Merge pull request #7676 from jherico/perf_testing

Manually generate mipmaps for textures while loading
This commit is contained in:
samcake 2016-04-18 15:09:12 -07:00
commit dccf549118
15 changed files with 737 additions and 260 deletions

View file

@ -0,0 +1,11 @@
var qml = Script.resolvePath('playaPerformanceTest.qml');
qmlWindow = new OverlayWindow({
title: 'Test Qml',
source: qml,
height: 320,
width: 640,
toolWindow: false,
visible: true
});

View file

@ -0,0 +1,193 @@
import QtQuick 2.5
import QtQuick.Controls 1.4
Rectangle {
id: root
width: parent ? parent.width : 100
height: parent ? parent.height : 100
signal sendToScript(var message);
property var values: [];
property var host: AddressManager.hostname
Component.onCompleted: {
Window.domainChanged.connect(function(newDomain){
if (newDomain !== root.host) {
root.host = AddressManager.hostname;
}
});
}
onHostChanged: {
if (root.running) {
if (host !== "Dreaming" && host !== "Playa") {
return;
}
console.log("PERF new domain " + host)
if (host === "Dreaming") {
AddressManager.handleLookupString("Playa");
return;
}
if (host === "Playa") {
console.log("PERF starting timers and frame timing");
// If we've arrived, start running the test
FrameTimings.start();
rotationTimer.start();
stopTimer.start();
}
}
}
function startTest() {
console.log("PERF startTest()");
root.running = true
console.log("PERF current host: " + AddressManager.hostname)
// If we're already in playa, we need to go somewhere else...
if ("Playa" === AddressManager.hostname) {
console.log("PERF Navigating to dreaming")
AddressManager.handleLookupString("Dreaming/0,0,0");
} else {
console.log("PERF Navigating to playa")
AddressManager.handleLookupString("Playa");
}
}
function stopTest() {
console.log("PERF stopTest()");
root.running = false;
stopTimer.stop();
rotationTimer.stop();
FrameTimings.finish();
root.values = FrameTimings.getValues();
AddressManager.handleLookupString("Dreaming/0,0,0");
resultGraph.requestPaint();
console.log("PERF Value Count: " + root.values.length);
console.log("PERF Max: " + FrameTimings.max);
console.log("PERF Min: " + FrameTimings.min);
console.log("PERF Avg: " + FrameTimings.mean);
console.log("PERF StdDev: " + FrameTimings.standardDeviation);
}
function yaw(a) {
var y = -Math.sin( a / 2.0 );
var w = Math.cos( a / 2.0 );
var l = Math.sqrt((y * y) + (w * w));
return Qt.quaternion(w / l, 0, y / l, 0);
}
function rotate() {
MyAvatar.setOrientationVar(yaw(Date.now() / 1000));
}
property bool running: false
Timer {
id: stopTimer
interval: 30 * 1000
repeat: false
running: false
onTriggered: stopTest();
}
Timer {
id: rotationTimer
interval: 100
repeat: true
running: false
onTriggered: rotate();
}
Row {
id: row
anchors { left: parent.left; right: parent.right; }
spacing: 8
Button {
text: root.running ? "Stop" : "Run"
onClicked: root.running ? stopTest() : startTest();
}
}
// Rectangle {
// anchors { left: parent.left; right: parent.right; top: row.bottom; topMargin: 8; bottom: parent.bottom; }
// //anchors.fill: parent
// color: "#7fff0000"
// }
// Return the maximum value from a set of values
function vv(i, max) {
var perValue = values.length / max;
var start = Math.floor(perValue * i);
var end = Math.min(values.length, Math.floor(start + perValue));
var result = 0;
for (var j = start; j <= end; ++j) {
result = Math.max(result, values[j]);
}
return result;
}
Canvas {
id: resultGraph
anchors { left: parent.left; right: parent.right; top: row.bottom; margins: 16; bottom: parent.bottom; }
property real maxValue: 200;
property real perFrame: 10000;
property real k1: (5 / maxValue) * height;
property real k2: (10 / maxValue) * height;
property real k3: (100 / maxValue) * height;
onPaint: {
var ctx = getContext("2d");
if (values.length === 0) {
ctx.fillStyle = Qt.rgba(1, 0, 0, 1);
ctx.fillRect(0, 0, width, height);
return;
}
//ctx.setTransform(1, 0, 0, -1, 0, 0);
ctx.fillStyle = Qt.rgba(0, 0, 0, 1);
ctx.fillRect(0, 0, width, height);
ctx.strokeStyle= "gray";
ctx.lineWidth="1";
ctx.beginPath();
for (var i = 0; i < width; ++i) {
var value = vv(i, width); //values[Math.min(i, values.length - 1)];
value /= 10000;
value /= maxValue;
ctx.moveTo(i, height);
ctx.lineTo(i, height - (height * value));
}
ctx.stroke();
ctx.strokeStyle= "green";
ctx.lineWidth="2";
ctx.beginPath();
var lineHeight = height - k1;
ctx.moveTo(0, lineHeight);
ctx.lineTo(width, lineHeight);
ctx.stroke();
ctx.strokeStyle= "yellow";
ctx.lineWidth="2";
ctx.beginPath();
lineHeight = height - k2;
ctx.moveTo(0, lineHeight);
ctx.lineTo(width, lineHeight);
ctx.stroke();
ctx.strokeStyle= "red";
ctx.lineWidth="2";
ctx.beginPath();
lineHeight = height - k3;
ctx.moveTo(0, lineHeight);
ctx.lineTo(width, lineHeight);
ctx.stroke();
}
}
}

