// // GeometryCache.cpp // interface/src/renderer // // Created by Andrzej Kapolka on 6/21/13. // Copyright 2013 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // // include this before QOpenGLBuffer, which includes an earlier version of OpenGL #include #include #include #include #include #include #include "TextureCache.h" #include "GeometryCache.h" GeometryCache::GeometryCache() { } GeometryCache::~GeometryCache() { foreach (const VerticesIndices& vbo, _hemisphereVBOs) { glDeleteBuffers(1, &vbo.first); glDeleteBuffers(1, &vbo.second); } } void GeometryCache::renderHemisphere(int slices, int stacks) { VerticesIndices& vbo = _hemisphereVBOs[IntPair(slices, stacks)]; int vertices = slices * (stacks - 1) + 1; int indices = slices * 2 * 3 * (stacks - 2) + slices * 3; if (vbo.first == 0) { GLfloat* vertexData = new GLfloat[vertices * 3]; GLfloat* vertex = vertexData; for (int i = 0; i < stacks - 1; i++) { float phi = PI_OVER_TWO * (float)i / (float)(stacks - 1); float z = sinf(phi), radius = cosf(phi); for (int j = 0; j < slices; j++) { float theta = TWO_PI * (float)j / (float)slices; *(vertex++) = sinf(theta) * radius; *(vertex++) = cosf(theta) * radius; *(vertex++) = z; } } *(vertex++) = 0.0f; *(vertex++) = 0.0f; *(vertex++) = 1.0f; glGenBuffers(1, &vbo.first); glBindBuffer(GL_ARRAY_BUFFER, vbo.first); const int BYTES_PER_VERTEX = 3 * sizeof(GLfloat); glBufferData(GL_ARRAY_BUFFER, vertices * BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW); delete[] vertexData; GLushort* indexData = new GLushort[indices]; GLushort* index = indexData; for (int i = 0; i < stacks - 2; i++) { GLushort bottom = i * slices; GLushort top = bottom + slices; for (int j = 0; j < slices; j++) { int next = (j + 1) % slices; *(index++) = bottom + j; *(index++) = top + next; *(index++) = top + j; *(index++) = bottom + j; *(index++) = bottom + next; *(index++) = top + next; } } GLushort bottom = (stacks - 2) * slices; GLushort top = bottom + slices; for (int i = 0; i < slices; i++) { *(index++) = bottom + i; *(index++) = bottom + (i + 1) % slices; *(index++) = top; } glGenBuffers(1, &vbo.second); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); const int BYTES_PER_INDEX = sizeof(GLushort); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * BYTES_PER_INDEX, indexData, GL_STATIC_DRAW); delete[] indexData; } else { glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glVertexPointer(3, GL_FLOAT, 0, 0); glNormalPointer(GL_FLOAT, 0, 0); glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } const int NUM_VERTICES_PER_TRIANGLE = 3; const int NUM_TRIANGLES_PER_QUAD = 2; const int NUM_VERTICES_PER_TRIANGULATED_QUAD = NUM_VERTICES_PER_TRIANGLE * NUM_TRIANGLES_PER_QUAD; const int NUM_COORDS_PER_VERTEX = 3; const int NUM_BYTES_PER_VERTEX = NUM_COORDS_PER_VERTEX * sizeof(GLfloat); const int NUM_BYTES_PER_INDEX = sizeof(GLushort); void GeometryCache::renderSphere(float radius, int slices, int stacks, bool solid) { VerticesIndices& vbo = _sphereVBOs[IntPair(slices, stacks)]; int vertices = slices * (stacks - 1) + 2; int indices = slices * stacks * NUM_VERTICES_PER_TRIANGULATED_QUAD; if (vbo.first == 0) { GLfloat* vertexData = new GLfloat[vertices * NUM_COORDS_PER_VERTEX]; GLfloat* vertex = vertexData; // south pole *(vertex++) = 0.0f; *(vertex++) = 0.0f; *(vertex++) = -1.0f; //add stacks vertices climbing up Y axis for (int i = 1; i < stacks; i++) { float phi = PI * (float)i / (float)(stacks) - PI_OVER_TWO; float z = sinf(phi), radius = cosf(phi); for (int j = 0; j < slices; j++) { float theta = TWO_PI * (float)j / (float)slices; *(vertex++) = sinf(theta) * radius; *(vertex++) = cosf(theta) * radius; *(vertex++) = z; } } // north pole *(vertex++) = 0.0f; *(vertex++) = 0.0f; *(vertex++) = 1.0f; glGenBuffers(1, &vbo.first); glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBufferData(GL_ARRAY_BUFFER, vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW); delete[] vertexData; GLushort* indexData = new GLushort[indices]; GLushort* index = indexData; // South cap GLushort bottom = 0; GLushort top = 1; for (int i = 0; i < slices; i++) { *(index++) = bottom; *(index++) = top + i; *(index++) = top + (i + 1) % slices; } // (stacks - 2) ribbons for (int i = 0; i < stacks - 2; i++) { bottom = i * slices + 1; top = bottom + slices; for (int j = 0; j < slices; j++) { int next = (j + 1) % slices; *(index++) = top + next; *(index++) = bottom + j; *(index++) = top + j; *(index++) = bottom + next; *(index++) = bottom + j; *(index++) = top + next; } } // north cap bottom = (stacks - 2) * slices + 1; top = bottom + slices; for (int i = 0; i < slices; i++) { *(index++) = bottom + (i + 1) % slices; *(index++) = bottom + i; *(index++) = top; } glGenBuffers(1, &vbo.second); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW); delete[] indexData; } else { glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glVertexPointer(3, GL_FLOAT, 0, 0); glNormalPointer(GL_FLOAT, 0, 0); glPushMatrix(); glScalef(radius, radius, radius); if (solid) { glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0); } else { glDrawRangeElementsEXT(GL_LINES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0); } glPopMatrix(); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void GeometryCache::renderSquare(int xDivisions, int yDivisions) { VerticesIndices& vbo = _squareVBOs[IntPair(xDivisions, yDivisions)]; int xVertices = xDivisions + 1; int yVertices = yDivisions + 1; int vertices = xVertices * yVertices; int indices = 2 * 3 * xDivisions * yDivisions; if (vbo.first == 0) { GLfloat* vertexData = new GLfloat[vertices * 3]; GLfloat* vertex = vertexData; for (int i = 0; i <= yDivisions; i++) { float y = (float)i / yDivisions; for (int j = 0; j <= xDivisions; j++) { *(vertex++) = (float)j / xDivisions; *(vertex++) = y; *(vertex++) = 0.0f; } } glGenBuffers(1, &vbo.first); glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBufferData(GL_ARRAY_BUFFER, vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW); delete[] vertexData; GLushort* indexData = new GLushort[indices]; GLushort* index = indexData; for (int i = 0; i < yDivisions; i++) { GLushort bottom = i * xVertices; GLushort top = bottom + xVertices; for (int j = 0; j < xDivisions; j++) { int next = j + 1; *(index++) = bottom + j; *(index++) = top + next; *(index++) = top + j; *(index++) = bottom + j; *(index++) = bottom + next; *(index++) = top + next; } } glGenBuffers(1, &vbo.second); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW); delete[] indexData; } else { glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); } glEnableClientState(GL_VERTEX_ARRAY); // all vertices have the same normal glNormal3f(0.0f, 0.0f, 1.0f); glVertexPointer(3, GL_FLOAT, 0, 0); glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0); glDisableClientState(GL_VERTEX_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void GeometryCache::renderHalfCylinder(int slices, int stacks) { VerticesIndices& vbo = _halfCylinderVBOs[IntPair(slices, stacks)]; int vertices = (slices + 1) * stacks; int indices = 2 * 3 * slices * (stacks - 1); if (vbo.first == 0) { GLfloat* vertexData = new GLfloat[vertices * 2 * 3]; GLfloat* vertex = vertexData; for (int i = 0; i <= (stacks - 1); i++) { float y = (float)i / (stacks - 1); for (int j = 0; j <= slices; j++) { float theta = 3.0f * PI_OVER_TWO + PI * (float)j / (float)slices; //normals *(vertex++) = sinf(theta); *(vertex++) = 0; *(vertex++) = cosf(theta); // vertices *(vertex++) = sinf(theta); *(vertex++) = y; *(vertex++) = cosf(theta); } } glGenBuffers(1, &vbo.first); glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBufferData(GL_ARRAY_BUFFER, 2 * vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW); delete[] vertexData; GLushort* indexData = new GLushort[indices]; GLushort* index = indexData; for (int i = 0; i < stacks - 1; i++) { GLushort bottom = i * (slices + 1); GLushort top = bottom + slices + 1; for (int j = 0; j < slices; j++) { int next = j + 1; *(index++) = bottom + j; *(index++) = top + next; *(index++) = top + j; *(index++) = bottom + j; *(index++) = bottom + next; *(index++) = top + next; } } glGenBuffers(1, &vbo.second); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW); delete[] indexData; } else { glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, 6 * sizeof(float), 0); glVertexPointer(3, GL_FLOAT, (6 * sizeof(float)), (const void *)(3 * sizeof(float))); glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void GeometryCache::renderCone(float base, float height, int slices, int stacks) { VerticesIndices& vbo = _halfCylinderVBOs[IntPair(slices, stacks)]; int vertices = (stacks + 2) * slices; int baseTriangles = slices - 2; int indices = NUM_VERTICES_PER_TRIANGULATED_QUAD * slices * stacks + NUM_VERTICES_PER_TRIANGLE * baseTriangles; if (vbo.first == 0) { GLfloat* vertexData = new GLfloat[vertices * NUM_COORDS_PER_VERTEX * 2]; GLfloat* vertex = vertexData; // cap for (int i = 0; i < slices; i++) { float theta = TWO_PI * i / slices; //normals *(vertex++) = 0.0f; *(vertex++) = 0.0f; *(vertex++) = -1.0f; // vertices *(vertex++) = cosf(theta); *(vertex++) = sinf(theta); *(vertex++) = 0.0f; } // body for (int i = 0; i <= stacks; i++) { float z = (float)i / stacks; float radius = 1.0f - z; for (int j = 0; j < slices; j++) { float theta = TWO_PI * j / slices; //normals *(vertex++) = cosf(theta) / SQUARE_ROOT_OF_2; *(vertex++) = sinf(theta) / SQUARE_ROOT_OF_2; *(vertex++) = 1.0f / SQUARE_ROOT_OF_2; // vertices *(vertex++) = radius * cosf(theta); *(vertex++) = radius * sinf(theta); *(vertex++) = z; } } glGenBuffers(1, &vbo.first); glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBufferData(GL_ARRAY_BUFFER, 