// // // Interface // // Show a field of objects rendered in 3D, with yaw and pitch of scene driven // by accelerometer data // serial port connected to Maple board/arduino. // // Keyboard Commands: // // / = toggle stats display // n = toggle noise in firing on/off // c = clear all cells and synapses to zero // s = clear cells to zero but preserve synapse weights // #ifdef __APPLE__ #include #include #include #else #include #endif #include #include #include #include #include #include #include // These includes are for the serial port reading/writing #include #include #include #include "tga.h" // Texture loader library #include "glm/glm.hpp" #include #include "SerialInterface.h" #include "field.h" #include "world.h" #include "util.h" #include "network.h" #include "audio.h" #include "head.h" #include "hand.h" #include "particle.h" #include "texture.h" //TGAImg Img; using namespace std; // Junk for talking to the Serial Port int serial_on = 0; // Is serial connection on/off? System will try // Network Socket Stuff // For testing, add milliseconds of delay for received UDP packets int UDP_socket; int delay = 0; char* incoming_packet; timeval ping_start; int ping_count = 0; float ping_msecs = 0.0; int packetcount = 0; int packets_per_second = 0; int bytes_per_second = 0; int bytescount = 0; // Getting a target location from other machine (or loopback) to display int target_x, target_y; int target_display = 0; unsigned char last_key = 0; double ping = 0; //#define WIDTH 1200 // Width,Height of simulation area in cells //#define HEIGHT 800 int WIDTH = 1200; int HEIGHT = 800; #define BOTTOM_MARGIN 0 #define RIGHT_MARGIN 0 #define HAND_RADIUS 0.25 // Radius of in-world 'hand' of you Head myHead; // The rendered head of oneself or others Hand myHand(HAND_RADIUS, glm::vec3(0,1,1)); // My hand (used to manipulate things in world) glm::vec3 box(WORLD_SIZE,WORLD_SIZE,WORLD_SIZE); ParticleSystem balls(500, box, false, // Wrap? 0.0, // Noise 0.3, // Size scale 0.0 // Gravity ); // FIELD INFORMATION // If the simulation 'world' is a box with 10M boundaries, the offset to a field cell is given by: // element = [x/10 + (y/10)*10 + (z*/10)*100] // // The vec(x,y,z) corner of a field cell at element i is: // // z = (int)( i / 100) // y = (int)(i % 100 / 10) // x = (int)(i % 10) #define RENDER_FRAME_MSECS 10 #define SLEEP 0 #define NUM_TRIS 1000 * 100 // 20000 //000 struct { float vertices[NUM_TRIS * 3]; float normals [NUM_TRIS * 3]; float colors [NUM_TRIS * 3]; float vel [NUM_TRIS * 3]; glm::vec3 vel1[NUM_TRIS]; glm::vec3 vel2[NUM_TRIS]; int element[NUM_TRIS]; }tris; float twiddles[NUM_TRIS * 3]; float yaw =0.f; // The yaw, pitch for the avatar head float pitch = 0.f; // float start_yaw = 90.0; float render_yaw = start_yaw; float render_pitch = 0.f; float render_yaw_rate = 0.f; float render_pitch_rate = 0.f; float lateral_vel = 0.f; // Manage speed and direction of motion GLfloat fwd_vec[] = { 0.0, 0.0, 1.0}; GLfloat start_location[] = { WORLD_SIZE*1.5, -WORLD_SIZE/2.0, -WORLD_SIZE/3.0}; GLfloat