Merge remote-tracking branch 'origin/master'

This commit is contained in:
Stephen Birarda 2013-02-04 10:44:26 -08:00
commit fe1b7a65cd
6 changed files with 127 additions and 66 deletions

View file

@ -28,14 +28,18 @@ const float AMPLITUDE_RATIO_AT_90 = 0.5;
const short RING_BUFFER_FRAMES = 5;
const short RING_BUFFER_SIZE_SAMPLES = RING_BUFFER_FRAMES * BUFFER_LENGTH_SAMPLES;
const short JITTER_BUFFER_LENGTH_MSECS = 3;
const short JITTER_BUFFER_LENGTH_MSECS = 1;
const int SAMPLE_RATE = 22050;
const short NUM_AUDIO_SOURCES = 2;
const short ECHO_SERVER_TEST = 1;
char WORKCLUB_AUDIO_SERVER[] = "192.168.1.19";
char EC2_WEST_AUDIO_SERVER[] = "54.241.92.53";
const int AUDIO_UDP_LISTEN_PORT = 55444;
#define LOG_SAMPLE_DELAY 1
bool Audio::initialized;

View file

@ -47,10 +47,12 @@ Head::Head()
EyeballYaw[0] = EyeballYaw[1] = 0;
PitchTarget = YawTarget = 0;
NoiseEnvelope = 1.0;
PupilConverge = 5.0;
PupilConverge = 10.0;
leanForward = 0.0;
leanSideways = 0.0;
setNoise(0);
eyeContact = 1;
eyeContactTarget = LEFT_EYE;
setNoise(1);
}
void Head::reset()
@ -69,18 +71,18 @@ void Head::UpdatePos(float frametime, SerialInterface * serialInterface, int hea
float measured_roll_rate = serialInterface->getRelativeValue(ROLL_RATE);
// Update avatar head position based on measured gyro rates
const float HEAD_ROTATION_SCALE = 0.20;
const float HEAD_ROLL_SCALE = 0.50;
const float HEAD_LEAN_SCALE = 0.02;
const float HEAD_ROTATION_SCALE = 0.80;
const float HEAD_ROLL_SCALE = 0.80;
const float HEAD_LEAN_SCALE = 0.01;
if (head_mirror) {
addYaw(measured_yaw_rate * HEAD_ROTATION_SCALE * frametime);
addYaw(-measured_yaw_rate * HEAD_ROTATION_SCALE * frametime);
addPitch(measured_pitch_rate * -HEAD_ROTATION_SCALE * frametime);
addRoll(measured_roll_rate * HEAD_ROLL_SCALE * frametime);
addLean(measured_lateral_accel * frametime * HEAD_LEAN_SCALE, measured_fwd_accel*frametime * HEAD_LEAN_SCALE);
addRoll(-measured_roll_rate * HEAD_ROLL_SCALE * frametime);
addLean(-measured_lateral_accel * frametime * HEAD_LEAN_SCALE, -measured_fwd_accel*frametime * HEAD_LEAN_SCALE);
} else {
addYaw(measured_yaw_rate * -HEAD_ROTATION_SCALE * frametime);
addPitch(measured_pitch_rate * -HEAD_ROTATION_SCALE * frametime);
addRoll(measured_roll_rate * HEAD_ROLL_SCALE * frametime);
addRoll(-measured_roll_rate * HEAD_ROLL_SCALE * frametime);
addLean(measured_lateral_accel * frametime * -HEAD_LEAN_SCALE, measured_fwd_accel*frametime * HEAD_LEAN_SCALE);
}
}
@ -111,28 +113,69 @@ void Head::simulate(float deltaTime)
}
else {
// Move toward new target
Pitch += (PitchTarget - Pitch)*22*deltaTime; // (1.f - DECAY*deltaTime)*Pitch + ;
Yaw += (YawTarget - Yaw)*22*deltaTime; // (1.f - DECAY*deltaTime);
Pitch += (PitchTarget - Pitch)*10*deltaTime; // (1.f - DECAY*deltaTime)*Pitch + ;
Yaw += (YawTarget - Yaw)*10*deltaTime; // (1.f - DECAY*deltaTime);
Roll *= (1.f - DECAY*deltaTime);
}
leanForward *= (1.f - DECAY*30.f*deltaTime);
leanSideways *= (1.f - DECAY*30.f*deltaTime);
// Update where the avatar's eyes are
//
// First, decide if we are making eye contact or not
if (randFloat() < 0.005) {
eyeContact = !eyeContact;
eyeContact = 1;
if (!eyeContact) {
// If we just stopped making eye contact,move the eyes markedly away
EyeballPitch[0] = EyeballPitch[1] = EyeballPitch[0] + 5.0 + (randFloat() - 0.5)*10;
EyeballYaw[0] = EyeballYaw[1] = EyeballYaw[0] + 5.0 + (randFloat()- 0.5)*5;
} else {
// If now making eye contact, turn head to look right at viewer
