overte-JulianGro/interface/src/ParticleSystem.cpp

366 lines
13 KiB
C++

//
// ParticleSystem.cpp
// hifi
//
// Created by Jeffrey on July 10, 2013
//
#include <glm/glm.hpp>
#include "InterfaceConfig.h"
#include <SharedUtil.h>
#include "ParticleSystem.h"
#include "Application.h"
const float DEFAULT_PARTICLE_RADIUS = 0.01f;
const float DEFAULT_PARTICLE_BOUNCE = 1.0f;
const float DEFAULT_PARTICLE_AIR_FRICTION = 2.0f;
const float DEFAULT_PARTICLE_LIFESPAN = 1.0f;
ParticleSystem::ParticleSystem() {
_numEmitters = 0;
_numParticles = 0;
_upDirection = glm::vec3(0.0f, 1.0f, 0.0f); // default
for (unsigned int emitterIndex = 0; emitterIndex < MAX_EMITTERS; emitterIndex++) {
_emitter[emitterIndex].position = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[emitterIndex].direction = glm::vec3(0.0f, 1.0f, 0.0f);
_emitter[emitterIndex].visible = false;
_emitter[emitterIndex].particleLifespan = DEFAULT_PARTICLE_LIFESPAN;
_emitter[emitterIndex].baseParticle.alive = false;
_emitter[emitterIndex].baseParticle.age = 0.0f;
_emitter[emitterIndex].baseParticle.lifespan = 0.0f;
_emitter[emitterIndex].baseParticle.radius = 0.0f;
_emitter[emitterIndex].baseParticle.emitterIndex = 0;
_emitter[emitterIndex].baseParticle.position = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[emitterIndex].baseParticle.velocity = glm::vec3(0.0f, 0.0f, 0.0f);
for (int lifeStage = 0; lifeStage<NUM_PARTICLE_LIFE_STAGES; lifeStage++) {
ParticleAttributes * a = &_emitter[emitterIndex].particleAttributes[lifeStage];
a->radius = DEFAULT_PARTICLE_RADIUS;
a->color = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
a->bounce = DEFAULT_PARTICLE_BOUNCE;
a->airFriction = DEFAULT_PARTICLE_AIR_FRICTION;
a->gravity = 0.0f;
a->jitter = 0.0f;
a->emitterAttraction = 0.0f;
a->tornadoForce = 0.0f;
a->neighborAttraction = 0.0f;
a->neighborRepulsion = 0.0f;
a->collisionSphereRadius = 0.0f;
a->collisionSpherePosition = glm::vec3(0.0f, 0.0f, 0.0f);
a->usingCollisionSphere = false;
}
};
for (unsigned int p = 0; p < MAX_PARTICLES; p++) {
_particle[p].alive = false;
_particle[p].age = 0.0f;
_particle[p].lifespan = 0.0f;
_particle[p].radius = 0.0f;
_particle[p].emitterIndex = 0;
_particle[p].position = glm::vec3(0.0f, 0.0f, 0.0f);
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
}
}
int ParticleSystem::addEmitter() {
_numEmitters ++;
if (_numEmitters > MAX_EMITTERS) {
return -1;
}
return _numEmitters - 1;
}
void ParticleSystem::simulate(float deltaTime) {
// update particles
for (unsigned int p = 0; p < _numParticles; p++) {
if (_particle[p].alive) {
if (_particle[p].age > _particle[p].lifespan) {
killParticle(p);
} else {
updateParticle(p, deltaTime);
}
}
}
}
void ParticleSystem::emitParticlesNow(int e, int num, float thrust) {
for (unsigned int p = 0; p < num; p++) {
createParticle(e, _emitter[e].direction * thrust);
}
}
void ParticleSystem::createParticle(int e, glm::vec3 velocity) {
for (unsigned int p = 0; p < MAX_PARTICLES; p++) {
if (!_particle[p].alive) {
_particle[p].emitterIndex = e;
_particle[p].alive = true;
_particle[p].age = 0.0f;
_particle[p].velocity = velocity;
_particle[p].lifespan = _emitter[e].particleLifespan;
_particle[p].position = _emitter[e].position;
_particle[p].radius = _emitter[e].particleAttributes[0].radius;
_particle[p].color = _emitter[e].particleAttributes[0].color;
_numParticles ++;
assert(_numParticles <= MAX_PARTICLES);
return;
}
}
}
void ParticleSystem::killParticle(int p) {
assert( p >= 0);
assert( p < MAX_PARTICLES);
assert( _numParticles > 0);
_particle[p].alive = false;
_numParticles --;
}
void ParticleSystem::setParticleAttributes(int emitterIndex, ParticleAttributes attributes) {
for (int lifeStage = 0; lifeStage < NUM_PARTICLE_LIFE_STAGES; lifeStage ++ ) {
setParticleAttributes(emitterIndex, lifeStage, attributes);
}
}
void ParticleSystem::setParticleAttributes(int emitterIndex, int lifeStage, ParticleAttributes attributes) {
ParticleAttributes * a = &_emitter[emitterIndex].particleAttributes[lifeStage];
a->radius = attributes.radius;