location[] = {start_location[0], start_location[1], start_location[2]}; float fwd_vel = 0.0f; #define MAX_FILE_CHARS 100000 // Biggest file size that can be read to the system int stats_on = 1; // Whether to show onscreen text overlay with stats int noise_on = 0; // Whether to add random noise float noise = 1.0; // Overall magnitude scaling for random noise levels int step_on = 0; int display_levels = 1; int display_head = 0; int display_field = 0; int display_head_mouse = 1; // Display sample mouse pointer controlled by head movement int head_mouse_x, head_mouse_y; int mouse_x, mouse_y; // Where is the mouse int mouse_pressed = 0; // true if mouse has been pressed (clear when finished) int accel_x, accel_y; int speed; float mag_imbalance = 0.f; // // Serial I/O channel mapping: // // 0 Head Gyro Pitch // 1 Head Gyro Yaw // 2 Head Accelerometer X // 3 Head Accelerometer Z // 4 Hand Accelerometer X // 5 Hand Accelerometer Y // 6 Hand Accelerometer Z // int adc_channels[NUM_CHANNELS]; float avg_adc_channels[NUM_CHANNELS]; int first_measurement = 1; int samplecount = 0; // Frame rate Measurement int framecount = 0; float FPS = 120.f; timeval timer_start, timer_end; timeval last_frame; double elapsedTime; // Particles // To add a new texture: // 1. Add to the XCode project in the Resources/images group // (ensure "Copy file" is checked // 2. Add to the "Copy files" build phase in the project char texture_filename[] = "grayson-particle.png"; //unsigned int texture_width = 256; //unsigned int texture_height = 256; float particle_attenuation_quadratic[] = { 0.0f, 0.0f, 2.0f }; // larger Z = smaller particles // Every second, check the frame rates and other stuff void Timer(int extra) { gettimeofday(&timer_end, NULL); FPS = (float)framecount / ((float)diffclock(timer_start,timer_end) / 1000.f); packets_per_second = (float)packetcount / ((float)diffclock(timer_start,timer_end) / 1000.f); bytes_per_second = (float)bytescount / ((float)diffclock(timer_start,timer_end) / 1000.f); framecount = 0; samplecount = 0; packetcount = 0; bytescount = 0; glutTimerFunc(1000,Timer,0); gettimeofday(&timer_start, NULL); } void display_stats(void) { // bitmap chars are about 10 pels high char legend[] = "/ - toggle this display, Q - exit, N - toggle noise, M - toggle map, T - test audio"; drawtext(10, 15, 0.10, 0, 1.0, 0, legend); char stats[200]; sprintf(stats, "FPS = %3.0f, Ping = %4.1f Packets/Sec = %d, Bytes/sec = %d", FPS, ping_msecs, packets_per_second, bytes_per_second); drawtext(10, 30, 0.10, 0, 1.0, 0, stats); char adc[200]; sprintf(adc, "pitch_rate = %i, yaw_rate = %i, accel_lat = %i, accel_fwd = %i, loc[0] = %3.1f loc[1] = %3.1f, loc[2] = %3.1f", (int)(adc_channels[0] - avg_adc_channels[0]), (int)(adc_channels[1] - avg_adc_channels[1]), (int)(adc_channels[2] - avg_adc_channels[2]), (int)(adc_channels[3] - avg_adc_channels[3]), location[0], location[1], location[2] ); drawtext(10, 50, 0.10, 0, 1.0, 0, adc); } void initDisplay(void) { // Set up blending function so that we can NOT clear the display glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glShadeModel (GL_SMOOTH); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_DEPTH_TEST); } void init(void) { int i, j; Audio::init(); printf( "Audio started.