// // ObjectActionSpring.cpp // libraries/physics/src // // Created by Seth Alves 2015-6-5 // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include "QVariantGLM.h" #include "ObjectActionSpring.h" const float SPRING_MAX_SPEED = 10.0f; const uint16_t ObjectActionSpring::springVersion = 1; ObjectActionSpring::ObjectActionSpring(const QUuid& id, EntityItemPointer ownerEntity) : ObjectAction(ACTION_TYPE_SPRING, id, ownerEntity), _positionalTarget(glm::vec3(0.0f)), _linearTimeScale(FLT_MAX), _positionalTargetSet(true), _rotationalTarget(glm::quat()), _angularTimeScale(FLT_MAX), _rotationalTargetSet(true) { #if WANT_DEBUG qDebug() << "ObjectActionSpring::ObjectActionSpring"; #endif } ObjectActionSpring::~ObjectActionSpring() { #if WANT_DEBUG qDebug() << "ObjectActionSpring::~ObjectActionSpring"; #endif } void ObjectActionSpring::updateActionWorker(btScalar deltaTimeStep) { if (!tryLockForRead()) { // don't risk hanging the thread running the physics simulation qDebug() << "ObjectActionSpring::updateActionWorker lock failed"; return; } auto ownerEntity = _ownerEntity.lock(); if (!ownerEntity) { return; } void* physicsInfo = ownerEntity->getPhysicsInfo(); if (!physicsInfo) { unlock(); return; } ObjectMotionState* motionState = static_cast(physicsInfo); btRigidBody* rigidBody = motionState->getRigidBody(); if (!rigidBody) { unlock(); qDebug() << "ObjectActionSpring::updateActionWorker no rigidBody"; return; } const float MAX_TIMESCALE = 600.0f; // 10 min is a long time if (_linearTimeScale < MAX_TIMESCALE) { btVector3 offset = rigidBody->getCenterOfMassPosition() - glmToBullet(_positionalTarget); float offsetLength = offset.length(); float speed = (offsetLength > FLT_EPSILON) ? glm::min(offsetLength / _linearTimeScale, SPRING_MAX_SPEED) : 0.0f; // this action is aggresively critically damped and defeats the current velocity rigidBody->setLinearVelocity((- speed / offsetLength) * offset); } if (_angularTimeScale < MAX_TIMESCALE) { btVector3 targetVelocity(0.0f, 0.0f, 0.0f); btQuaternion bodyRotation = rigidBody->getOrientation(); auto alignmentDot = bodyRotation.dot(glmToBullet(_rotationalTarget)); const float ALMOST_ONE = 0.99999f; if (glm::abs(alignmentDot) < ALMOST_ONE) { btQuaternion target = glmToBullet(_rotationalTarget); if (alignmentDot < 0.0f) { target = -target; } // if dQ is the incremental rotation that gets an object from Q0 to Q1 then: // // Q1 = dQ * Q0 // // solving for dQ gives: // // dQ = Q1 * Q0^ btQuaternion deltaQ = target * bodyRotation.inverse(); float angle = deltaQ.getAngle(); const float MIN_ANGLE = 1.0e-4; if (angle > MIN_ANGLE) { targetVelocity = (angle / _angularTimeScale) * deltaQ.getAxis(); } } // this action is aggresively critically damped and defeats the current velocity rigidBody->setAngularVelocity(targetVelocity); } unlock(); } const float MIN_TIMESCALE = 0.1f; bool ObjectActionSpring::updateArguments(QVariantMap arguments) { // targets are required, spring-constants are optional bool ok = true; glm::vec3 positionalTarget = EntityActionInterface::extractVec3Argument("spring action", arguments, "targetPosition", ok, false); if (!ok) { positionalTarget = _positionalTarget; } ok = true; float linearTimeScale = EntityActionInterface::extractFloatArgument("spring action", arguments, "linearTimeScale", ok, false); if (!ok || linearTimeScale <= 0.0f) { linearTimeScale = _linearTimeScale; } ok = true; glm::quat rotationalTarget = EntityActionInterface::extractQuatArgument("spring action", arguments, "targetRotation", ok, false); if (!ok) { rotationalTarget = _rotationalTarget; } ok = true; float angularTimeScale = EntityActionInterface::extractFloatArgument("spring action", arguments, "angularTimeScale", ok, false); if (!ok) { angularTimeScale = _angularTimeScale; } if (positionalTarget != _positionalTarget || linearTimeScale != _linearTimeScale || rotationalTarget != _rotationalTarget || angularTimeScale != _angularTimeScale) { // something changed lockForWrite(); _positionalTarget = positionalTarget; _linearTimeScale = glm::max(MIN_TIMESCALE, glm::abs(linearTimeScale)); _rotationalTarget = rotationalTarget; _angularTimeScale = glm::max(MIN_TIMESCALE, glm::abs(angularTimeScale)); _active = true; activateBody(); unlock(); } return true; } QVariantMap ObjectActionSpring::getArguments() { QVariantMap arguments; lockForRead(); arguments["linearTimeScale"] = _linearTimeScale; arguments["targetPosition"] = glmToQMap(_positionalTarget); arguments["targetRotation"] = glmToQMap(_rotationalTarget); arguments["angularTimeScale"] = _angularTimeScale; unlock(); return arguments; } QByteArray ObjectActionSpring::serialize() const { QByteArray serializedActionArguments; QDataStream dataStream(&serializedActionArguments, QIODevice::WriteOnly); dataStream << ACTION_TYPE_SPRING; dataStream << getID(); dataStream << ObjectActionSpring::springVersion; dataStream << _positionalTarget; dataStream << _linearTimeScale; dataStream << _positionalTargetSet; dataStream << _rotationalTarget; dataStream << _angularTimeScale; dataStream << _rotationalTargetSet; return serializedActionArguments; } void ObjectActionSpring::deserialize(QByteArray serializedArguments) { QDataStream dataStream(serializedArguments); EntityActionType type; dataStream >> type; assert(type == getType()); QUuid id; dataStream >> id; assert(id == getID()); uint16_t serializationVersion; dataStream >> serializationVersion; if (serializationVersion != ObjectActionSpring::springVersion) { return; } dataStream >> _positionalTarget; dataStream >> _linearTimeScale; dataStream >> _positionalTargetSet; dataStream >> _rotationalTarget; dataStream >> _angularTimeScale; dataStream >> _rotationalTargetSet; _active = true; }