a->color = attributes.color;
a->bounce = attributes.bounce;
a->gravity = attributes.gravity;
a->airFriction = attributes.airFriction;
a->jitter = attributes.jitter;
a->emitterAttraction = attributes.emitterAttraction;
a->tornadoForce = attributes.tornadoForce;
a->neighborAttraction = attributes.neighborAttraction;
a->neighborRepulsion = attributes.neighborRepulsion;
a->usingCollisionSphere = attributes.usingCollisionSphere;
a->collisionSpherePosition = attributes.collisionSpherePosition;
a->collisionSphereRadius = attributes.collisionSphereRadius;
}
void ParticleSystem::updateParticle(int p, float deltaTime) {
assert(_particle[p].age <= _particle[p].lifespan);
float ageFraction = _particle[p].age / _particle[p].lifespan;
int lifeStage = (int)( ageFraction * (NUM_PARTICLE_LIFE_STAGES-1) );
float lifeStageFraction = ageFraction * ( NUM_PARTICLE_LIFE_STAGES - 1 ) - lifeStage;
_particle[p].radius
= _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage ].radius * (1.0f - lifeStageFraction)
+ _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage+1].radius * lifeStageFraction;
_particle[p].color
= _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage ].color * (1.0f - lifeStageFraction)
+ _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage+1].color * lifeStageFraction;
Emitter myEmitter = _emitter[_particle[p].emitterIndex];
// apply random jitter
float j = myEmitter.particleAttributes[lifeStage].jitter;
_particle[p].velocity +=
glm::vec3
(
-j * ONE_HALF + j * randFloat(),
-j * ONE_HALF + j * randFloat(),
-j * ONE_HALF + j * randFloat()
) * deltaTime;
// apply attraction to home position
glm::vec3 vectorToHome = myEmitter.position - _particle[p].position;
_particle[p].velocity += vectorToHome * myEmitter.particleAttributes[lifeStage].emitterAttraction * deltaTime;
// apply neighbor attraction
int neighbor = p + 1;
if (neighbor == _numParticles ) {
neighbor = 0;
}
if ( _particle[neighbor].emitterIndex == _particle[p].emitterIndex) {
glm::vec3 vectorToNeighbor = _particle[p].position - _particle[neighbor].position;
_particle[p].velocity -= vectorToNeighbor * myEmitter.particleAttributes[lifeStage].neighborAttraction * deltaTime;
float distanceToNeighbor = glm::length(vectorToNeighbor);
if (distanceToNeighbor > 0.0f) {
_particle[neighbor].velocity += (vectorToNeighbor / ( 1.0f + distanceToNeighbor * distanceToNeighbor)) * myEmitter.particleAttributes[lifeStage].neighborRepulsion * deltaTime;
}
}
// apply tornado force
glm::vec3 tornadoDirection = glm::cross(vectorToHome, myEmitter.direction);
_particle[p].velocity += tornadoDirection * myEmitter.particleAttributes[lifeStage].tornadoForce * deltaTime;
// apply air friction
float drag = 1.0 - myEmitter.particleAttributes[lifeStage].airFriction * deltaTime;
if (drag < 0.0f) {
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
} else {
_particle[p].velocity *= drag;
}
// apply gravity
_particle[p].velocity -= _upDirection * myEmitter.particleAttributes[lifeStage].gravity * deltaTime;
// update position by velocity
_particle[p].position += _particle[p].velocity;
// collision with ground
if (_particle[p].position.y < _particle[p].radius) {
_particle[p].position.y = _particle[p].radius;
if (_particle[p].velocity.y < 0.0f) {
_particle[p].velocity.y *= -myEmitter.particleAttributes[lifeStage].bounce;
}
}
// collision with sphere
if (myEmitter.particleAttributes[lifeStage].usingCollisionSphere) {
glm::vec3 vectorToSphereCenter = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - _particle[p].position;
float distanceToSphereCenter = glm::length(vectorToSphereCenter);
float combinedRadius = myEmitter.particleAttributes[lifeStage].collisionSphereRadius + _particle[p].radius;
if (distanceToSphereCenter < combinedRadius) {
if (distanceToSphereCenter > 0.0f){
glm::vec3 directionToSphereCenter = vectorToSphereCenter / distanceToSphereCenter;
_particle[p].position = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - directionToSphereCenter * combinedRadius;
}
}
}
// do this at the end...