\n" ); // Clear serial channels for (i = i; i < NUM_CHANNELS; i++) { adc_channels[i] = 0; avg_adc_channels[i] = 0.0; } head_mouse_x = WIDTH/2; head_mouse_y = HEIGHT/2; // Initialize Field values field_init(); printf( "Field Initialized.\n" ); if (noise_on) { myHand.setNoise(noise); myHead.setNoise(noise); } // Init particles float tri_scale, r; const float VEL_SCALE = 0.00; for (i = 0; i < NUM_TRIS; i++) { r = randFloat(); if (r > .999) tri_scale = 0.7; else if (r > 0.90) tri_scale = 0.1; else tri_scale = 0.05; glm::vec3 pos (randFloat() * WORLD_SIZE, randFloat() * WORLD_SIZE, randFloat() * WORLD_SIZE); glm::vec3 verts[3]; verts[j].x = pos.x + randFloat() * tri_scale - tri_scale/2.f; verts[j].y = pos.y + randFloat() * tri_scale - tri_scale/2.f; verts[j].z = pos.z + randFloat() * tri_scale - tri_scale/2.f; tris.vertices[i*3] = verts[j].x; tris.vertices[i*3 + 1] = verts[j].y; tris.vertices[i*3 + 2] = verts[j].z; // reuse pos for the normal glm::normalize((pos += glm::cross(verts[1] - verts[0], verts[2] - verts[0]))); tris.normals[i*3] = pos.x; tris.normals[i*3+1] = pos.y; tris.normals[i*3+2] = pos.z; // Decide what kind of element this particle is to be, color accordingly if (randFloat() < 0.10) { // Fixed - blue tris.element[i] = 0; tris.colors[i*3] = 0.0; tris.colors[i*3+1] = 0.0; tris.colors[i*3+2] = 1.0; tris.vel[i*3] = tris.vel[i*3+1] = tris.vel[i*3+2] = 0.0; } else { // Moving - white tris.element[i] = 1; tris.colors[i*3] = 1.0; tris.colors[i*3+1] = 1.0; tris.colors[i*3+2] = 1.0; tris.vel[i*3] = (randFloat() - 0.5)*VEL_SCALE; tris.vel[i*3+1] = (randFloat() - 0.5)*VEL_SCALE; tris.vel[i*3+2] = (randFloat() - 0.5)*VEL_SCALE; } } const float TWIDDLE_SCALE = 0.01; for (i = 0; i < NUM_TRIS; i++) { twiddles[i*3] = (randFloat() - 0.5)*TWIDDLE_SCALE; twiddles[i*3 + 1] = (randFloat() - 0.5)*TWIDDLE_SCALE; twiddles[i*3 + 2] = (randFloat() - 0.5)*TWIDDLE_SCALE; } if (serial_on) { // Call readsensors for a while to get stable initial values on sensors printf( "Stabilizing sensors... " ); gettimeofday(&timer_start, NULL); read_sensors(1, &avg_adc_channels[0], &adc_channels[0]); int done = 0; while (!done) { read_sensors(0, &avg_adc_channels[0], &adc_channels[0]); gettimeofday(&timer_end, NULL); if (diffclock(timer_start,timer_end) > 1000) done = 1; } printf( "Done.\n" ); } gettimeofday(&timer_start, NULL); gettimeofday(&last_frame, NULL); } void terminate () { // Close serial port //close(serial_fd); Audio::terminate(); exit(EXIT_SUCCESS); } const float SCALE_SENSORS = 0.3f; const float SCALE_X = 2.f; const float SCALE_Y = 1.f; void update_tris() { int i; float field_val[3]; for (i = 0; i < NUM_TRIS; i++) { if (tris.element[i] == 1) // If moving object, move and drag { // Update position tris.vertices[i*3+0] += tris.vel[i*3]; tris.vertices[i*3+1] += tris.vel[i*3+1]; tris.vertices[i*3+2] += tris.vel[i*3+2]; // Add