// // Head.cpp // interface // // Created by Philip Rosedale on 9/11/12. // adapted by Jeffrey Ventrella // Copyright (c) 2012 Physical, Inc.. All rights reserved. // #include #include #include #include #include "Head.h" #include "Log.h" #include #include #include //#include //#include //#include //looks like we might not need this using namespace std; float skinColor[] = {1.0, 0.84, 0.66}; float lightBlue[] = { 0.7, 0.8, 1.0 }; float browColor[] = {210.0/255.0, 105.0/255.0, 30.0/255.0}; float mouthColor[] = {1, 0, 0}; float BrowRollAngle[5] = {0, 15, 30, -30, -15}; float BrowPitchAngle[3] = {-70, -60, -50}; float eyeColor[3] = {1,1,1}; float MouthWidthChoices[3] = {0.5, 0.77, 0.3}; float browWidth = 0.8; float browThickness = 0.16; bool usingBigSphereCollisionTest = false; const float DECAY = 0.1; const float THRUST_MAG = 10.0; const float YAW_MAG = 300.0; char iris_texture_file[] = "resources/images/green_eye.png"; vector iris_texture; unsigned int iris_texture_width = 512; unsigned int iris_texture_height = 256; Head::Head(bool isMine) { _avatar.orientation.setToIdentity(); _avatar.velocity = glm::vec3( 0.0, 0.0, 0.0 ); _avatar.thrust = glm::vec3( 0.0, 0.0, 0.0 ); _rotation = glm::quat( 0.0f, 0.0f, 0.0f, 0.0f ); _closestOtherAvatar = 0; _bodyYaw = -90.0; _bodyPitch = 0.0; _bodyRoll = 0.0; _bodyYawDelta = 0.0; _triggeringAction = false; _mode = AVATAR_MODE_STANDING; _isMine = isMine; initializeSkeleton(); _TEST_bigSphereRadius = 0.3f; _TEST_bigSpherePosition = glm::vec3( 0.0f, _TEST_bigSphereRadius, 2.0f ); for (int i = 0; i < MAX_DRIVE_KEYS; i++) driveKeys[i] = false; PupilSize = 0.10; interPupilDistance = 0.6; interBrowDistance = 0.75; NominalPupilSize = 0.10; _headYaw = 0.0; EyebrowPitch[0] = EyebrowPitch[1] = -30; EyebrowRoll[0] = 20; EyebrowRoll[1] = -20; MouthPitch = 0; MouthYaw = 0; MouthWidth = 1.0; MouthHeight = 0.2; EyeballPitch[0] = EyeballPitch[1] = 0; EyeballScaleX = 1.2; EyeballScaleY = 1.5; EyeballScaleZ = 1.0; EyeballYaw[0] = EyeballYaw[1] = 0; PitchTarget = YawTarget = 0; NoiseEnvelope = 1.0; PupilConverge = 10.0; leanForward = 0.0; leanSideways = 0.0; eyeContact = 1; eyeContactTarget = LEFT_EYE; scale = 1.0; renderYaw = 0.0; renderPitch = 0.0; audioAttack = 0.0; loudness = 0.0; averageLoudness = 0.0; lastLoudness = 0.0; browAudioLift = 0.0; noise = 0; _handBeingMoved = false; _previousHandBeingMoved = false; _movedHandOffset = glm::vec3( 0.0, 0.0, 0.0 ); _usingSprings = false; _springForce = 6.0f; _springVelocityDecay = 16.0f; sphere = NULL; if (iris_texture.size() == 0) { switchToResourcesParentIfRequired(); unsigned error = lodepng::decode(iris_texture, iris_texture_width, iris_texture_height, iris_texture_file); if (error != 0) { printLog("error %u: %s\n", error, lodepng_error_text(error)); } } for (int o=0; ogetRelativeValue(HEAD_PITCH_RATE); _headYawRate = serialInterface->getRelativeValue(HEAD_YAW_RATE); float measured_lateral_accel = serialInterface->getRelativeValue(ACCEL_X) - ROLL_ACCEL_COUPLING*serialInterface->getRelativeValue(HEAD_ROLL_RATE); float measured_fwd_accel = serialInterface->getRelativeValue(ACCEL_Z) - PITCH_ACCEL_COUPLING*serialInterface->getRelativeValue(HEAD_PITCH_RATE); float measured_roll_rate = serialInterface->getRelativeValue(HEAD_ROLL_RATE); //printLog("Pitch Rate: %d ACCEL_Z: %d\n", serialInterface->getRelativeValue(PITCH_RATE), // serialInterface->getRelativeValue(ACCEL_Z)); //printLog("Pitch Rate: %d ACCEL_X: %d\n", serialInterface->getRelativeValue(PITCH_RATE), // serialInterface->getRelativeValue(ACCEL_Z)); //printLog("Pitch: %f\n", Pitch); // Update avatar head position based on measured gyro rates const float