_particle[p].age += deltaTime;
}
void ParticleSystem::setEmitterBaseParticle(int emitterIndex, bool showing ) {
_emitter[emitterIndex].baseParticle.alive = true;
_emitter[emitterIndex].baseParticle.emitterIndex = emitterIndex;
}
void ParticleSystem::killAllParticles() {
for (unsigned int p = 0; p < _numParticles; p++) {
killParticle(p);
}
}
void ParticleSystem::render() {
// render the emitters
for (int e = 0; e < _numEmitters; e++) {
if (_emitter[e].baseParticle.alive) {
glColor4f(_emitter[e].baseParticle.color.r, _emitter[e].baseParticle.color.g, _emitter[e].baseParticle.color.b, _emitter[e].baseParticle.color.a );
glPushMatrix();
glTranslatef(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z);
glutSolidSphere(_emitter[e].baseParticle.radius, 6, 6);
glPopMatrix();
}
if (_emitter[e].visible) {
renderEmitter(e, 0.2f);
}
};
// render the particles
for (unsigned int p = 0; p < _numParticles; p++) {
if (_particle[p].alive) {
renderParticle(p);
}
}
}
void ParticleSystem::renderParticle(int p) {
glColor4f(_particle[p].color.r, _particle[p].color.g, _particle[p].color.b, _particle[p].color.a );
if (USE_BILLBOARD_RENDERING) {
glm::vec3 cameraPosition = Application::getInstance()->getCamera()->getPosition();
glm::vec3 viewVector = _particle[p].position - cameraPosition;
float distance = glm::length(viewVector);
if (distance >= 0.0f) {
viewVector /= distance;
glm::vec3 up = glm::vec3(viewVector.y, viewVector.z, viewVector.x);
glm::vec3 right = glm::vec3(viewVector.z, viewVector.x, viewVector.y);
glm::vec3 p0 = _particle[p].position - right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p1 = _particle[p].position + right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p2 = _particle[p].position + right * _particle[p].radius + up * _particle[p].radius;
glm::vec3 p3 = _particle[p].position - right * _particle[p].radius + up * _particle[p].radius;
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p1.x, p1.y, p1.z);
glVertex3f(p2.x, p2.y, p2.z);
glEnd();
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p2.x, p2.y, p2.z);
glVertex3f(p3.x, p3.y, p3.z);
glEnd();
}
} else {
glPushMatrix();
glTranslatef(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glutSolidSphere(_particle[p].radius, 6, 6);
glPopMatrix();
if (SHOW_VELOCITY_TAILS) {
glColor4f( _particle[p].color.x, _particle[p].color.y, _particle[p].color.z, 0.5f);
glm::vec3 end = _particle[p].position - _particle[p].velocity * 2.0f;
glBegin(GL_LINES);
glVertex3f(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glVertex3f(end.x, end.y, end.z);
glEnd();
}
}
}
void ParticleSystem::renderEmitter(int e, float size) {
glLineWidth(2.0f);
glColor3f(0.4f, 0.4, 0.8);
glBegin(GL_LINES);
glVertex3f(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z);
glVertex3f(_emitter[e].position.x + _emitter[e].direction.x, _emitter[e].position.y + _emitter[e].direction.y, _emitter[e].position.z + _emitter[e].direction.z);
glEnd();
}