a little gravity //tris.vel[i*3+1] -= 0.0001; const float DRAG = 0.99; // Drag: Decay velocity tris.vel[i*3] *= DRAG; tris.vel[i*3+1] *= DRAG; tris.vel[i*3+2] *= DRAG; } if (tris.element[i] == 1) { // Read and add velocity from field field_value(field_val, &tris.vertices[i*3]); tris.vel[i*3] += field_val[0]; tris.vel[i*3+1] += field_val[1]; tris.vel[i*3+2] += field_val[2]; } // bounce at edge of world // X-Direction if ((tris.vertices[i*3+0] > WORLD_SIZE) || (tris.vertices[i*3+0] < 0.0)) tris.vel[i*3]*= -1.0; // Y-direction if ((tris.vertices[i*3+1] > WORLD_SIZE) || (tris.vertices[i*3+1] < 0.0)) { tris.vel[i*3+1]*= -1.0; } // Z-Direction if ((tris.vertices[i*3+2] > WORLD_SIZE) || (tris.vertices[i*3+2] < 0.0)) tris.vel[i*3+2]*= -1.0; } } void reset_sensors() { // // Reset serial I/O sensors // render_yaw = start_yaw; yaw = render_yaw_rate = 0; pitch = render_pitch = render_pitch_rate = 0; lateral_vel = 0; location[0] = start_location[0]; location[1] = start_location[1]; location[2] = start_location[2]; fwd_vel = 0.0; head_mouse_x = WIDTH/2; head_mouse_y = HEIGHT/2; myHead.reset(); myHand.reset(); if (serial_on) read_sensors(1, &avg_adc_channels[0], &adc_channels[0]); } void update_pos(float frametime) // Using serial data, update avatar/render position and angles { float measured_pitch_rate = adc_channels[0] - avg_adc_channels[0]; float measured_yaw_rate = adc_channels[1] - avg_adc_channels[1]; float measured_lateral_accel = adc_channels[2] - avg_adc_channels[2]; float measured_fwd_accel = avg_adc_channels[3] - adc_channels[3]; // Update avatar head position based on measured gyro rates myHead.addYaw(measured_yaw_rate * 1.20 * frametime); myHead.addPitch(measured_pitch_rate * -1.0 * frametime); // Decay avatar head back toward zero //pitch *= (1.f - 5.0*frametime); //yaw *= (1.f - 7.0*frametime); // Update head_mouse model const float MIN_MOUSE_RATE = 30.0; const float MOUSE_SENSITIVITY = 0.1; if (powf(measured_yaw_rate*measured_yaw_rate + measured_pitch_rate*measured_pitch_rate, 0.5) > MIN_MOUSE_RATE) { head_mouse_x -= measured_yaw_rate*MOUSE_SENSITIVITY; head_mouse_y += measured_pitch_rate*MOUSE_SENSITIVITY*(float)HEIGHT/(float)WIDTH; } head_mouse_x = max(head_mouse_x, 0); head_mouse_x = min(head_mouse_x, WIDTH); head_mouse_y = max(head_mouse_y, 0); head_mouse_y = min(head_mouse_y, HEIGHT); // Update hand/manipulator location for measured forces from serial channel const float MIN_HAND_ACCEL = 30.0; const float HAND_FORCE_SCALE = 0.5; glm::vec3 hand_accel(-(avg_adc_channels[6] - adc_channels[6]), -(avg_adc_channels[7] - adc_channels[7]), -(avg_adc_channels[5] - adc_channels[5])); if (glm::length(hand_accel) > MIN_HAND_ACCEL) { myHand.addVel(frametime*hand_accel*HAND_FORCE_SCALE); } // Update render direction (pitch/yaw) based on measured gyro rates const int MIN_YAW_RATE = 300; const float YAW_SENSITIVITY = 0.03; const int MIN_PITCH_RATE = 300; const float PITCH_SENSITIVITY = 0.04; if (fabs(measured_yaw_rate) > MIN_YAW_RATE) { if (measured_yaw_rate > 0) render_yaw_rate -= (measured_yaw_rate - MIN_YAW_RATE) * YAW_SENSITIVITY * frametime; else render_yaw_rate -= (measured_yaw_rate + MIN_YAW_RATE) * YAW_SENSITIVITY * frametime; } if (fabs(measured_pitch_rate) > MIN_PITCH_RATE) { if (measured_pitch_rate > 0) render_pitch_rate += (measured_pitch_rate - MIN_PITCH_RATE) * PITCH_SENSITIVITY * frametime; else render_pitch_rate += (measured_pitch_rate + MIN_PITCH_RATE) * PITCH_SENSITIVITY * frametime; } render_yaw += render_yaw_rate; render_pitch += render_pitch_rate; // Decay render_pitch toward zero because we never look constantly up/down render_pitch *= (1.f - 2.0*frametime); // Decay angular rates toward zero render_pitch_rate *= (1.f - 5.0*frametime); render_yaw_rate *= (1.f - 7.0*frametime); // Update slide left/right based on accelerometer reading const int MIN_LATERAL_ACCEL = 20; const float LATERAL_SENSITIVITY = 0.001; if (fabs(measured_lateral_accel) > MIN_LATERAL_ACCEL) { if (measured_lateral_accel > 0) lateral_vel += (measured_lateral_accel - MIN_LATERAL_ACCEL) * LATERAL_SENSITIVITY * frametime; else lateral_vel += (measured_lateral_accel + MIN_LATERAL_ACCEL) * LATERAL_SENSITIVITY * frametime; } //slide += lateral_vel; lateral_vel *= (1.f - 4.0*frametime); // Update fwd/back based on accelerometer reading const int MIN_FWD_ACCEL = 20; const float FWD_SENSITIVITY = 0.001; if (fabs(measured_fwd_accel) > MIN_FWD_ACCEL) { if (measured_fwd_accel > 0) fwd_vel += (measured_fwd_accel - MIN_FWD_ACCEL) * FWD_SENSITIVITY * frametime; else fwd_vel += (measured_fwd_accel + MIN_FWD_ACCEL) * FWD_SENSITIVITY * frametime; } // Decrease forward velocity fwd_vel *= (1.f - 4.0*frametime); // Update forward vector based on pitch and yaw fwd_vec[0] = -sinf(render_yaw*PI/180); fwd_vec[1] = sinf(render_pitch*PI/180); fwd_vec[2] = cosf(render_yaw*PI/180); // Advance location forward location[0] += fwd_vec[0]*fwd_vel; location[1] += fwd_vec[1]*fwd_vel; location[2] += fwd_vec[2]*fwd_vel; // Slide location sideways location[0] += fwd_vec[2]*-lateral_vel; location[2] += fwd_vec[0]*lateral_vel; // Update head and manipulator objects with object with current location myHead.setPos(glm::vec3(location[0], location[1], location[2])); balls.updateHand(myHead.getPos() + myHand.getPos(), glm::vec3(0,0,0), myHand.getRadius()); } void display(void) { int i; glEnable (GL_DEPTH_TEST); glEnable(GL_LIGHTING); glEnable(GL_LINE_SMOOTH); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); glEnable(GL_COLOR_MATERIAL); glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); GLfloat light_position0[] = { 1.0, 1.0, 0.0, 0.0 }; glLightfv(GL_LIGHT0, GL_POSITION, light_position0); GLfloat ambient_color[] = { 0.125, 0.305, 0.5 }; glLightfv(GL_LIGHT0, GL_AMBIENT, ambient_color); GLfloat diffuse_color[] = { 0.5, 0.42, 0.33 }; glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse_color); GLfloat specular_color[] = { 1.0, 1.0, 1.0, 1.0}; glLightfv(GL_LIGHT0, GL_SPECULAR, specular_color); glMaterialfv(GL_FRONT, GL_SPECULAR, specular_color); glMateriali(GL_FRONT, GL_SHININESS, 96); // Rotate, translate to camera location