// // ParticleSystem.cpp // hifi // // Created by Jeffrey on July 10, 2013 // #include #include "InterfaceConfig.h" #include #include "ParticleSystem.h" #include "Application.h" const float DEFAULT_PARTICLE_RADIUS = 0.01f; const float DEFAULT_PARTICLE_BOUNCE = 1.0f; const float DEFAULT_PARTICLE_AIR_FRICTION = 2.0f; const float DEFAULT_PARTICLE_LIFESPAN = 1.0f; const int DEFAULT_PARTICLE_SPHERE_RESOLUTION = 6; const float DEFAULT_EMITTER_RENDER_LENGTH = 0.2f; ParticleSystem::ParticleSystem() { _timer = 0.0f; _numEmitters = 0; _upDirection = glm::vec3(0.0f, 1.0f, 0.0f); // default for (unsigned int emitterIndex = 0; emitterIndex < MAX_EMITTERS; emitterIndex++) { Emitter * e = &_emitter[emitterIndex]; e->position = glm::vec3(0.0f, 0.0f, 0.0f); e->previousPosition = glm::vec3(0.0f, 0.0f, 0.0f); e->direction = glm::vec3(0.0f, 1.0f, 0.0f); e->visible = false; e->particleResolution = DEFAULT_PARTICLE_SPHERE_RESOLUTION; e->particleLifespan = DEFAULT_PARTICLE_LIFESPAN; e->showingBaseParticle = false; e->emitReserve = 0.0; e->thrust = 0.0f; e->rate = 0.0f; e->currentParticle = 0; e->particleRenderStyle = PARTICLE_RENDER_STYLE_SPHERE; e->numParticlesEmittedThisTime = 0; for (int lifeStage = 0; lifeStage < NUM_PARTICLE_LIFE_STAGES; lifeStage++) { setParticleAttributesToDefault(&_emitter[emitterIndex].particleAttributes[lifeStage]); } }; for (unsigned int p = 0; p < MAX_PARTICLES; p++) { _particle[p].alive = false; _particle[p].age = 0.0f; _particle[p].radius = 0.0f; _particle[p].emitterIndex = 0; _particle[p].previousParticle = NULL_PARTICLE; _particle[p].position = glm::vec3(0.0f, 0.0f, 0.0f); _particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f); } } int ParticleSystem::addEmitter() { if (_numEmitters < MAX_EMITTERS) { _numEmitters ++; return _numEmitters - 1; } return NULL_EMITTER; } void ParticleSystem::simulate(float deltaTime) { _timer += deltaTime; // emit particles for (int e = 0; e < _numEmitters; e++) { assert(e >= 0); assert(e <= MAX_EMITTERS); assert(_emitter[e].rate >= 0); _emitter[e].emitReserve += _emitter[e].rate * deltaTime; _emitter[e].numParticlesEmittedThisTime = (int)_emitter[e].emitReserve; _emitter[e].emitReserve -= _emitter[e].numParticlesEmittedThisTime; for (int p = 0; p < _emitter[e].numParticlesEmittedThisTime; p++) { float timeFraction = (float)p / (float)_emitter[e].numParticlesEmittedThisTime; createParticle(e, timeFraction); } } // update particles for (int p = 0; p < MAX_PARTICLES; p++) { if (_particle[p].alive) { if (_particle[p].age > _emitter[_particle[p].emitterIndex].particleLifespan) { killParticle(p); } else { updateParticle(p, deltaTime); } } } } void ParticleSystem::createParticle(int e, float timeFraction) { for (unsigned int p = 0; p < MAX_PARTICLES; p++) { if (!_particle[p].alive) { _particle[p].emitterIndex = e; _particle[p].alive = true; _particle[p].age = 0.0f; _particle[p].velocity = _emitter[e].direction * _emitter[e].thrust; _particle[p].position = _emitter[e].previousPosition + timeFraction * (_emitter[e].position - _emitter[e].previousPosition); _particle[p].radius = _emitter[e].particleAttributes[PARTICLE_LIFESTAGE_0].radius; _particle[p].color = _emitter[e].particleAttributes[PARTICLE_LIFESTAGE_0].color; _particle[p].previousParticle = NULL_PARTICLE; if (_particle[_emitter[e].currentParticle].alive) { if (_particle[_emitter[e].currentParticle].emitterIndex == e) { _particle[p].previousParticle = _emitter[e].currentParticle; } } _emitter[e].currentParticle = p; break; } } } void ParticleSystem::killParticle(int p) { assert(p >= 0); assert(p < MAX_PARTICLES); _particle[p].alive = false; _particle[p].previousParticle = NULL_PARTICLE; _particle[p].position = _emitter[_particle[p].emitterIndex].position; _particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f); _particle[p].age = 0.0f; _particle[p].emitterIndex = NULL_PARTICLE; _particle[p].color = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f); _particle[p].radius = 0.0f; } void ParticleSystem::setEmitterPosition(int emitterIndex, glm::vec3 position) { _emitter[emitterIndex].previousPosition = _emitter[emitterIndex].position; _emitter[emitterIndex].position = position; } void ParticleSystem::setParticleAttributes(int emitterIndex, ParticleAttributes attributes) { for (int lifeStage = 0; lifeStage < NUM_PARTICLE_LIFE_STAGES; lifeStage ++) { setParticleAttributes(emitterIndex, (ParticleLifeStage)lifeStage, attributes); } } void ParticleSystem::setParticleAttributesToDefault(ParticleAttributes * a) { a->radius = DEFAULT_PARTICLE_RADIUS; a->color = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f); a->bounce = DEFAULT_PARTICLE_BOUNCE; a->airFriction = DEFAULT_PARTICLE_AIR_FRICTION; a->gravity = 0.0f; a->jitter = 0.0f; a->emitterAttraction = 0.0f; a->tornadoForce = 0.0f; a->neighborAttraction = 0.0f; a->neighborRepulsion = 0.0f; a->collisionSphereRadius = 0.0f; a->collisionSpherePosition = glm::vec3(0.0f, 0.0f, 0.0f); a->usingCollisionSphere = false; a->collisionPlaneNormal = _upDirection; a->collisionPlanePosition = glm::vec3(0.0f, 0.0f, 0.0f); a->usingCollisionPlane = false; a->modulationAmplitude = 0.0f; a->modulationRate = 0.0; a->modulationStyle = COLOR_MODULATION_STYLE_NULL; } void ParticleSystem::setParticleAttributes(int emitterIndex, ParticleLifeStage lifeStage, ParticleAttributes attributes) { assert(lifeStage >= 0); assert(lifeStage < NUM_PARTICLE_LIFE_STAGES); ParticleAttributes * a = &_emitter[emitterIndex].particleAttributes[lifeStage]; a->radius = attributes.radius; a->color = attributes.color; a->bounce = attributes.bounce; a->gravity = attributes.gravity; a->airFriction = attributes.airFriction; a->jitter = attributes.jitter; a->emitterAttraction = attributes.emitterAttraction; a->tornadoForce = attributes.tornadoForce; a->neighborAttraction = attributes.neighborAttraction; a->neighborRepulsion = attributes.neighborRepulsion; a->usingCollisionSphere = attributes.usingCollisionSphere; a->collisionSpherePosition = attributes.collisionSpherePosition; a->collisionSphereRadius = attributes.collisionSphereRadius; a->usingCollisionPlane = attributes.usingCollisionPlane; a->collisionPlanePosition = attributes.collisionPlanePosition; a->collisionPlaneNormal = attributes.collisionPlaneNormal; a->modulationAmplitude = attributes.modulationAmplitude; a->modulationRate = attributes.modulationRate; a->modulationStyle = attributes.modulationStyle; } void ParticleSystem::updateParticle(int p, float deltaTime) { Emitter myEmitter = _emitter[_particle[p].emitterIndex]; assert(_particle[p].age <= myEmitter.particleLifespan); float ageFraction = 0.0f; int lifeStage = 0; float lifeStageFraction = 0.0f; if (_emitter[_particle[p].emitterIndex].particleLifespan > 0.0) { ageFraction = _particle[p].age / myEmitter.particleLifespan; lifeStage = (int)(ageFraction * (NUM_PARTICLE_LIFE_STAGES - 1)); lifeStageFraction = ageFraction * (NUM_PARTICLE_LIFE_STAGES - 1) - lifeStage; // adjust radius _particle[p].radius = myEmitter.particleAttributes[lifeStage ].radius * (1.0f - lifeStageFraction) + myEmitter.particleAttributes[lifeStage+1].radius * lifeStageFraction; // apply random jitter float j = myEmitter.particleAttributes[lifeStage].jitter; _particle[p].velocity += glm::vec3 ( -j * ONE_HALF + j * randFloat(), -j * ONE_HALF + j * randFloat(), -j * ONE_HALF + j * randFloat() ) * deltaTime; // apply attraction to home position glm::vec3 vectorToHome = myEmitter.position - _particle[p].position; _particle[p].velocity += vectorToHome * myEmitter.particleAttributes[lifeStage].emitterAttraction * deltaTime; // apply neighbor attraction int neighbor = p + 1; if (neighbor == MAX_PARTICLES) { neighbor = 0; } if (_particle[neighbor].emitterIndex == _particle[p].emitterIndex) { glm::vec3 vectorToNeighbor = _particle[p].position - _particle[neighbor].position; _particle[p].velocity -= vectorToNeighbor * myEmitter.particleAttributes[lifeStage].neighborAttraction * deltaTime; float distanceToNeighbor = glm::length(vectorToNeighbor); if (distanceToNeighbor > 0.0f) { _particle[neighbor].velocity += (vectorToNeighbor / (1.0f + distanceToNeighbor * distanceToNeighbor)) * myEmitter.particleAttributes[lifeStage].neighborRepulsion * deltaTime; } } // apply tornado force glm::vec3 tornadoDirection = glm::cross(vectorToHome, myEmitter.direction); _particle[p].velocity += tornadoDirection * myEmitter.particleAttributes[lifeStage].tornadoForce * deltaTime; // apply air friction float drag = 1.0 - myEmitter.particleAttributes[lifeStage].airFriction * deltaTime; if (drag < 0.0f) { _particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f); } else { _particle[p].velocity *= drag; } // apply gravity _particle[p].velocity -= _upDirection * myEmitter.particleAttributes[lifeStage].gravity * deltaTime; // update position by velocity _particle[p].position += _particle[p].velocity; // collision with the plane surface if (myEmitter.particleAttributes[lifeStage].usingCollisionPlane) { glm::vec3 vectorFromParticleToPlanePosition = _particle[p].position - myEmitter.particleAttributes[lifeStage].collisionPlanePosition; glm::vec3 normal = myEmitter.particleAttributes[lifeStage].collisionPlaneNormal; float dot = glm::dot(vectorFromParticleToPlanePosition, normal); if (dot < _particle[p].radius) { _particle[p].position += normal * (_particle[p].radius - dot); float planeNormalComponentOfVelocity = glm::dot(_particle[p].velocity, normal); _particle[p].velocity -= normal * planeNormalComponentOfVelocity * (1.0f + myEmitter.particleAttributes[lifeStage].bounce); } } // collision with sphere if (myEmitter.particleAttributes[lifeStage].usingCollisionSphere) { glm::vec3 vectorToSphereCenter = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - _particle[p].position; float distanceToSphereCenter = glm::length(vectorToSphereCenter); float combinedRadius = myEmitter.particleAttributes[lifeStage].collisionSphereRadius + _particle[p].radius; if (distanceToSphereCenter < combinedRadius) { if (distanceToSphereCenter > 0.0f){ glm::vec3 directionToSphereCenter = vectorToSphereCenter / distanceToSphereCenter; _particle[p].position = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - directionToSphereCenter * combinedRadius; } } } } // adjust color _particle[p].color = myEmitter.particleAttributes[lifeStage ].color * (1.0f - lifeStageFraction) + myEmitter.particleAttributes[lifeStage+1].color * lifeStageFraction; // apply color modulation if (myEmitter.particleAttributes[lifeStage ].modulationAmplitude > 0.0f) { float modulation = 0.0f; float radian = _timer * myEmitter.particleAttributes[lifeStage ].modulationRate * PI_TIMES_TWO; if (myEmitter.particleAttributes[lifeStage ].modulationStyle == COLOR_MODULATION_STYLE_LIGHNTESS_PULSE) { if (sinf(radian) > 0.0f) { modulation = myEmitter.particleAttributes[lifeStage].modulationAmplitude; } } else if (myEmitter.particleAttributes[lifeStage].modulationStyle == COLOR_MODULATION_STYLE_LIGHTNESS_WAVE) { float a = myEmitter.particleAttributes[lifeStage].modulationAmplitude; modulation = a * ONE_HALF + sinf(radian) * a * ONE_HALF; } _particle[p].color.r += modulation; _particle[p].color.g += modulation; _particle[p].color.b += modulation; _particle[p].color.a += modulation; if (_particle[p].color.r > 1.0f) {_particle[p].color.r = 1.0f;} if (_particle[p].color.g > 1.0f) {_particle[p].color.g = 1.0f;} if (_particle[p].color.b > 1.0f) {_particle[p].color.b = 1.0f;} if (_particle[p].color.a > 1.0f) {_particle[p].color.a = 1.0f;} } // do this at the end... _particle[p].age += deltaTime; } void ParticleSystem::killAllParticles() { for (int e = 0; e < _numEmitters; e++) { _emitter[e].currentParticle = NULL_PARTICLE; _emitter[e].emitReserve = 0.0f; _emitter[e].previousPosition = _emitter[e].position; _emitter[e].rate = 0.0f; _emitter[e].currentParticle = 0; _emitter[e].numParticlesEmittedThisTime = 0; } for (int p = 0; p < MAX_PARTICLES; p++) { killParticle(p); } } void ParticleSystem::render() { // render the emitters for (int e = 0; e < _numEmitters; e++) { if (_emitter[e].showingBaseParticle) { glColor4f(_particle[0].color.r, _particle[0].color.g, _particle[0].color.b, _particle[0].color.a); glPushMatrix(); glTranslatef(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z); glutSolidSphere(_particle[0].radius, _emitter[e].particleResolution, _emitter[e].particleResolution); glPopMatrix(); } if (_emitter[e].visible) { renderEmitter(e, DEFAULT_EMITTER_RENDER_LENGTH); } }; // render the particles for (int p = 0; p < MAX_PARTICLES; p++) { if (_particle[p].alive) { if (_emitter[_particle[p].emitterIndex].particleLifespan > 0.0) { renderParticle(p); } } } } void ParticleSystem::renderParticle(int p) { glColor4f(_particle[p].color.r, _particle[p].color.g, _particle[p].color.b, _particle[p].color.a); if (_emitter[_particle[p].emitterIndex].particleRenderStyle == PARTICLE_RENDER_STYLE_BILLBOARD) { glm::vec3 cameraPosition = Application::getInstance()->getCamera()->getPosition(); glm::vec3 viewVector = _particle[p].position - cameraPosition; float distance = glm::length(viewVector); if (distance >= 0.0f) { viewVector /= distance; glm::vec3 up = glm::vec3(viewVector.y, viewVector.z, viewVector.x); glm::vec3 right = glm::vec3(viewVector.z, viewVector.x, viewVector.y); glm::vec3 p0 = _particle[p].position - right * _particle[p].radius - up * _particle[p].radius; glm::vec3 p1 = _particle[p].position + right * _particle[p].radius - up * _particle[p].radius; glm::vec3 p2 = _particle[p].position + right * _particle[p].radius + up * _particle[p].radius; glm::vec3 p3 = _particle[p].position - right * _particle[p].radius + up * _particle[p].radius; glBegin(GL_TRIANGLES); glVertex3f(p0.x, p0.y, p0.z); glVertex3f(p1.x, p1.y, p1.z); glVertex3f(p2.x, p2.y, p2.z); glEnd(); glBegin(GL_TRIANGLES); glVertex3f(p0.x, p0.y, p0.z); glVertex3f(p2.x, p2.y, p2.z); glVertex3f(p3.x, p3.y, p3.z); glEnd(); } } else if (_emitter[_particle[p].emitterIndex].particleRenderStyle == PARTICLE_RENDER_STYLE_SPHERE) { glPushMatrix(); glTranslatef(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z); glutSolidSphere(_particle[p].radius, _emitter[_particle[p].emitterIndex].particleResolution, _emitter[_particle[p].emitterIndex].particleResolution); glPopMatrix(); } else if (_emitter[_particle[p].emitterIndex].particleRenderStyle == PARTICLE_RENDER_STYLE_RIBBON) { if (_particle[p].previousParticle != NULL_PARTICLE) { if ((_particle[p].alive) && (_particle[_particle[p].previousParticle].alive) && (_particle[_particle[p].previousParticle].emitterIndex == _particle[p].emitterIndex)) { glm::vec3 vectorFromPreviousParticle = _particle[p].position - _particle[_particle[p].previousParticle].position; float distance = glm::length(vectorFromPreviousParticle); if (distance > 0.0f) { vectorFromPreviousParticle /= distance; glm::vec3 up = glm::normalize(glm::cross(vectorFromPreviousParticle, _upDirection)) * _particle[p].radius; glm::vec3 right = glm::normalize(glm::cross(up, vectorFromPreviousParticle )) * _particle[p].radius; glm::vec3 p0Left = _particle[p ].position - right; glm::vec3 p0Right = _particle[p ].position + right; glm::vec3 p0Down = _particle[p ].position - up; glm::vec3 p0Up = _particle[p ].position + up; glm::vec3 ppLeft = _particle[_particle[p].previousParticle].position - right; glm::vec3 ppRight = _particle[_particle[p].previousParticle].position + right; glm::vec3 ppDown = _particle[_particle[p].previousParticle].position - up; glm::vec3 ppUp = _particle[_particle[p].previousParticle].position + up; glBegin(GL_TRIANGLES); glVertex3f(p0Left.x, p0Left.y, p0Left.z ); glVertex3f(p0Right.x, p0Right.y, p0Right.z); glVertex3f(ppLeft.x, ppLeft.y, ppLeft.z ); glVertex3f(p0Right.x, p0Right.y, p0Right.z); glVertex3f(ppLeft.x, ppLeft.y, ppLeft.z ); glVertex3f(ppRight.x, ppRight.y, ppRight.z); glVertex3f(p0Up.x, p0Up.y, p0Up.z ); glVertex3f(p0Down.x, p0Down.y, p0Down.z ); glVertex3f(ppDown.x, ppDown.y, ppDown.z ); glVertex3f(p0Up.x, p0Up.y, p0Up.z ); glVertex3f(ppUp.x, ppUp.y, ppUp.z ); glVertex3f(ppDown.x, ppDown.y, ppDown.z ); glVertex3f(p0Up.x, p0Up.y, p0Left.z ); glVertex3f(p0Right.x, p0Right.y, p0Right.z); glVertex3f(p0Down.x, p0Down.y, p0Down.z ); glVertex3f(p0Up.x, p0Up.y, p0Left.z ); glVertex3f(p0Left.x, p0Left.y, p0Left.z ); glVertex3f(p0Down.x, p0Down.y, p0Down.z ); glVertex3f(ppUp.x, ppUp.y, ppLeft.z ); glVertex3f(ppRight.x, ppRight.y, ppRight.z); glVertex3f(ppDown.x, ppDown.y, ppDown.z ); glVertex3f(ppUp.x, ppUp.y, ppLeft.z ); glVertex3f(ppLeft.x, ppLeft.y, ppLeft.z ); glVertex3f(ppDown.x, ppDown.y, ppDown.z ); glEnd(); } } } } } void ParticleSystem::renderEmitter(int e, float size) { glm::vec3 v = _emitter[e].direction * size; glColor3f(0.4f, 0.4, 0.8); glBegin(GL_LINES); glVertex3f(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z); glVertex3f(_emitter[e].position.x + v.x, _emitter[e].position.y + v.y, _emitter[e].position.z + v.z); glEnd(); }