// // ObjectMotionState.cpp // libraries/physcis/src // // Created by Andrew Meadows 2014.11.05 // Copyright 2014 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include #include "BulletUtil.h" #include "KinematicController.h" #include "ObjectMotionState.h" #include "PhysicsEngine.h" const float DEFAULT_FRICTION = 0.5f; const float MAX_FRICTION = 10.0f; const float DEFAULT_RESTITUTION = 0.5f; // origin of physics simulation in world frame glm::vec3 _worldOffset(0.0f); // static void ObjectMotionState::setWorldOffset(const glm::vec3& offset) { _worldOffset = offset; } // static const glm::vec3& ObjectMotionState::getWorldOffset() { return _worldOffset; } ObjectMotionState::ObjectMotionState() : _friction(DEFAULT_FRICTION), _restitution(DEFAULT_RESTITUTION), _linearDamping(0.0f), _angularDamping(0.0f), _motionType(MOTION_TYPE_STATIC), _body(NULL), _sentMoving(false), _numNonMovingUpdates(0), _outgoingPacketFlags(DIRTY_PHYSICS_FLAGS), _sentFrame(0), _sentPosition(0.0f), _sentRotation(), _sentVelocity(0.0f), _sentAngularVelocity(0.0f), _sentAcceleration(0.0f) { } ObjectMotionState::~ObjectMotionState() { // NOTE: you MUST remove this MotionState from the world before you call the dtor. assert(_body == NULL); if (_kinematicController) { delete _kinematicController; _kinematicController = NULL; } } void ObjectMotionState::setFriction(float friction) { _friction = btMax(btMin(fabsf(friction), MAX_FRICTION), 0.0f); } void ObjectMotionState::setRestitution(float restitution) { _restitution = btMax(btMin(fabsf(restitution), 1.0f), 0.0f); } void ObjectMotionState::setLinearDamping(float damping) { _linearDamping = btMax(btMin(fabsf(damping), 1.0f), 0.0f); } void ObjectMotionState::setAngularDamping(float damping) { _angularDamping = btMax(btMin(fabsf(damping), 1.0f), 0.0f); } void ObjectMotionState::setVelocity(const glm::vec3& velocity) const { _body->setLinearVelocity(glmToBullet(velocity)); } void ObjectMotionState::setAngularVelocity(const glm::vec3& velocity) const { _body->setAngularVelocity(glmToBullet(velocity)); } void ObjectMotionState::setGravity(const glm::vec3& gravity) const { _body->setGravity(glmToBullet(gravity)); } void ObjectMotionState::getVelocity(glm::vec3& velocityOut) const { velocityOut = bulletToGLM(_body->getLinearVelocity()); } void ObjectMotionState::getAngularVelocity(glm::vec3& angularVelocityOut) const { angularVelocityOut = bulletToGLM(_body->getAngularVelocity()); } // RELIABLE_SEND_HACK: until we have truly reliable resends of non-moving updates // we alwasy resend packets for objects that have stopped moving up to some max limit. const int MAX_NUM_NON_MOVING_UPDATES = 5; bool ObjectMotionState::doesNotNeedToSendUpdate() const { return !_body->isActive() && _numNonMovingUpdates > MAX_NUM_NON_MOVING_UPDATES; } bool ObjectMotionState::shouldSendUpdate(uint32_t simulationFrame) { assert(_body); float dt = (float)(simulationFrame - _sentFrame) * PHYSICS_ENGINE_FIXED_SUBSTEP; _sentFrame = simulationFrame; bool isActive = _body->isActive(); if (!isActive) { if (_sentMoving) { // this object just went inactive so send an update immediately return true; } else { const float NON_MOVING_UPDATE_PERIOD = 1.0f; if (dt > NON_MOVING_UPDATE_PERIOD && _numNonMovingUpdates < MAX_NUM_NON_MOVING_UPDATES) { // RELIABLE_SEND_HACK: since we're not yet using a reliable method for non-moving update packets we repeat these // at a faster rate than the MAX period above, and only send a limited number of them. return true; } } } // Else we measure the error between current and extrapolated transform (according to expected behavior // of remote EntitySimulation) and return true if the error is significant. // NOTE: math in done the simulation-frame, which is NOT necessarily the same as the world-frame // due to _worldOffset. // compute position error if (glm::length2(_sentVelocity) > 0.0f) { _sentVelocity += _sentAcceleration * dt; _sentVelocity *= powf(1.0f - _linearDamping, dt); _sentPosition += dt * _sentVelocity; } btTransform worldTrans = _body->getWorldTransform(); glm::vec3 position = bulletToGLM(worldTrans.getOrigin()); float dx2 = glm::distance2(position, _sentPosition); const float MAX_POSITION_ERROR_SQUARED = 0.001f; // 0.001 m^2 ~~> 0.03 m if (dx2 > MAX_POSITION_ERROR_SQUARED) { return true; } if (glm::length2(_sentAngularVelocity) > 0.0f) { // compute rotation error _sentAngularVelocity *= powf(1.0f - _angularDamping, dt); float spin = glm::length(_sentAngularVelocity); const float MIN_SPIN = 1.0e-4f; if (spin > MIN_SPIN) { glm::vec3 axis = _sentAngularVelocity / spin; _sentRotation = glm::normalize(glm::angleAxis(dt * spin, axis) * _sentRotation); } } const float MIN_ROTATION_DOT = 0.98f; glm::quat actualRotation = bulletToGLM(worldTrans.getRotation()); return (fabsf(glm::dot(actualRotation, _sentRotation)) < MIN_ROTATION_DOT); } void ObjectMotionState::removeKinematicController() { if (_kinematicController) { delete _kinematicController; _kinematicController = NULL; } } void ObjectMotionState::setRigidBody(btRigidBody* body) { // give the body a (void*) back-pointer to this ObjectMotionState if (_body != body) { if (_body) { _body->setUserPointer(NULL); } _body = body; if (_body) { _body->setUserPointer(this); } } }