HEAD_ROTATION_SCALE = 0.70; const float HEAD_ROLL_SCALE = 0.40; const float HEAD_LEAN_SCALE = 0.01; const float MAX_PITCH = 45; const float MIN_PITCH = -45; const float MAX_YAW = 85; const float MIN_YAW = -85; if ((_headPitch < MAX_PITCH) && (_headPitch > MIN_PITCH)) addPitch(measured_pitch_rate * -HEAD_ROTATION_SCALE * frametime); addRoll(-measured_roll_rate * HEAD_ROLL_SCALE * frametime); if (head_mirror) { if ((_headYaw < MAX_YAW) && (_headYaw > MIN_YAW)) addYaw(-_headYawRate * HEAD_ROTATION_SCALE * frametime); addLean(-measured_lateral_accel * frametime * HEAD_LEAN_SCALE, -measured_fwd_accel*frametime * HEAD_LEAN_SCALE); } else { if ((_headYaw < MAX_YAW) && (_headYaw > MIN_YAW)) addYaw(_headYawRate * -HEAD_ROTATION_SCALE * frametime); addLean(measured_lateral_accel * frametime * -HEAD_LEAN_SCALE, measured_fwd_accel*frametime * HEAD_LEAN_SCALE); } } void Head::addLean(float x, float z) { // Add Body lean as impulse leanSideways += x; leanForward += z; } void Head::setLeanForward(float dist){ leanForward = dist; } void Head::setLeanSideways(float dist){ leanSideways = dist; } void Head::setTriggeringAction( bool d ) { _triggeringAction = d; } void Head::simulate(float deltaTime) { //------------------------------------------------------------- // if the avatar being simulated is mine, then loop through // all the other avatars to get information about them... //------------------------------------------------------------- if ( _isMine ) { //------------------------------------- // DEBUG - other avatars... //------------------------------------- _closestOtherAvatar = -1; float closestDistance = 10000.0f; /* AgentList * agentList = AgentList::getInstance(); for(std::vector::iterator agent = agentList->getAgents().begin(); agent != agentList->getAgents().end(); agent++) { if (( agent->getLinkedData() != NULL && ( agent->getType() == AGENT_TYPE_INTERFACE ) )) { Head *otherAvatar = (Head *)agent->getLinkedData(); // when this is working, I will grab the position here... //glm::vec3 otherAvatarPosition = otherAvatar->getBodyPosition(); } } */ ///for testing only (prior to having real avs working) for (int o=0; o 0.2 ) { _mode = AVATAR_MODE_WALKING; } else { _mode = AVATAR_MODE_COMMUNICATING; } //---------------------------------------------------------- // update body yaw by body yaw delta //---------------------------------------------------------- if (_isMine) { _bodyYaw += _bodyYawDelta * deltaTime; } // we will be eventually getting head rotation from elsewhere. For now, just setting it to body rotation _headYaw = _bodyYaw; _headPitch = _bodyPitch; _headRoll = _bodyRoll; //---------------------------------------------------------- // decay body yaw delta //---------------------------------------------------------- const float TEST_YAW_DECAY = 5.0; _bodyYawDelta *= (1.0 - TEST_YAW_DECAY * deltaTime); //---------------------------------------------------------- // add thrust to velocity //---------------------------------------------------------- _avatar.velocity += glm::dvec3(_avatar.thrust * deltaTime); //---------------------------------------------------------- // update position by velocity //---------------------------------------------------------- _bodyPosition += (glm::vec3)_avatar.velocity * deltaTime; //---------------------------------------------------------- // decay velocity //---------------------------------------------------------- const float LIN_VEL_DECAY = 5.0; _avatar.velocity *= ( 1.0 - LIN_VEL_DECAY * deltaTime ); if (!noise) { // Decay back toward center _headPitch *= (1.0f - DECAY*2*deltaTime); _headYaw *= (1.0f - DECAY*2*deltaTime); _headRoll *= (1.0f - DECAY*2*deltaTime); } else { // Move toward new target _headPitch += (PitchTarget - _headPitch)*10*deltaTime; // (1.f - DECAY*deltaTime)*Pitch + ; _headYaw += (YawTarget - _headYaw)*10*deltaTime; // (1.f - DECAY*deltaTime); _headRoll *= (1.f - DECAY*deltaTime); } leanForward *= (1.f - DECAY*30.f*deltaTime); leanSideways *= (1.f - DECAY*30.f*deltaTime); // Update where the avatar's eyes are // // First, decide if we are making eye contact or not if (randFloat() < 0.005) { eyeContact = !eyeContact; eyeContact = 1; if (!eyeContact) { // If we just stopped making eye contact,move the eyes markedly away EyeballPitch[0] = EyeballPitch[1] = EyeballPitch[0] + 5.0 + (randFloat() - 0.5)*10; EyeballYaw[0] = EyeballYaw[1] = EyeballYaw[0] + 5.0 + (randFloat()- 0.5)*5; } else { // If now making eye contact, turn head to look right at viewer SetNewHeadTarget(0,0); } } const float DEGREES_BETWEEN_VIEWER_EYES = 3; const float DEGREES_TO_VIEWER_MOUTH = 7; if (eyeContact) { // Should we pick a new eye contact target? if (randFloat() < 0.01) { // Choose where to look next if (randFloat() < 0.1) { eyeContactTarget = MOUTH; } else { if (randFloat() < 0.5) eyeContactTarget = LEFT_EYE; else eyeContactTarget = RIGHT_EYE; } } // Set eyeball pitch and yaw to make contact float eye_target_yaw_adjust = 0; float eye_target_pitch_adjust = 0; if (eyeContactTarget == LEFT_EYE) eye_target_yaw_adjust = DEGREES_BETWEEN_VIEWER_EYES; if (eyeContactTarget == RIGHT_EYE) eye_target_yaw_adjust = -DEGREES_BETWEEN_VIEWER_EYES; if (eyeContactTarget == MOUTH) eye_target_pitch_adjust = DEGREES_TO_VIEWER_MOUTH; EyeballPitch[0] = EyeballPitch[1] = -_headPitch + eye_target_pitch_adjust; EyeballYaw[0] = EyeballYaw[1] = -_headYaw + eye_target_yaw_adjust; } if (noise) { _headPitch += (randFloat() - 0.5)*0.2*NoiseEnvelope; _headYaw += (randFloat() - 0.5)*0.3*NoiseEnvelope; //PupilSize += (randFloat() - 0.5)*0.001*NoiseEnvelope; if (randFloat() < 0.005) MouthWidth = MouthWidthChoices[rand()%3]; if (!eyeContact) { if (randFloat() < 0.01) EyeballPitch[0] = EyeballPitch[1] = (randFloat() - 0.5)*20; if (randFloat() < 0.01) EyeballYaw[0] = EyeballYaw[1] = (randFloat()- 0.5)*10; } if ((randFloat() < 0.005) && (fabs(PitchTarget - _headPitch) < 1.0) && (fabs(YawTarget - _headYaw) < 1.0)) { SetNewHeadTarget((randFloat()-0.5)*20.0, (randFloat()-0.5)*45.0); } if (0) { // Pick new target PitchTarget = (randFloat() - 0.5)*45; YawTarget = (randFloat() - 0.5)*22; } if (randFloat() < 0.01) { EyebrowPitch[0] = EyebrowPitch[1] = BrowPitchAngle[rand()%3]; EyebrowRoll[0] = EyebrowRoll[1] = BrowRollAngle[rand()%5]; EyebrowRoll[1]*=-1; } } } //-------------------------------------------------------------------------------- // This is a workspace for testing avatar body collision detection and response //-------------------------------------------------------------------------------- void Head::updateBigSphereCollisionTest( float deltaTime ) { float myBodyApproximateBoundingRadius = 1.0f; glm::vec3 vectorFromMyBodyToBigSphere(_bodyPosition - _TEST_bigSpherePosition); bool jointCollision = false; float distanceToBigSphere = glm::length(vectorFromMyBodyToBigSphere); if ( distanceToBigSphere < myBodyApproximateBoundingRadius + _TEST_bigSphereRadius) { for (int b=0; b 0.0) { float amp = 1.0 - (distanceToBigSphereCenter / combinedRadius); glm::vec3 collisionForce = vectorFromJointToBigSphere * amp; _bone[b].springyVelocity += collisionForce * 8.0f * deltaTime; _avatar.velocity += collisionForce * 18.0f * deltaTime; } } } if ( jointCollision ) { //---------------------------------------------------------- // add gravity to velocity //---------------------------------------------------------- _avatar.velocity += glm::dvec3( 0.0, -1.0, 0.0 ) * 0.05; //---------------------------------------------------------- // ground collisions //---------------------------------------------------------- if ( _bodyPosition.y < 0.0 ) { _bodyPosition.y = 0.0; if ( _avatar.velocity.y < 0.0 ) { _avatar.velocity.y *= -0.7; } } } } } void Head::render(int faceToFace) { //--------------------------------------------------- // show avatar position //--------------------------------------------------- glColor4f( 0.5f, 0.5f, 0.5f, 0.6 ); glPushMatrix(); glTranslatef(_bodyPosition.x, _bodyPosition.y, _bodyPosition.z); glScalef( 0.03, 0.03, 0.03 ); glutSolidSphere( 1, 10, 10 ); glPopMatrix(); if ( usingBigSphereCollisionTest ) { //--------------------------------------------------- // show TEST big sphere //--------------------------------------------------- glColor4f( 0.5f, 0.6f, 0.8f, 0.7 ); glPushMatrix(); glTranslatef(_TEST_bigSpherePosition.x, _TEST_bigSpherePosition.y, _TEST_bigSpherePosition.z); glScalef( _TEST_bigSphereRadius, _TEST_bigSphereRadius, _TEST_bigSphereRadius ); glutSolidSphere( 1, 20, 20 ); glPopMatrix(); } //--------------------------------------------------- // show avatar orientation //--------------------------------------------------- renderOrientationDirections( _bone[ AVATAR_BONE_HEAD ].position, _bone[ AVATAR_BONE_HEAD ].orientation, 0.2f ); //--------------------------------------------------- // render body //--------------------------------------------------- renderBody(); //--------------------------------------------------- // render head //--------------------------------------------------- renderHead(faceToFace); //--------------------------------------------------------------------------- // if this is my avatar, then render my interactions with the other avatars //--------------------------------------------------------------------------- if ( _isMine ) { //--------------------------------------------------- // render other avatars (DEBUG TEST) //--------------------------------------------------- for (int o=0; o BROW_LIFT_THRESHOLD) browAudioLift += sqrt(audioAttack)/1000.0; browAudioLift *= .90; glPushMatrix(); glTranslatef(-interBrowDistance/2.0,0.4,0.45); for(side = 0; side < 2; side++) { glColor3fv(browColor); glPushMatrix(); glTranslatef(0, 0.35 + browAudioLift, 0); glRotatef(EyebrowPitch[side]/2.0, 1, 0, 0); glRotatef(EyebrowRoll[side]/2.0, 0, 0, 1); glScalef(browWidth, browThickness, 1); glutSolidCube(0.5); glPopMatrix(); glTranslatef(interBrowDistance, 0, 0); } glPopMatrix(); // Mouth glPushMatrix(); glTranslatef(0,-0.35,0.75); glColor3f(0,0,0); glRotatef(MouthPitch, 1, 0, 0); glRotatef(MouthYaw, 0, 0, 1); glScalef(MouthWidth*(.7 + sqrt(averageLoudness)/60.0), MouthHeight*(1.0 + sqrt(averageLoudness)/30.0), 1); glutSolidCube(0.5); glPopMatrix(); glTranslatef(0, 1.0, 0); glTranslatef(-interPupilDistance/2.0,-0.68,0.7); // Right Eye glRotatef(-10, 1, 0, 0); glColor3fv(eyeColor); glPushMatrix(); { glTranslatef(interPupilDistance/10.0, 0, 0.05); glRotatef(20, 0, 0, 1); glScalef(EyeballScaleX, EyeballScaleY, EyeballScaleZ); glutSolidSphere(0.25, 30, 30); } glPopMatrix(); // Right Pupil if (sphere == NULL) { sphere = gluNewQuadric(); gluQuadricTexture(sphere, GL_TRUE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gluQuadricOrientation(sphere, GLU_OUTSIDE); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, iris_texture_width, iris_texture_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, &iris_texture[0]); } glPushMatrix(); { glRotatef(EyeballPitch[1], 1, 0, 