SetNewHeadTarget(0,0);
}
}
const float DEGREES_BETWEEN_VIEWER_EYES = 3;
const float DEGREES_TO_VIEWER_MOUTH = 7;
if (eyeContact) {
// Should we pick a new eye contact target?
if (randFloat() < 0.01) {
// Choose where to look next
if (randFloat() < 0.1) {
eyeContactTarget = MOUTH;
} else {
if (randFloat() < 0.5) eyeContactTarget = LEFT_EYE; else eyeContactTarget = RIGHT_EYE;
}
}
}
if (noise)
{
Pitch += (randFloat() - 0.5)*0.05*NoiseEnvelope;
Yaw += (randFloat() - 0.5)*0.1*NoiseEnvelope;
PupilSize += (randFloat() - 0.5)*0.001*NoiseEnvelope;
Pitch += (randFloat() - 0.5)*0.2*NoiseEnvelope;
Yaw += (randFloat() - 0.5)*0.3*NoiseEnvelope;
//PupilSize += (randFloat() - 0.5)*0.001*NoiseEnvelope;
if (randFloat() < 0.005) MouthWidth = MouthWidthChoices[rand()%3];
//if (randFloat() < 0.005) Pitch = (randFloat() - 0.5)*45;
//if (randFloat() < 0.005) Yaw = (randFloat() - 0.5)*45;
//if (randFloat() < 0.001) Roll = (randFloat() - 0.5)*45;
//if (randFloat() < 0.003) PupilSize = ((randFloat() - 0.5)*0.25+1)*NominalPupilSize;
if (randFloat() < 0.01) EyeballPitch[0] = EyeballPitch[1] = (randFloat() - 0.5)*20;
if (randFloat() < 0.01) EyeballYaw[0] = EyeballYaw[1] = (randFloat()- 0.5)*10;
if (!eyeContact) {
if (randFloat() < 0.01) EyeballPitch[0] = EyeballPitch[1] = (randFloat() - 0.5)*20;
if (randFloat() < 0.01) EyeballYaw[0] = EyeballYaw[1] = (randFloat()- 0.5)*10;
} else {
float eye_target_yaw_adjust = 0;
float eye_target_pitch_adjust = 0;
if (eyeContactTarget == LEFT_EYE) eye_target_yaw_adjust = DEGREES_BETWEEN_VIEWER_EYES;
if (eyeContactTarget == RIGHT_EYE) eye_target_yaw_adjust = -DEGREES_BETWEEN_VIEWER_EYES;
if (eyeContactTarget == MOUTH) eye_target_pitch_adjust = DEGREES_TO_VIEWER_MOUTH;
EyeballPitch[0] = EyeballPitch[1] = -Pitch + eye_target_pitch_adjust;
EyeballYaw[0] = EyeballYaw[1] = -Yaw + eye_target_yaw_adjust;
}
if ((randFloat() < 0.005) && (fabs(PitchTarget - Pitch) < 1.0) && (fabs(YawTarget - Yaw) < 1.0))
{
@ -220,7 +263,6 @@ void Head::render()
glPopMatrix();
glTranslatef(0, 1.0, 0);
glTranslatef(-interPupilDistance/2.0,-0.68,0.7);
// Right Eye
@ -235,12 +277,14 @@ void Head::render()
}
glPopMatrix();
// Right Pupil
glPushMatrix();
glPushMatrix();
glRotatef(EyeballPitch[1], 1, 0, 0);
glRotatef(EyeballYaw[1] + PupilConverge, 0, 1, 0);
glTranslatef(0,0,.25);
glColor3f(0,0,0);
glutSolidSphere(PupilSize, 15, 15);
glTranslatef(0,0,.35);
if (!eyeContact) glColor3f(0,0,0); else glColor3f(0.1,0.1,1.0);
//glRotatef(90,0,1,0);
glutSolidSphere(PupilSize, 15, 15);
glPopMatrix();
// Left Eye
glColor3fv(eyeColor);
@ -257,9 +301,10 @@ void Head::render()
glPushMatrix();
glRotatef(EyeballPitch[0], 1, 0, 0);
glRotatef(EyeballYaw[0] - PupilConverge, 0, 1, 0);
glTranslatef(0,0,.25);
glColor3f(0,0,0);
glutSolidSphere(PupilSize, 15, 15);
glTranslatef(0,0,.35);
if (!eyeContact) glColor3f(0,0,0); else glColor3f(0.1,0.1,1.0);
//glRotatef(90,0,1,0);
glutSolidSphere(PupilSize, 15, 15);
glPopMatrix();
}

View file

@ -15,6 +15,8 @@
#include <GLUT/glut.h>
#include "SerialInterface.h"
enum eyeContactTargets {LEFT_EYE, RIGHT_EYE, MOUTH};
class Head {
float noise;
float Pitch;
@ -39,17 +41,15 @@ class Head {
float MouthHeight;
float leanForward;
float leanSideways;
float PitchTarget;
float YawTarget;
float NoiseEnvelope;
float PupilConverge;
glm::vec3 position;
int eyeContact;
eyeContactTargets eyeContactTarget;
void readSensors();
public:
Head(void);

