosition.y = 0.0f;
// produce an oriented angle about the y-axis
bearingRelativeAngleToSource = glm::orientedAngle(glm::vec3(0.0f, 0.0f, -1.0f),
glm::normalize(rotatedSourcePosition),
glm::vec3(0.0f, 1.0f, 0.0f));
const float PHASE_AMPLITUDE_RATIO_AT_90 = 0.5;
// figure out the number of samples of delay and the ratio of the amplitude
// in the weak channel for audio spatialization
float sinRatio = fabsf(sinf(glm::radians(bearingRelativeAngleToSource)));
numSamplesDelay = PHASE_DELAY_AT_90 * sinRatio;
weakChannelAmplitudeRatio = 1 - (PHASE_AMPLITUDE_RATIO_AT_90 * sinRatio);
// grab the TwoPole object for this source, add it if it doesn't exist
TwoPoleNodeMap& nodeTwoPoles = nodeRingBuffer->getTwoPoles();
TwoPoleNodeMap::iterator twoPoleIterator = nodeTwoPoles.find(otherNode->getUUID());
if (twoPoleIterator == nodeTwoPoles.end()) {
// setup the freeVerb effect for this source for this client
otherNodeTwoPole = nodeTwoPoles[otherNode->getUUID()] = new stk::TwoPole;
} else {
otherNodeTwoPole = twoPoleIterator->second;
}
// calculate the reasonance for this TwoPole based on angle to source
float TWO_POLE_CUT_OFF_FREQUENCY = 800.0f;
float TWO_POLE_MAX_FILTER_STRENGTH = 0.4f;
otherNodeTwoPole->setResonance(TWO_POLE_CUT_OFF_FREQUENCY,
TWO_POLE_MAX_FILTER_STRENGTH
* fabsf(bearingRelativeAngleToSource) / 180.0f,
true);
}
}
int16_t* sourceBuffer = otherNodeBuffer->getNextOutput();
int16_t* goodChannel = (bearingRelativeAngleToSource > 0.0f)
? clientSamples
: clientSamples + BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
int16_t* delayedChannel = (bearingRelativeAngleToSource > 0.0f)
? clientSamples + BUFFER_LENGTH_SAMPLES_PER_CHANNEL
: clientSamples;
int16_t* delaySamplePointer = otherNodeBuffer->getNextOutput() == otherNodeBuffer->getBuffer()
? otherNodeBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES - numSamplesDelay
: otherNodeBuffer->getNextOutput() - numSamplesDelay;
for (int s = 0; s < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; s++) {
// load up the stkFrameBuffer with this source's samples
stkFrameBuffer[s] = (stk::StkFloat) sourceBuffer[s];
}
// perform the TwoPole effect on the stkFrameBuffer
if (otherNodeTwoPole) {
otherNodeTwoPole->tick(stkFrameBuffer);
}
for (int s = 0; s < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; s++) {
if (s < numSamplesDelay) {
// pull the earlier sample for the delayed channel
int earlierSample = delaySamplePointer[s] * attenuationCoefficient * weakChannelAmplitudeRatio;
delayedChannel[s] = glm::clamp(delayedChannel[s] + earlierSample,
MIN_SAMPLE_VALUE,
MAX_SAMPLE_VALUE);
}
int16_t currentSample = stkFrameBuffer[s] * attenuationCoefficient;
goodChannel[s] = glm::clamp(goodChannel[s] + currentSample,
MIN_SAMPLE_VALUE,
MAX_SAMPLE_VALUE);
if (s + numSamplesDelay < BUFFER_LENGTH_SAMPLES_PER_CHANNEL) {
int sumSample = delayedChannel[s + numSamplesDelay]
+ (currentSample * weakChannelAmplitudeRatio);
delayedChannel[s + numSamplesDelay] = glm::clamp(sumSample,
MIN_SAMPLE_VALUE,
MAX_SAMPLE_VALUE);
}
if (s >= BUFFER_LENGTH_SAMPLES_PER_CHANNEL - PHASE_DELAY_AT_90) {
// this could be a delayed sample on the next pass
// so store the affected back in the ARB
otherNodeBuffer->getNextOutput()[s] = (int16_t) stkFrameBuffer[s];
}
}
}
}
memcpy(clientPacket + numBytesPacketHeader, clientSamples, sizeof(clientSamples));
nodeList->getNodeSocket()->send(node->getPublicSocket(), clientPacket, sizeof(clientPacket));
}
}
// push forward the next output pointers for any audio buffers we used
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
PositionalAudioRingBuffer* nodeBuffer = (PositionalAudioRingBuffer*) node->getLinkedData();
if (nodeBuffer && nodeBuffer->willBeAddedToMix()) {
nodeBuffer->setNextOutput(nodeBuffer->getNextOutput() + BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
if (nodeBuffer->getNextOutput() >= nodeBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
nodeBuffer->setNextOutput(nodeBuffer->getBuffer());
}
nodeBuffer->setWillBeAddedToMix(false);
}
}
// pull any new audio data from nodes off of the network stack
while (nodeList->getNodeSocket()->receive(nodeAddress, packetData, &receivedBytes) &&
packetVersionMatch(packetData)) {
if (packetData[0] == PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO ||
packetData[0] == PACKET_TYPE_MICROPHONE_AUDIO_WITH_ECHO) {
unsigned char* currentBuffer = packetData + numBytesForPacketHeader(packetData);
QUuid nodeUUID = QUuid::fromRfc4122(QByteArray((char*) currentBuffer, NUM_BYTES_RFC4122_UUID));
Node* avatarNode = nodeList->addOrUpdateNode(nodeUUID,
NODE_TYPE_AGENT,
nodeAddress,
nodeAddress);
// temp activation of public socket before server ping/reply is setup
if (!avatarNode->getActiveSocket()) {
avatarNode->activatePublicSocket();
}
nodeList->updateNodeWithData(nodeAddress, packetData, receivedBytes);
if (std::isnan(((PositionalAudioRingBuffer *)avatarNode->getLinkedData())->getOrientation().x)) {
// kill off this node - temporary solution to mixer crash on mac sleep
avatarNode->setAlive(false);
}
} else if (packetData[0] == PACKET_TYPE_INJECT_AUDIO) {
QUuid nodeUUID = QUuid::fromRfc4122(QByteArray((char*) packetData + numBytesForPacketHeader(packetData),
NUM_BYTES_RFC4122_UUID));
Node* matchingInjector = nodeList->addOrUpdateNode(nodeUUID,
NODE_TYPE_AUDIO_INJECTOR,
NULL,
NULL);
// give the new audio data to the matching injector node
nodeList->updateNodeWithData(matchingInjector, packetData, receivedBytes);
} else {
// let processNodeData handle it.
nodeList->processNodeData(nodeAddress, packetData, receivedBytes);
}
}
if (Logging::shouldSendStats()) {
// send a packet to our logstash instance
// calculate the percentage value for time elapsed for this send (of the max allowable time)
gettimeofday(&endSendTime, NULL);
float percentageOfMaxElapsed = ((float) (usecTimestamp(&endSendTime) - usecTimestamp(&beginSendTime))
/ BUFFER_SEND_INTERVAL_USECS) * 100.0f;
sumFrameTimePercentages += percentageOfMaxElapsed;
numStatCollections++;
}
int usecToSleep = usecTimestamp(&startTime) + (++nextFrame * BUFFER_SEND_INTERVAL_USECS) - usecTimestampNow();
if (usecToSleep > 0) {
usleep(usecToSleep);
} else {
qDebug("Took too much time, not sleeping!\n");
}
}
}