0); glRotatef(EyeballYaw[1] + PupilConverge, 0, 1, 0); glTranslatef(0,0,.35); glRotatef(-75,1,0,0); glScalef(1.0, 0.4, 1.0); glEnable(GL_TEXTURE_2D); gluSphere(sphere, PupilSize, 15, 15); glDisable(GL_TEXTURE_2D); } glPopMatrix(); // Left Eye glColor3fv(eyeColor); glTranslatef(interPupilDistance, 0, 0); glPushMatrix(); { glTranslatef(-interPupilDistance/10.0, 0, .05); glRotatef(-20, 0, 0, 1); glScalef(EyeballScaleX, EyeballScaleY, EyeballScaleZ); glutSolidSphere(0.25, 30, 30); } glPopMatrix(); // Left Pupil glPushMatrix(); { glRotatef(EyeballPitch[0], 1, 0, 0); glRotatef(EyeballYaw[0] - PupilConverge, 0, 1, 0); glTranslatef(0, 0, .35); glRotatef(-75, 1, 0, 0); glScalef(1.0, 0.4, 1.0); glEnable(GL_TEXTURE_2D); gluSphere(sphere, PupilSize, 15, 15); glDisable(GL_TEXTURE_2D); } glPopMatrix(); glPopMatrix(); } void Head::setHandMovement( glm::vec3 movement ) { _handBeingMoved = true; _movedHandOffset = movement; } AvatarMode Head::getMode() { return _mode; } void Head::initializeSkeleton() { for (int b=0; b 0.0f ) { glm::vec3 springDirection = springVector / length; float force = ( length - _bone[b].length ) * _springForce * deltaTime; _bone[ b ].springyVelocity -= springDirection * force; _bone[ _bone[b].parent ].springyVelocity += springDirection * force; } _bone[b].springyVelocity += ( _bone[b].position - _bone[b].springyPosition ) * _bone[b].springBodyTightness * deltaTime; float decay = 1.0 - _springVelocityDecay * deltaTime; if ( decay > 0.0 ) { _bone[b].springyVelocity *= decay; } else { _bone[b].springyVelocity = glm::vec3( 0.0f, 0.0f, 0.0f ); } _bone[b].springyPosition += _bone[b].springyVelocity; } } glm::vec3 Head::getHeadLookatDirection() { return glm::vec3 ( _avatar.orientation.getFront().x, _avatar.orientation.getFront().y, _avatar.orientation.getFront().z ); } glm::vec3 Head::getHeadLookatDirectionUp() { return glm::vec3 ( _avatar.orientation.getUp().x, _avatar.orientation.getUp().y, _avatar.orientation.getUp().z ); } glm::vec3 Head::getHeadLookatDirectionRight() { return glm::vec3 ( _avatar.orientation.getRight().x, _avatar.orientation.getRight().y, _avatar.orientation.getRight().z ); } glm::vec3 Head::getHeadPosition() { return glm::vec3 ( _bone[ AVATAR_BONE_HEAD ].position.x, _bone[ AVATAR_BONE_HEAD ].position.y, _bone[ AVATAR_BONE_HEAD ].position.z ); } void Head::updateHandMovement() { glm::vec3 transformedHandMovement; transformedHandMovement = _avatar.orientation.getRight() * -_movedHandOffset.x + _avatar.orientation.getUp() * -_movedHandOffset.y * 0.5f + _avatar.orientation.getFront() * -_movedHandOffset.y; _bone[ AVATAR_BONE_RIGHT_HAND ].position += transformedHandMovement; //if holding hands, add a pull to the hand... if ( _usingSprings ) { if ( _closestOtherAvatar != -1 ) { if ( _triggeringAction ) { /* glm::vec3 handShakePull( DEBUG_otherAvatarListPosition[ closestOtherAvatar ]); handShakePull -= _bone[ AVATAR_BONE_RIGHT_HAND ].position; handShakePull *= 1.0; transformedHandMovement += handShakePull; */ _bone[ AVATAR_BONE_RIGHT_HAND ].position = DEBUG_otherAvatarListPosition[ _closestOtherAvatar ]; } } } //------------------------------------------------------------------------------- // determine the arm vector //------------------------------------------------------------------------------- glm::vec3 armVector = _bone[ AVATAR_BONE_RIGHT_HAND ].position; armVector -= _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; //------------------------------------------------------------------------------- // test to see if right hand is being dragged beyond maximum arm length //------------------------------------------------------------------------------- float distance = glm::length( armVector ); //------------------------------------------------------------------------------- // if right hand is being dragged beyond maximum arm length... //------------------------------------------------------------------------------- if ( distance > _avatar.maxArmLength ) { //------------------------------------------------------------------------------- // reset right hand to be constrained to maximum arm length //------------------------------------------------------------------------------- _bone[ AVATAR_BONE_RIGHT_HAND ].position = _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; glm::vec3 armNormal = armVector / distance; armVector = armNormal * _avatar.maxArmLength; distance = _avatar.maxArmLength; glm::vec3 constrainedPosition = _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; constrainedPosition += armVector; _bone[ AVATAR_BONE_RIGHT_HAND ].position = constrainedPosition; } /* //------------------------------------------------------------------------------- // keep arm from going through av body... //------------------------------------------------------------------------------- glm::vec3 adjustedArmVector = _bone[ AVATAR_BONE_RIGHT_HAND ].position; adjustedArmVector -= _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; float rightComponent = glm::dot( adjustedArmVector, avatar.orientation.getRight() ); if ( rightComponent < 0.0 ) { _bone[ AVATAR_BONE_RIGHT_HAND ].position -= avatar.orientation.getRight() * rightComponent; } */ //----------------------------------------------------------------------------- // set elbow position //----------------------------------------------------------------------------- glm::vec3 newElbowPosition = _bone[ AVATAR_BONE_RIGHT_SHOULDER ].position; newElbowPosition += armVector * ONE_HALF; glm::vec3 perpendicular = glm::cross( _avatar.orientation.getFront(), armVector ); newElbowPosition += perpendicular * ( 1.0f - ( _avatar.maxArmLength / distance ) ) * ONE_HALF; _bone[ AVATAR_BONE_RIGHT_UPPER_ARM ].position = newElbowPosition; //----------------------------------------------------------------------------- // set wrist position //----------------------------------------------------------------------------- glm::vec3 vv( _bone[ AVATAR_BONE_RIGHT_HAND ].position ); vv -= _bone[ AVATAR_BONE_RIGHT_UPPER_ARM ].position; glm::vec3 newWristPosition = _bone[ AVATAR_BONE_RIGHT_UPPER_ARM ].position; newWristPosition += vv * 0.7f; _bone[ AVATAR_BONE_RIGHT_FOREARM ].position = newWristPosition; // Set the vector we send for hand position to other people to be our right hand setHandPosition(_bone[ AVATAR_BONE_RIGHT_HAND ].position); } void Head::renderBody() { //----------------------------------------- // Render bone positions as spheres //----------------------------------------- for (int b=0; b( (double)TRANSMITTER_COUNT/(msecsElapsed/1000.0) ); transmitterTimer = now; } /* NOTE: PR: Will add back in when ready to animate avatar hand // Add rotational forces to the hand const float ANG_VEL_SENSITIVITY = 4.0; const float ANG_VEL_THRESHOLD = 0.0; float angVelScale = ANG_VEL_SENSITIVITY*(1.0f/getTransmitterHz()); addAngularVelocity(fabs(gyrX*angVelScale)>ANG_VEL_THRESHOLD?gyrX*angVelScale:0, fabs(gyrZ*angVelScale)>ANG_VEL_THRESHOLD?gyrZ*angVelScale:0, fabs(-gyrY*angVelScale)>ANG_VEL_THRESHOLD?-gyrY*angVelScale:0); // Add linear forces to the hand //const float LINEAR_VEL_SENSITIVITY = 50.0; const float LINEAR_VEL_SENSITIVITY = 5.0; float linVelScale = LINEAR_VEL_SENSITIVITY*(1.0f/getTransmitterHz()); glm::vec3 linVel(linX*linVelScale, linZ*linVelScale, -linY*linVelScale); addVelocity(linVel); */ }