glRotatef(render_pitch, 1, 0, 0); glRotatef(render_yaw, 0, 1, 0); glTranslatef(location[0], location[1], location[2]); //glEnable(GL_DEPTH_TEST); // TEST: Draw a reference object in world space coordinates! //glPushMatrix(); // glTranslatef(1,0,0); //glTranslatef(myHead.getPos().x, myHead.getPos().y, myHead.getPos().z); // glColor3f(1,0,0); // glutSolidCube(0.4); //glPopMatrix(); // TEST: Draw a textured square (Yoz) /* create a square on the XY note that OpenGL origin is at the lower left but texture origin is at upper left => it has to be mirrored */ int error = load_png_as_texture(texture_filename); glEnable(GL_TEXTURE_2D); glBegin(GL_QUADS); glNormal3f(0.0, 0.0, 1.0); glTexCoord2d(1, 1); glVertex3f(0.0, 0.0, 0.0); glTexCoord2d(1, 0); glVertex3f(0.0, 2.0, 0.0); glTexCoord2d(0, 0); glVertex3f(1.0, 2.0, 0.0); glTexCoord2d(0, 1); glVertex3f(1.0, 0.0, 0.0); glEnd(); glDisable(GL_TEXTURE_2D); // Draw Point Sprites /* assuming you have setup a 32-bit RGBA texture with a legal name */ glActiveTexture(GL_TEXTURE0); glEnable( GL_TEXTURE_2D ); glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glPointParameterfvARB( GL_POINT_DISTANCE_ATTENUATION_ARB, particle_attenuation_quadratic ); float maxSize = 0.0f; glGetFloatv( GL_POINT_SIZE_MAX_ARB, &maxSize ); glPointSize( maxSize ); glPointParameterfARB( GL_POINT_SIZE_MAX_ARB, maxSize ); // glPointParameterfARB( GL_POINT_SIZE_MIN_ARB, 0.001f ); glTexEnvf( GL_POINT_SPRITE_ARB, GL_COORD_REPLACE_ARB, GL_TRUE ); glEnable( GL_POINT_SPRITE_ARB ); glBegin( GL_POINTS ); { for (i = 0; i < NUM_TRIS; i++) { // glColor3f(tris.colors[i*3], // tris.colors[i*3+1], // tris.colors[i*3+2]); // for (j = 0; j < 3; j++) // { // glVertex3f(tris.vertices[i*9 + j*3], // tris.vertices[i*9 + j*3 + 1], // tris.vertices[i*9 + j*3 + 2]); // } // glNormal3f(tris.normals[i*3], // tris.normals[i*3 + 1], // tris.normals[i*3 + 2]); glVertex3f(tris.vertices[i*3], tris.vertices[i*3+1], tris.vertices[i*3+2]); } } glEnd(); glDisable( GL_TEXTURE_2D ); glDisable( GL_POINT_SPRITE_ARB ); // Show field vectors if (display_field) field_render(); // Display floating head in front of viewer if (display_head) { myHead.render(); } myHand.render(); // balls.render(); // Render the world box render_world_box(); glPopMatrix(); // Render 2D overlay: I/O level bar graphs and text glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); gluOrtho2D(0, WIDTH, HEIGHT, 0); glDisable(GL_DEPTH_TEST); glDisable(GL_LIGHTING); drawvec3(100, 100, 0.15, 0, 1.0, 0, myHead.getPos(), 0, 1, 0); if (mouse_pressed == 1) { glPointSize(20.f); glColor3f(1,1,1); glEnable(GL_POINT_SMOOTH); glBegin(GL_POINTS); glVertex2f(target_x, target_y); glEnd(); char val[20]; sprintf(val, "%d,%d", target_x, target_y); drawtext(target_x, target_y-20, 0.08, 0, 1.0, 0, val, 0, 1, 0); } if (display_head_mouse) { glPointSize(20.f); glColor4f(1.0, 1.0, 0.0, 0.8); glEnable(GL_POINT_SMOOTH); glBegin(GL_POINTS); glVertex2f(head_mouse_x, head_mouse_y); glEnd(); } // Show detected levels from the serial I/O ADC channel sensors if (display_levels) { int