2 * vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW); delete[] vertexData; GLushort* indexData = new GLushort[indices]; GLushort* index = indexData; for (int i = 0; i < baseTriangles; i++) { *(index++) = 0; *(index++) = i + 2; *(index++) = i + 1; } for (int i = 1; i <= stacks; i++) { GLushort bottom = i * slices; GLushort top = bottom + slices; for (int j = 0; j < slices; j++) { int next = (j + 1) % slices; *(index++) = bottom + j; *(index++) = top + next; *(index++) = top + j; *(index++) = bottom + j; *(index++) = bottom + next; *(index++) = top + next; } } glGenBuffers(1, &vbo.second); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW); delete[] indexData; } else { glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); int stride = NUM_VERTICES_PER_TRIANGULATED_QUAD * sizeof(float); glNormalPointer(GL_FLOAT, stride, 0); glVertexPointer(NUM_COORDS_PER_VERTEX, GL_FLOAT, stride, (const void *)(NUM_COORDS_PER_VERTEX * sizeof(float))); glPushMatrix(); glScalef(base, base, height); glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0); glPopMatrix(); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void GeometryCache::renderGrid(int xDivisions, int yDivisions) { QOpenGLBuffer& buffer = _gridBuffers[IntPair(xDivisions, yDivisions)]; int vertices = (xDivisions + 1 + yDivisions + 1) * 2; if (!buffer.isCreated()) { GLfloat* vertexData = new GLfloat[vertices * 2]; GLfloat* vertex = vertexData; for (int i = 0; i <= xDivisions; i++) { float x = (float)i / xDivisions; *(vertex++) = x; *(vertex++) = 0.0f; *(vertex++) = x; *(vertex++) = 1.0f; } for (int i = 0; i <= yDivisions; i++) { float y = (float)i / yDivisions; *(vertex++) = 0.0f; *(vertex++) = y; *(vertex++) = 1.0f; *(vertex++) = y; } buffer.create(); buffer.setUsagePattern(QOpenGLBuffer::StaticDraw); buffer.bind(); buffer.allocate(vertexData, vertices * 2 * sizeof(GLfloat)); delete[] vertexData; } else { buffer.bind(); } glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, 0); glDrawArrays(GL_LINES, 0, vertices); glDisableClientState(GL_VERTEX_ARRAY); buffer.release(); } void GeometryCache::renderSolidCube(float size) { VerticesIndices& vbo = _solidCubeVBOs[size]; const int FLOATS_PER_VERTEX = 3; const int VERTICES_PER_FACE = 4; const int NUMBER_OF_FACES = 6; const int TRIANGLES_PER_FACE = 2; const int VERTICES_PER_TRIANGLE = 3; const int vertices = NUMBER_OF_FACES * VERTICES_PER_FACE * FLOATS_PER_VERTEX; const int indices = NUMBER_OF_FACES * TRIANGLES_PER_FACE * VERTICES_PER_TRIANGLE; const int vertexPoints = vertices * FLOATS_PER_VERTEX; if (vbo.first == 0) { GLfloat* vertexData = new GLfloat[vertexPoints * 2]; // vertices and normals GLfloat* vertex = vertexData; float halfSize = size / 2.0f; static GLfloat cannonicalVertices[vertexPoints] = { 1, 1, 1, -1, 1, 1, -1,-1, 1, 1,-1, 1, // v0,v1,v2,v3 (front) 1, 1, 1, 1,-1, 1, 1,-1,-1, 1, 1,-1, // v0,v3,v4,v5 (right) 1, 1, 1, 1, 1,-1, -1, 1,-1, -1, 1, 1, // v0,v5,v6,v1 (top) -1, 1, 1, -1, 1,-1, -1,-1,-1, -1,-1, 1, // v1,v6,v7,v2 (left) -1,-1,-1, 1,-1,-1, 1,-1, 1, -1,-1, 1, // v7,v4,v3,v2 (bottom) 1,-1,-1, -1,-1,-1, -1, 1,-1, 1, 1,-1 }; // v4,v7,v6,v5 (back) // normal array static GLfloat cannonicalNormals[vertexPoints] = { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, // v0,v1,v2,v3 (front) 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, // v0,v3,v4,v5 (right) 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, // v0,v5,v6,v1 (top) -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, // v1,v6,v7,v2 (left) 0,-1, 0, 0,-1, 0, 0,-1, 0, 0,-1, 0, // v7,v4,v3,v2 (bottom) 0, 0,-1, 0, 0,-1, 0, 0,-1, 0, 0,-1 }; // v4,v7,v6,v5 (back) // index array of vertex array for glDrawElements() & glDrawRangeElement() static GLubyte cannonicalIndices[indices] = { 0, 1, 2, 2, 3, 0, // front 4, 5, 6, 6, 7, 4, // right 8, 9,10, 10,11, 8, // top 12,13,14, 14,15,12, // left 16,17,18, 18,19,16, // bottom 20,21,22, 22,23,20 }; // back GLfloat* cannonicalVertex = &cannonicalVertices[0]; GLfloat* cannonicalNormal = &cannonicalNormals[0]; for (int i = 0; i < vertices; i++) { //normals *(vertex++) = *cannonicalNormal++; *(vertex++) = *cannonicalNormal++; *(vertex++) = *cannonicalNormal++; // vertices *(vertex++) = halfSize * *cannonicalVertex++; *(vertex++) = halfSize * *cannonicalVertex++; *(vertex++) = halfSize * *cannonicalVertex++; } glGenBuffers(1, &vbo.first); glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBufferData(GL_ARRAY_BUFFER, vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW); delete[] vertexData; GLushort* indexData = new GLushort[indices]; GLushort* index = indexData; for (int i = 0; i < indices; i++) { index[i] = cannonicalIndices[i]; } glGenBuffers(1, &vbo.second); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW); delete[] indexData; } else { glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, 6 * sizeof(float), 0); glVertexPointer(3, GL_FLOAT, (6 * sizeof(float)), (const void *)(3 * sizeof(float))); glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void GeometryCache::renderWireCube(float size) { VerticesIndices& vbo = _wireCubeVBOs[size]; const int FLOATS_PER_VERTEX = 3; const int VERTICES_PER_EDGE = 2; const int TOP_EDGES = 4; const int BOTTOM_EDGES = 4; const int SIDE_EDGES = 4; const int vertices = 8; const int indices = (TOP_EDGES + BOTTOM_EDGES + SIDE_EDGES) * VERTICES_PER_EDGE; if (vbo.first == 0) { int vertexPoints = vertices * FLOATS_PER_VERTEX; GLfloat* vertexData = new GLfloat[vertexPoints]; // only vertices, no normals because we're a wire cube GLfloat* vertex = vertexData; float halfSize = size / 2.0f; static GLfloat cannonicalVertices[] = { 1, 1, 1, 1, 1,-1, -1, 1,-1, -1, 1, 1, // v0, v1, v2, v3 (top) 1,-1, 1, 1,-1,-1, -1,-1,-1, -1,-1, 1 // v4, v5, v6, v7 (bottom) }; // index array of vertex array for glDrawRangeElement() as a GL_LINES for each edge static GLubyte cannonicalIndices[indices] = { 0, 1, 1, 2, 2, 3, 3, 0, // (top) 4, 5, 5, 6, 6, 7, 7, 4, // (bottom) 0, 4, 1, 5, 2, 6, 3, 7, // (side edges) }; for (int i = 0; i < vertexPoints; i++) { vertex[i] = cannonicalVertices[i] * halfSize; } glGenBuffers(1, &vbo.first); glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBufferData(GL_ARRAY_BUFFER, vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW); delete[] vertexData; GLushort* indexData = new GLushort[indices]; GLushort* index = indexData; for (int i = 0; i < indices; i++) { index[i] = cannonicalIndices[i]; } glGenBuffers(1, &vbo.second); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW); delete[] indexData; } else { glBindBuffer(GL_ARRAY_BUFFER, vbo.first); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second); } glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(FLOATS_PER_VERTEX, GL_FLOAT, FLOATS_PER_VERTEX * sizeof(float), 0); glDrawRangeElementsEXT(GL_LINES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0); glDisableClientState(GL_VERTEX_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } QSharedPointer GeometryCache::getGeometry(const QUrl& url, const QUrl& fallback, bool delayLoad) { return getResource(url, fallback, delayLoad).staticCast(); } QSharedPointer GeometryCache::createResource(const QUrl& url, const QSharedPointer& fallback, bool delayLoad, const void* extra) { QSharedPointer geometry(new NetworkGeometry(url, fallback.staticCast(), delayLoad), &Resource::allReferencesCleared); geometry->setLODParent(geometry); return geometry.staticCast(); } const float NetworkGeometry::NO_HYSTERESIS = -1.0f; NetworkGeometry::NetworkGeometry(const QUrl& url, const QSharedPointer& fallback, bool delayLoad, const QVariantHash& mapping, const QUrl& textureBase) : Resource(url, delayLoad), _mapping(mapping), _textureBase(textureBase.isValid() ? textureBase : url), _fallback(fallback) { if (url.isEmpty()) { // make the minimal amount of dummy geometry to satisfy Model FBXJoint joint = { false, QVector(), -1 }; _geometry.joints.append(joint); _geometry.leftEyeJointIndex = -1; _geometry.rightEyeJointIndex = -1; _geometry.neckJointIndex = -1; _geometry.rootJointIndex = -1; _geometry.leanJointIndex = -1; _geometry.headJointIndex = -1; _geometry.leftHandJointIndex = -1; _geometry.rightHandJointIndex = -1; } connect(this, &Resource::loaded, this, &NetworkGeometry::replaceTexturesWithPendingChanges); } bool NetworkGeometry::isLoadedWithTextures() const { if (!isLoaded()) { return false; } foreach (const NetworkMesh& mesh, _meshes) { foreach (const NetworkMeshPart& part, mesh.parts) { if ((part.diffuseTexture && !part.diffuseTexture->isLoaded()) || (part.normalTexture && !part.normalTexture->isLoaded()) || (part.specularTexture && !part.specularTexture->isLoaded()) || (part.emissiveTexture && !part.emissiveTexture->isLoaded())) { return false; } } } return true; } QSharedPointer NetworkGeometry::getLODOrFallback(float distance, float& hysteresis, bool delayLoad) const { if (_lodParent.data() != this) { return _lodParent.data()->getLODOrFallback(distance, hysteresis, delayLoad); } if (_failedToLoad && _fallback) { return _fallback; } QSharedPointer lod = _lodParent; float lodDistance = 0.0f; QMap >::const_iterator it = _lods.upperBound(distance); if (it != _lods.constBegin()) { it = it - 1; lod = it.value(); lodDistance = it.key(); } if (hysteresis != NO_HYSTERESIS && hysteresis != lodDistance) { // if we previously selected a different distance, make sure we've moved far enough to justify switching const float HYSTERESIS_PROPORTION = 0.1f; if (glm::abs(distance - qMax(hysteresis, lodDistance)) / fabsf(hysteresis - lodDistance) < HYSTERESIS_PROPORTION) { lod = _lodParent; lodDistance = 0.0f; it = _lods.upperBound(hysteresis); if (it != _lods.constBegin()) { it = it - 1; lod = it.value(); lodDistance = it.key(); } } } if (lod->isLoaded()) { hysteresis = lodDistance; return lod; } // if the ideal LOD isn't loaded, we need to make sure it's started to load, and possibly return the closest loaded one if (!delayLoad) { lod->ensureLoading(); } float closestDistance = FLT_MAX; if (isLoaded()) { lod = _lodParent; closestDistance = distance; } for (it = _lods.constBegin(); it != _lods.constEnd(); it++) { float distanceToLOD = glm::abs(distance - it.key()); if (it.value()->isLoaded() && distanceToLOD < closestDistance) { lod = it.value(); closestDistance = distanceToLOD; } } hysteresis = NO_HYSTERESIS; return lod; } uint qHash(const QWeakPointer& animation, uint seed = 0) { return qHash(animation.data(), seed); } QVector NetworkGeometry::getJointMappings(const AnimationPointer& animation) { QVector mappings = _jointMappings.value(animation); if (mappings.isEmpty() && isLoaded() && animation && animation->isLoaded()) { const FBXGeometry& animationGeometry = animation->getGeometry(); for (int i = 0; i < animationGeometry.joints.size(); i++) { mappings.append(_geometry.jointIndices.value(animationGeometry.joints.at(i).name) - 1); } _jointMappings.insert(animation, mappings); } return mappings; } void NetworkGeometry::setLoadPriority(const QPointer& owner, float priority) { Resource::setLoadPriority(owner, priority); for (int i = 0; i < _meshes.size(); i++) { NetworkMesh& mesh = _meshes[i]; for (int j = 0; j < mesh.parts.size(); j++) { NetworkMeshPart& part = mesh.parts[j]; if (part.diffuseTexture) { part.diffuseTexture->setLoadPriority(owner, priority); } if (part.normalTexture) { part.normalTexture->setLoadPriority(owner, priority); } if (part.specularTexture) { part.specularTexture->setLoadPriority(owner, priority); } if (part.emissiveTexture) { part.emissiveTexture->setLoadPriority(owner, priority); } } } } void NetworkGeometry::setLoadPriorities(const QHash, float>& priorities) { Resource::setLoadPriorities(priorities); for (int i = 0; i < _meshes.size(); i++) { NetworkMesh& mesh = _meshes[i]; for (int j = 0; j < mesh.parts.size(); j++) { NetworkMeshPart& part = mesh.parts[j]; if (part.diffuseTexture) { part.diffuseTexture->setLoadPriorities(priorities); } if (part.normalTexture) { part.normalTexture->setLoadPriorities(priorities); } if (part.specularTexture) { part.specularTexture->setLoadPriorities(priorities); } if (part.emissiveTexture) { part.emissiveTexture->setLoadPriorities(priorities); } } } } void NetworkGeometry::clearLoadPriority(const QPointer& owner) { Resource::clearLoadPriority(owner); for (int i = 0; i < _meshes.size(); i++) { NetworkMesh& mesh = _meshes[i]; for (int j = 0; j < mesh.parts.size(); j++) { NetworkMeshPart& part = mesh.parts[j]; if (part.diffuseTexture) { part.diffuseTexture->clearLoadPriority(owner); } if (part.normalTexture) { part.normalTexture->clearLoadPriority(owner); } if (part.specularTexture) { part.specularTexture->clearLoadPriority(owner); } if (part.emissiveTexture) { part.emissiveTexture->clearLoadPriority(owner); } } } } void NetworkGeometry::setTextureWithNameToURL(const QString& name, const QUrl& url) { if (_meshes.size() > 0) { auto textureCache = DependencyManager::get(); for (int i = 0; i < _meshes.size(); i++) { NetworkMesh& mesh = _meshes[i]; for (int j = 0; j < mesh.parts.size(); j++) { NetworkMeshPart& part = mesh.parts[j]; QSharedPointer matchingTexture = QSharedPointer(); if (part.diffuseTextureName == name) { part.diffuseTexture = textureCache->getTexture(url, DEFAULT_TEXTURE, _geometry.meshes[i].isEye, QByteArray()); part.diffuseTexture->setLoadPriorities(_loadPriorities); } else if (part.normalTextureName == name) { part.normalTexture = textureCache->getTexture(url, DEFAULT_TEXTURE, false, QByteArray()); part.normalTexture->setLoadPriorities(_loadPriorities); } else if (part.specularTextureName == name) { part.specularTexture = textureCache->getTexture(url, DEFAULT_TEXTURE, false, QByteArray()); part.specularTexture->setLoadPriorities(_loadPriorities); } else if (part.emissiveTextureName == name) { part.emissiveTexture = textureCache->getTexture(url, DEFAULT_TEXTURE, false, QByteArray()); part.emissiveTexture->setLoadPriorities(_loadPriorities); } } } } else { qDebug() << "Adding a name url pair to pending" << name << url; // we don't have meshes downloaded yet, so hold this texture as pending _pendingTextureChanges.insert(name, url); } } QStringList NetworkGeometry::getTextureNames() const { QStringList result; for (int i = 0; i < _meshes.size(); i++) { const NetworkMesh& mesh = _meshes[i]; for (int j = 0; j < mesh.parts.size(); j++) { const NetworkMeshPart& part = mesh.parts[j]; if (!part.diffuseTextureName.isEmpty()) { QString textureURL = part.diffuseTexture->getURL().toString(); result << part.diffuseTextureName + ":" + textureURL; } if (!part.normalTextureName.isEmpty()) { QString textureURL = part.normalTexture->getURL().toString(); result << part.normalTextureName + ":" + textureURL; } if (!part.specularTextureName.isEmpty()) { QString textureURL = part.specularTexture->getURL().toString(); result << part.specularTextureName + ":" + textureURL; } if (!part.emissiveTextureName.isEmpty()) { QString textureURL = part.emissiveTexture->getURL().toString(); result << part.emissiveTextureName + ":" + textureURL; } } } return result; } void NetworkGeometry::replaceTexturesWithPendingChanges() { QHash::Iterator it = _pendingTextureChanges.begin(); while (it != _pendingTextureChanges.end()) { setTextureWithNameToURL(it.key(), it.value()); it = _pendingTextureChanges.erase(it); } } /// Reads geometry in a worker thread. class GeometryReader : public QRunnable { public: GeometryReader(const QWeakPointer& geometry, const QUrl& url, QNetworkReply* reply, const QVariantHash& mapping); virtual void run(); private: QWeakPointer _geometry; QUrl _url; QNetworkReply* _reply; QVariantHash _mapping; }; GeometryReader::GeometryReader(const QWeakPointer& geometry, const QUrl& url, QNetworkReply* reply, const QVariantHash& mapping) : _geometry(geometry), _url(url), _reply(reply), _mapping(mapping) { } void GeometryReader::run() { QSharedPointer geometry = _geometry.toStrongRef(); if (geometry.isNull()) { _reply->deleteLater(); return; } try { if (!_reply) { throw QString("Reply is NULL ?!"); } std::string urlname = _url.path().toLower().toStdString(); bool urlValid = true; urlValid &= !urlname.empty(); urlValid &= !_url.path().isEmpty(); urlValid &= _url.path().toLower().endsWith(".fbx") || _url.path().toLower().endsWith(".svo"); if (urlValid) { // Let's read the binaries from the network FBXGeometry fbxgeo; if (_url.path().toLower().endsWith(".svo")) { QByteArray fileBinary = _reply->readAll(); if (fileBinary.isEmpty() || fileBinary.isNull()) { throw QString("Read File binary is empty?!"); } fbxgeo = readSVO(fileBinary); } else if (_url.path().toLower().endsWith(".fbx")) { bool grabLightmaps = true; float lightmapLevel = 1.0f; // HACK: For monday 12/01/2014 we need to kill lighmaps loading in starchamber... if (_url.path().toLower().endsWith("loungev4_11-18.fbx")) { grabLightmaps = false; } else if (_url.path().toLower().endsWith("apt8_reboot.fbx")) { lightmapLevel = 4.0f; } else if (_url.path().toLower().endsWith("palaceoforinthilian4.fbx")) { lightmapLevel = 3.5f; } fbxgeo = readFBX(_reply, _mapping, grabLightmaps, lightmapLevel); } QMetaObject::invokeMethod(geometry.data(), "setGeometry", Q_ARG(const FBXGeometry&, fbxgeo)); } else { throw QString("url is invalid"); } } catch (const QString& error) { qDebug() << "Error reading " << _url << ": " << error; QMetaObject::invokeMethod(geometry.data(), "finishedLoading", Q_ARG(bool, false)); } _reply->deleteLater(); } void NetworkGeometry::init() { _mapping = QVariantHash(); _geometry = FBXGeometry(); _meshes.clear(); _lods.clear(); _pendingTextureChanges.clear(); _request.setUrl(_url); Resource::init(); } void NetworkGeometry::downloadFinished(QNetworkReply* reply) { QUrl url = reply->url(); if (url.path().toLower().endsWith(".fst")) { // it's a mapping file; parse it and get the mesh filename _mapping = readMapping(reply->readAll()); reply->deleteLater(); QString filename = _mapping.value("filename").toString(); if (filename.isNull()) { qDebug() << "Mapping file " << url << " has no filename."; finishedLoading(false); } else { QString texdir = _mapping.value("texdir").toString(); if (!texdir.isNull()) { if (!texdir.endsWith('/')) { texdir += '/'; } _textureBase = url.resolved(texdir); } QVariantHash lods = _mapping.value("lod").toHash(); for (QVariantHash::const_iterator it = lods.begin(); it != lods.end(); it++) { QSharedPointer geometry(new NetworkGeometry(url.resolved(it.key()), QSharedPointer(), true, _mapping, _textureBase)); geometry->setSelf(geometry.staticCast()); geometry->setLODParent(_lodParent); _lods.insert(it.value().toFloat(), geometry); } _request.setUrl(url.resolved(filename)); // make the request immediately only if we have no LODs to switch between _startedLoading = false; if (_lods.isEmpty()) { attemptRequest(); } } return; } // send the reader off to the thread pool QThreadPool::globalInstance()->start(new GeometryReader(_self, url, reply, _mapping)); } void NetworkGeometry::reinsert() { Resource::reinsert(); _lodParent = qWeakPointerCast(_self); foreach (const QSharedPointer& lod, _lods) { lod->setLODParent(_lodParent); } } void NetworkGeometry::setGeometry(const FBXGeometry& geometry) { _geometry = geometry; auto textureCache = DependencyManager::get(); foreach (const FBXMesh& mesh, _geometry.meshes) { NetworkMesh networkMesh; int