// // Cube.cpp // interface // // Created by Philip on 12/31/12. // Copyright (c) 2012 High Fidelity, Inc. All rights reserved. // #include #include #include #include #include #include "VoxelSystem.h" const int MAX_VOXELS_PER_SYSTEM = 250000; const int VERTICES_PER_VOXEL = 8; const int VERTEX_POINTS_PER_VOXEL = 3 * VERTICES_PER_VOXEL; const int INDICES_PER_VOXEL = 3 * 12; float identityVertices[] = { 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1 }; GLubyte identityIndices[] = { 0,1,2, 0,2,3, 0,1,5, 0,4,5, 0,3,7, 0,4,7, 1,2,6, 1,5,6, 2,3,7, 2,6,7, 4,5,6, 4,6,7 }; VoxelSystem::VoxelSystem() { voxelsRendered = 0; tree = new VoxelTree(); } VoxelSystem::~VoxelSystem() { delete[] verticesArray; delete[] colorsArray; delete tree; } void VoxelSystem::parseData(void *data, int size) { // output the bits received from the voxel server unsigned char *voxelData = (unsigned char *) data + 1; printf("Received a packet of %d bytes from VS\n", size); // ask the VoxelTree to read the bitstream into the tree tree->readBitstreamToTree(voxelData, size - 1); // reset the verticesEndPointer so we're writing to the beginning of the array verticesEndPointer = verticesArray; // call recursive function to populate in memory arrays // it will return the number of voxels added voxelsRendered = treeToArrays(tree->rootNode); // set the boolean if there are any voxels to be rendered so we re-fill the VBOs voxelsToRender = (voxelsRendered > 0); } int VoxelSystem::treeToArrays(VoxelNode *currentNode) { int voxelsAdded = 0; for (int i = 0; i < 8; i++) { // check if there is a child here if (currentNode->children[i] != NULL) { voxelsAdded += treeToArrays(currentNode->children[i]); } } // if we didn't get any voxels added then we're a leaf // add our vertex and color information to the interleaved array if (voxelsAdded == 0 && currentNode->color[3] == 1) { float * startVertex = firstVertexForCode(currentNode->octalCode); float voxelScale = 1 / powf(2, *currentNode->octalCode); // populate the array with points for the 8 vertices // and RGB color for each added vertex for (int j = 0; j < VERTEX_POINTS_PER_VOXEL; j++ ) { *verticesEndPointer = startVertex[j % 3] + (identityVertices[j] * voxelScale); *(colorsArray + (verticesEndPointer - verticesArray)) = currentNode->color[j % 3]; verticesEndPointer++; } voxelsAdded++; delete [] startVertex; } return voxelsAdded; } VoxelSystem* VoxelSystem::clone() const { // this still needs to be implemented, will need to be used if VoxelSystem is attached to agent return NULL; } void VoxelSystem::init() { // prep the data structures for incoming voxel data verticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM]; colorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM]; GLuint *indicesArray = new GLuint[INDICES_PER_VOXEL * MAX_VOXELS_PER_SYSTEM]; // populate the indicesArray // this will not change given new voxels, so we can set it all up now for (int n = 0; n < MAX_VOXELS_PER_SYSTEM; n++) { // fill the indices array int voxelIndexOffset = n * INDICES_PER_VOXEL; GLuint *currentIndicesPos = indicesArray + voxelIndexOffset; int startIndex = (n * VERTICES_PER_VOXEL); for (int i = 0; i < INDICES_PER_VOXEL; i++) { // add indices for this side of the cube currentIndicesPos[i] = startIndex + identityIndices[i]; } } // VBO for the verticesArray glGenBuffers(1, &vboVerticesID); glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID); glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW); // VBO for colorsArray glGenBuffers(1, &vboColorsID); glBindBuffer(GL_ARRAY_BUFFER, vboColorsID); glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW); // VBO for the indicesArray glGenBuffers(1, &vboIndicesID); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID); glBufferData(GL_ELEMENT_ARRAY_BUFFER, INDICES_PER_VOXEL * sizeof(GLuint) * MAX_VOXELS_PER_SYSTEM, indicesArray, GL_STATIC_DRAW); // delete the indices array that is no longer needed delete[] indicesArray; } void VoxelSystem::render() { if (voxelsToRender) { glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID); glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, (verticesEndPointer - verticesArray) * sizeof(GLfloat), verticesArray); glBindBuffer(GL_ARRAY_BUFFER, vboColorsID); glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, (verticesEndPointer - verticesArray) * sizeof(GLubyte), colorsArray); voxelsToRender = false; } // tell OpenGL where to find vertex and color information glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_COLOR_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID); glVertexPointer(3, GL_FLOAT, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, vboColorsID); glColorPointer(3, GL_UNSIGNED_BYTE, 0, 0); // draw the number of voxels we have glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID); glScalef(10, 10, 10); glDrawElements(GL_TRIANGLES, 36 * voxelsRendered, GL_UNSIGNED_INT, 0); // deactivate vertex and color arrays after drawing glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_COLOR_ARRAY); // bind with 0 to switch back to normal operation glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void VoxelSystem::simulate(float deltaTime) { }