i; int disp_x = 10; const int GAP = 16; char val[10]; for(i = 0; i < NUM_CHANNELS; i++) { // Actual value glColor4f(1, 1, 1, 1); glBegin(GL_LINES); glVertex2f(disp_x, HEIGHT*0.95); glVertex2f(disp_x, HEIGHT*(0.25 + 0.75f*adc_channels[i]/4096)); glEnd(); // Trailing Average value glColor4f(0, 0, 0.8, 1); glBegin(GL_LINES); glVertex2f(disp_x + 2, HEIGHT*0.95); glVertex2f(disp_x + 2, HEIGHT*(0.25 + 0.75f*avg_adc_channels[i]/4096)); glEnd(); sprintf(val, "%d", adc_channels[i]); drawtext(disp_x-GAP/2, (HEIGHT*0.95)+2, 0.08, 90, 1.0, 0, val, 0, 1, 0); disp_x += GAP; } } if (stats_on) display_stats(); glPopMatrix(); glutSwapBuffers(); framecount++; } void key(unsigned char k, int x, int y) { // Process keypresses last_key = k; if (k == 'q') ::terminate(); if (k == '/') stats_on = !stats_on; // toggle stats if (k == 'n') { noise_on = !noise_on; // Toggle noise if (noise_on) { myHand.setNoise(noise); myHead.setNoise(noise); } else { myHand.setNoise(0); myHead.setNoise(0); } } if (k == 'h') display_head = !display_head; if (k == 'f') display_field = !display_field; if (k == 'e') location[1] -= WORLD_SIZE/100.0; if (k == 'c') location[1] += WORLD_SIZE/100.0; if (k == 'w') fwd_vel += 0.05; if (k == 's') fwd_vel -= 0.05; if (k == ' ') reset_sensors(); if (k == 'a') render_yaw_rate -= 0.25; if (k == 'd') render_yaw_rate += 0.25; if (k == 'p') { // Add to field vector float pos[] = {5,5,5}; float add[] = {0.001, 0.001, 0.001}; field_add(add, pos); } if (k == 't') { Audio::writeTone(0, 400, 1.0f, 0.5f); } if (k == '1') { myHead.SetNewHeadTarget((randFloat()-0.5)*20.0, (randFloat()-0.5)*20.0); } } void read_network() { // Receive packets int bytes_recvd = network_receive(UDP_socket, incoming_packet, delay); if (bytes_recvd > 0) { packetcount++; bytescount += bytes_recvd; // If packet is a Mouse data packet, copy it over if (incoming_packet[0] == 'M') { sscanf(incoming_packet, "M %d %d", &target_x, &target_y); target_display = 1; printf("X = %d Y = %d\n", target_x, target_y); } else if (incoming_packet[0] == 'P') { // Ping packet - check time and record timeval check; gettimeofday(&check, NULL); ping_msecs = (float)diffclock(ping_start, check); } } } void idle(void) { timeval check; gettimeofday(&check, NULL); // Check and render display frame if (diffclock(last_frame,check) > RENDER_FRAME_MSECS) { // Simulation update_pos(1.f/FPS); update_tris(); field_simulate(1.f/FPS); myHead.simulate(1.f/FPS); myHand.simulate(1.f/FPS); // balls.simulate(1.f/FPS); if (!step_on) glutPostRedisplay(); last_frame = check; // Every 30 frames or so, check ping time ping_count++; if (ping_count >= 30) { ping_start = network_send_ping(UDP_socket); ping_count = 0; } } // Read network packets read_network(); // Read serial data if (serial_on) samplecount += read_sensors(0, &avg_adc_channels[0], &adc_channels[0]); if (SLEEP) { usleep(SLEEP); } } void reshape(int width, int height) { WIDTH = width; HEIGHT = height; glViewport(0, 0, width, height); glMatrixMode(GL_PROJECTION); //hello glLoadIdentity(); gluPerspective(45, //view angle 