totalIndices = 0; foreach (const FBXMeshPart& part, mesh.parts) { NetworkMeshPart networkPart; if (!part.diffuseTexture.filename.isEmpty()) { networkPart.diffuseTexture = textureCache->getTexture( _textureBase.resolved(QUrl(part.diffuseTexture.filename)), DEFAULT_TEXTURE, mesh.isEye, part.diffuseTexture.content); networkPart.diffuseTextureName = part.diffuseTexture.name; networkPart.diffuseTexture->setLoadPriorities(_loadPriorities); } if (!part.normalTexture.filename.isEmpty()) { networkPart.normalTexture = textureCache->getTexture( _textureBase.resolved(QUrl(part.normalTexture.filename)), NORMAL_TEXTURE, false, part.normalTexture.content); networkPart.normalTextureName = part.normalTexture.name; networkPart.normalTexture->setLoadPriorities(_loadPriorities); } if (!part.specularTexture.filename.isEmpty()) { networkPart.specularTexture = textureCache->getTexture( _textureBase.resolved(QUrl(part.specularTexture.filename)), SPECULAR_TEXTURE, false, part.specularTexture.content); networkPart.specularTextureName = part.specularTexture.name; networkPart.specularTexture->setLoadPriorities(_loadPriorities); } if (!part.emissiveTexture.filename.isEmpty()) { networkPart.emissiveTexture = textureCache->getTexture( _textureBase.resolved(QUrl(part.emissiveTexture.filename)), EMISSIVE_TEXTURE, false, part.emissiveTexture.content); networkPart.emissiveTextureName = part.emissiveTexture.name; networkPart.emissiveTexture->setLoadPriorities(_loadPriorities); } networkMesh.parts.append(networkPart); totalIndices += (part.quadIndices.size() + part.triangleIndices.size()); } { networkMesh._indexBuffer = gpu::BufferPointer(new gpu::Buffer()); networkMesh._indexBuffer->resize(totalIndices * sizeof(int)); int offset = 0; foreach(const FBXMeshPart& part, mesh.parts) { networkMesh._indexBuffer->setSubData(offset, part.quadIndices.size() * sizeof(int), (gpu::Resource::Byte*) part.quadIndices.constData()); offset += part.quadIndices.size() * sizeof(int); networkMesh._indexBuffer->setSubData(offset, part.triangleIndices.size() * sizeof(int), (gpu::Resource::Byte*) part.triangleIndices.constData()); offset += part.triangleIndices.size() * sizeof(int); } } { networkMesh._vertexBuffer = gpu::BufferPointer(new gpu::Buffer()); // if we don't need to do any blending, the positions/normals can be static if (mesh.blendshapes.isEmpty()) { int normalsOffset = mesh.vertices.size() * sizeof(glm::vec3); int tangentsOffset = normalsOffset + mesh.normals.size() * sizeof(glm::vec3); int colorsOffset = tangentsOffset + mesh.tangents.size() * sizeof(glm::vec3); int texCoordsOffset = colorsOffset + mesh.colors.size() * sizeof(glm::vec3); int texCoords1Offset = texCoordsOffset + mesh.texCoords.size() * sizeof(glm::vec2); int clusterIndicesOffset = texCoords1Offset + mesh.texCoords1.size() * sizeof(glm::vec2); int clusterWeightsOffset = clusterIndicesOffset + mesh.clusterIndices.size() * sizeof(glm::vec4); networkMesh._vertexBuffer->resize(clusterWeightsOffset + mesh.clusterWeights.size() * sizeof(glm::vec4)); networkMesh._vertexBuffer->setSubData(0, mesh.vertices.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.vertices.constData()); networkMesh._vertexBuffer->setSubData(normalsOffset, mesh.normals.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.normals.constData()); networkMesh._vertexBuffer->setSubData(tangentsOffset, mesh.tangents.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.tangents.constData()); networkMesh._vertexBuffer->setSubData(colorsOffset, mesh.colors.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.colors.constData()); networkMesh._vertexBuffer->setSubData(texCoordsOffset, mesh.texCoords.size() * sizeof(glm::vec2), (gpu::Resource::Byte*) mesh.texCoords.constData()); networkMesh._vertexBuffer->setSubData(texCoords1Offset, mesh.texCoords1.size() * sizeof(glm::vec2), (gpu::Resource::Byte*) mesh.texCoords1.constData()); networkMesh._vertexBuffer->setSubData(clusterIndicesOffset, mesh.clusterIndices.size() * sizeof(glm::vec4), (gpu::Resource::Byte*) mesh.clusterIndices.constData()); networkMesh._vertexBuffer->setSubData(clusterWeightsOffset, mesh.clusterWeights.size() * sizeof(glm::vec4), (gpu::Resource::Byte*) mesh.clusterWeights.constData()); // otherwise, at least the cluster indices/weights can be static networkMesh._vertexStream = gpu::BufferStreamPointer(new gpu::BufferStream()); networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, 0, sizeof(glm::vec3)); if (mesh.normals.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, normalsOffset, sizeof(glm::vec3)); if (mesh.tangents.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, tangentsOffset, sizeof(glm::vec3)); if (mesh.colors.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, colorsOffset, sizeof(glm::vec3)); if (mesh.texCoords.