View file

@ -22,6 +22,8 @@ char serial_buffer[MAX_BUFFER];
int serial_buffer_pos = 0;
int samples_total = 0;
const int ZERO_OFFSET = 2048;
// Init the serial port to the specified values
int SerialInterface::init(char * portname, int baud)
{
@ -79,6 +81,7 @@ void SerialInterface::renderLevels(int width, int height) {
char val[10];
for(i = 0; i < NUM_CHANNELS; i++)
{
// Actual value
glLineWidth(2.0);
glColor4f(1, 1, 1, 1);
@ -93,12 +96,14 @@ void SerialInterface::renderLevels(int width, int height) {
glVertex2f(disp_x + 2, height*(0.25 + 0.75f*getTrailingValue(i)/4096));
glEnd();
/*
glColor3f(1,0,0);
glBegin(GL_LINES);
glLineWidth(2.0);
glVertex2f(disp_x - 10, height*0.5 - getRelativeValue(i));
glVertex2f(disp_x + 10, height*0.5 - getRelativeValue(i));
glLineWidth(4.0);
glVertex2f(disp_x - 10, height*0.5 - getValue(i)/4096);
glVertex2f(disp_x + 10, height*0.5 - getValue(i)/4096);
glEnd();
*/
sprintf(val, "%d", getValue(i));
drawtext(disp_x-GAP/2, (height*0.95)+2, 0.08, 90, 1.0, 0, val, 0, 1, 0);
@ -120,7 +125,7 @@ void SerialInterface::renderLevels(int width, int height) {
void SerialInterface::readData() {
// This array sets the rate of trailing averaging for each channel.
// If the sensor rate is 100Hz, 0.001 will make the long term average a 10-second average
const float AVG_RATE[] = {0.001, 0.001, 0.001, 0.001, 0.001, 0.001};
const float AVG_RATE[] = {0.01, 0.01, 0.01, 0.01, 0.01, 0.01};
char bufchar[1];
while (read(serial_fd, bufchar, 1) > 0)
{

View file

@ -20,13 +20,13 @@
#define NUM_CHANNELS 6
// Acceleration sensors, in screen/world coord system (X = left/right, Y = Up/Down, Z = fwd/back)
#define ACCEL_X 4
#define ACCEL_Y 5
#define ACCEL_Z 3
#define ACCEL_X 3
#define ACCEL_Y 4
#define ACCEL_Z 5
// Gyro sensors, in coodinate system of head/airplane
#define PITCH_RATE 0
#define YAW_RATE 1
#define PITCH_RATE 1
#define YAW_RATE 0
#define ROLL_RATE 2
class SerialInterface {

View file

@ -1,23 +1,26 @@
/*
Read a set of analog input lines and echo their readings over the serial port with averaging
*/
// ADC PIN MAPPINGS
//
// 15,16 = Head Pitch, Yaw gyro
// 17,18,19 = Head Accelerometer
// Read Gyro and accelerometer data, send over serialUSB to computer for processing.
//
// Written by Philip, 2012, for High Fidelity, Inc.
//
// PIN WIRING: Connect input sensors to the channels in following manner
//
// AIN 10: Yaw Gyro (shaking your head 'no')
// AIN 16: Pitch Gyro (nodding your head 'yes')
// AIN 17: Roll Gyro (looking quizzical, tilting your head)
// AIN 18: Lateral acceleration (moving from side-to-side in front of your monitor)
// AIN 19: Up/Down acceleration (sitting up/ducking in front of your monitor)
// AIN 20: Forward/Back acceleration (Toward or away from your monitor)
#define NUM_CHANNELS 6
#define MSECS_PER_SAMPLE 15
#define MSECS_PER_SAMPLE 10
#define LED_PIN 12
int inputPins[NUM_CHANNELS] = {19,20,18,15,16,17};
int LED_on = 0;
unsigned int total_count = 0;
int inputPins[NUM_CHANNELS] = {10,16,17,18,19,20};
int LED = 0;
unsigned int samplesSent = 0;
unsigned int time;
int measured[NUM_CHANNELS];
@ -42,30 +45,34 @@ void loop()
{
int i;
sampleCount++;
total_count++;
if (total_count % 20172 == 0) {
LED_on = !LED_on;
if (LED_on) digitalWrite(LED_PIN, HIGH);
else digitalWrite(LED_PIN, LOW);
}
for (i = 0; i < NUM_CHANNELS; i++) {
accumulate[i] += analogRead(inputPins[i]);
}
if ((millis() - time) >= MSECS_PER_SAMPLE) {
samplesSent++;
time = millis();
for (i = 0; i < NUM_CHANNELS; i++) {
measured[i] = accumulate[i] / sampleCount;
SerialUSB.print(measured[i]);
SerialUSB.print(" ");
accumulate[i] = 0;
}
}
if ((samplesSent % 100 == 0) && (samplesSent % 150 == 0)) {
LED = !LED;
digitalWrite(LED_PIN, LED);
digitalWrite(BOARD_LED_PIN, LED);
}
SerialUSB.print(sampleCount);
SerialUSB.print(" ");
if (LED_on) SerialUSB.print("1");
else SerialUSB.print("0");
if (LED)
SerialUSB.print("1");
else
SerialUSB.print("0");
SerialUSB.println("");
sampleCount = 0;
}
}