1.0, //aspect ratio 1.0, //near clip 200.0);//far clip glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void mouseFunc( int button, int state, int x, int y ) { if( button == GLUT_LEFT_BUTTON && state == GLUT_DOWN ) { mouse_x = x; mouse_y = y; mouse_pressed = 1; } if( button == GLUT_LEFT_BUTTON && state == GLUT_UP ) { mouse_x = x; mouse_y = y; mouse_pressed = 0; } } void motionFunc( int x, int y) { mouse_x = x; mouse_y = y; if (mouse_pressed == 1) { // Send network packet containing mouse location char mouse_string[20]; sprintf(mouse_string, "M %d %d\n", mouse_x, mouse_y); network_send(UDP_socket, mouse_string, strlen(mouse_string)); } } int main(int argc, char** argv) { // Create network socket and buffer UDP_socket = network_init(); if (UDP_socket) printf( "Created UDP socket.\n" ); incoming_packet = new char[MAX_PACKET_SIZE]; // Test network loopback char test_data[] = "Test!"; int bytes_sent = network_send(UDP_socket, test_data, 5); if (bytes_sent) printf("%d bytes sent.", bytes_sent); int test_recv = network_receive(UDP_socket, incoming_packet, delay); printf("Received %i bytes\n", test_recv); // Load textures //Img.Load("/Users/philip/Downloads/galaxy1.tga"); // // Try to connect the serial port I/O // if(init_port(115200) == -1) { perror("Unable to open serial port\n"); serial_on = 0; } else { printf("Serial Port Initialized\n"); serial_on = 1; } glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH); glutInitWindowSize(RIGHT_MARGIN + WIDTH, BOTTOM_MARGIN + HEIGHT); glutCreateWindow("Interface"); printf( "Created Display Window.\n" ); initDisplay(); glutDisplayFunc(display); glutReshapeFunc(reshape); glutKeyboardFunc(key); glutMotionFunc(motionFunc); glutMouseFunc(mouseFunc); glutIdleFunc(idle); printf( "Initialized Display.\n" ); init(); printf( "Init() complete.\n" ); glutTimerFunc(1000,Timer,0); glutMainLoop(); ::terminate(); return EXIT_SUCCESS; } /* //Create the texture using the hard-coded bitmap data glTexImage2D(GL_TEXTURE_2D,0,3,Img.GetWidth(),Img.GetHeight(),0,GL_RGB,GL_UNSIGNED_BYTE,Img.GetImg()); //Set the magnification and minimization filtering to GL_NEAREST glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Trails - Draw a single Quad to blend instead of clear screen glColor4f(0.f, 0.f, 0.f, 0.9f); //glColor4f(0.f, 0.f, 0.f, 0.01f); //glEnable(GL_TEXTURE_2D); //Enable the texture to draw the polygon glBegin(GL_QUADS); glTexCoord2f(0, 1); glVertex2f(0.f, HEIGHT); glTexCoord2f(1, 1); glVertex2f(WIDTH, HEIGHT); glTexCoord2f(1, 0); glVertex2f( WIDTH,0.f); glTexCoord2f(0, 0); glVertex2f(0.f,0.f); glEnd(); //glDisable(GL_TEXTURE_2D); //glTexCoord2f(1, 0); glVertex2f(1, -1); //glTexCoord2f(1, 1); glVertex2f(1,1); //glTexCoord2f(0, 1); glVertex2f(-1, 1); // But totally clear stats display area glBegin(GL_QUADS); glColor4f(0.f, 0.f, 0.f, 1.f); glVertex2f(0.f, HEIGHT/10.f); glVertex2f(WIDTH, HEIGHT/10.f); glVertex2f( WIDTH,0.f); glVertex2f(0.f,0.f); glVertex2f(0.f, HEIGHT); glVertex2f(WIDTH/20.f, HEIGHT); glVertex2f( WIDTH/20.f,0.f); glVertex2f(0.f,0.f); glEnd(); */