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, texCoordsOffset, sizeof(glm::vec2)); if (mesh.texCoords1.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, texCoords1Offset, sizeof(glm::vec2)); if (mesh.clusterIndices.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, clusterIndicesOffset, sizeof(glm::vec4)); if (mesh.clusterWeights.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, clusterWeightsOffset, sizeof(glm::vec4)); int channelNum = 0; networkMesh._vertexFormat = gpu::Stream::FormatPointer(new gpu::Stream::Format()); networkMesh._vertexFormat->setAttribute(gpu::Stream::POSITION, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::POS_XYZ), 0); if (mesh.normals.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::NORMAL, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ)); if (mesh.tangents.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::TANGENT, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ)); if (mesh.colors.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::COLOR, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::RGB)); if (mesh.texCoords.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::TEXCOORD, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV)); if (mesh.texCoords1.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::TEXCOORD1, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV)); if (mesh.clusterIndices.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_INDEX, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW)); if (mesh.clusterWeights.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW)); } else { int colorsOffset = mesh.tangents.size() * sizeof(glm::vec3); int texCoordsOffset = colorsOffset + mesh.colors.size() * sizeof(glm::vec3); int clusterIndicesOffset = texCoordsOffset + mesh.texCoords.size() * sizeof(glm::vec2); int clusterWeightsOffset = clusterIndicesOffset + mesh.clusterIndices.size() * sizeof(glm::vec4); networkMesh._vertexBuffer->resize(clusterWeightsOffset + mesh.clusterWeights.size() * sizeof(glm::vec4)); networkMesh._vertexBuffer->setSubData(0, mesh.tangents.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.tangents.constData()); networkMesh._vertexBuffer->setSubData(colorsOffset, mesh.colors.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.colors.constData()); networkMesh._vertexBuffer->setSubData(texCoordsOffset, mesh.texCoords.size() * sizeof(glm::vec2), (gpu::Resource::Byte*) mesh.texCoords.constData()); networkMesh._vertexBuffer->setSubData(clusterIndicesOffset, mesh.clusterIndices.size() * sizeof(glm::vec4), (gpu::Resource::Byte*) mesh.clusterIndices.constData()); networkMesh._vertexBuffer->setSubData(clusterWeightsOffset, mesh.clusterWeights.size() * sizeof(glm::vec4), (gpu::Resource::Byte*) mesh.clusterWeights.constData()); networkMesh._vertexStream = gpu::BufferStreamPointer(new gpu::BufferStream()); if (mesh.tangents.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, 0, sizeof(glm::vec3)); if (mesh.colors.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, colorsOffset, sizeof(glm::vec3)); if (mesh.texCoords.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, texCoordsOffset, sizeof(glm::vec2)); if (mesh.clusterIndices.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, clusterIndicesOffset, sizeof(glm::vec4)); if (mesh.clusterWeights.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, clusterWeightsOffset, sizeof(glm::vec4)); int channelNum = 0; networkMesh._vertexFormat = gpu::Stream::FormatPointer(new gpu::Stream::Format()); networkMesh._vertexFormat->setAttribute(gpu::Stream::POSITION, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::POS_XYZ)); if (mesh.normals.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::NORMAL, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ)); if (mesh.tangents.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::TANGENT, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ)); if (mesh.colors.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::COLOR, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::RGB)); if (mesh.texCoords.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::TEXCOORD, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV)); if (mesh.clusterIndices.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_INDEX, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW)); if (mesh.clusterWeights.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW)); } } _meshes.append(networkMesh); } finishedLoading(true); } bool NetworkMeshPart::isTranslucent() const { return diffuseTexture && diffuseTexture->isTranslucent(); } int NetworkMesh::getTranslucentPartCount(const FBXMesh& fbxMesh) const { int count = 0; for (int i = 0; i < parts.size(); i++) { if (parts.at(i).isTranslucent() || fbxMesh.parts.at(i).opacity != 1.0f) { count++; } } return count; }