View file

@ -147,6 +147,8 @@
#include "Util.h"
#include "InterfaceParentFinder.h"
#include "FrameTimingsScriptingInterface.h"
// On Windows PC, NVidia Optimus laptop, we want to enable NVIDIA GPU
// FIXME seems to be broken.
#if defined(Q_OS_WIN)
@ -1337,6 +1339,8 @@ void Application::initializeGL() {
InfoView::show(INFO_HELP_PATH, true);
}
FrameTimingsScriptingInterface _frameTimingsScriptingInterface;
extern void setupPreferences();
void Application::initializeUi() {
@ -1381,6 +1385,8 @@ void Application::initializeUi() {
rootContext->setContextProperty("Messages", DependencyManager::get<MessagesClient>().data());
rootContext->setContextProperty("Recording", DependencyManager::get<RecordingScriptingInterface>().data());
rootContext->setContextProperty("Preferences", DependencyManager::get<Preferences>().data());
rootContext->setContextProperty("AddressManager", DependencyManager::get<AddressManager>().data());
rootContext->setContextProperty("FrameTimings", &_frameTimingsScriptingInterface);
rootContext->setContextProperty("TREE_SCALE", TREE_SCALE);
rootContext->setContextProperty("Quat", new Quat());
@ -1424,6 +1430,7 @@ void Application::initializeUi() {
rootContext->setContextProperty("Reticle", getApplicationCompositor().getReticleInterface());
rootContext->setContextProperty("ApplicationCompositor", &getApplicationCompositor());
_glWidget->installEventFilter(offscreenUi.data());
offscreenUi->setMouseTranslator([=](const QPointF& pt) {
@ -1466,9 +1473,9 @@ void Application::initializeUi() {
});
}
void Application::paintGL() {
updateHeartbeat();
// Some plugins process message events, potentially leading to
// re-entering a paint event. don't allow further processing if this
// happens
@ -1486,6 +1493,7 @@ void Application::paintGL() {
_frameCount++;
_frameCounter.increment();
auto lastPaintBegin = usecTimestampNow();
PROFILE_RANGE_EX(__FUNCTION__, 0xff0000ff, (uint64_t)_frameCount);
PerformanceTimer perfTimer("paintGL");
@ -1738,6 +1746,9 @@ void Application::paintGL() {
batch.resetStages();
});
}
uint64_t lastPaintDuration = usecTimestampNow() - lastPaintBegin;
_frameTimingsScriptingInterface.addValue(lastPaintDuration);
}
void Application::runTests() {

View file

@ -0,0 +1,53 @@
//
// Created by Bradley Austin Davis on 2016/04/04
// Copyright 2013-2016 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "FrameTimingsScriptingInterface.h"
#include <TextureCache.h>
void FrameTimingsScriptingInterface::start() {
_values.clear();
DependencyManager::get<TextureCache>()->setUnusedResourceCacheSize(0);
_values.reserve(8192);
_active = true;
}
void FrameTimingsScriptingInterface::addValue(uint64_t value) {
if (_active) {
_values.push_back(value);
}
}
void FrameTimingsScriptingInterface::finish() {
_active = false;
uint64_t total = 0;
_min = std::numeric_limits<uint64_t>::max();
_max = std::numeric_limits<uint64_t>::lowest();
size_t count = _values.size();
for (size_t i = 0; i < count; ++i) {
const uint64_t& value = _values[i];
_max = std::max(_max, value);
_min = std::min(_min, value);
total += value;
}
_mean = (float)total / (float)count;
float deviationTotal = 0;
for (size_t i = 0; i < count; ++i) {
float deviation = _values[i] - _mean;
deviationTotal += deviation*deviation;
}
_stdDev = sqrt(deviationTotal / (float)count);
}
QVariantList FrameTimingsScriptingInterface::getValues() const {
QVariantList result;
for (quint64 v : _values) {
result << QVariant(v);
}
return result;
}

View file

@ -0,0 +1,38 @@
//
// Created by Bradley Austin Davis on 2016/04/04
// Copyright 2013-2016 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#pragma once
#include <stdint.h>
#include <QtCore/QObject>
class FrameTimingsScriptingInterface : public QObject {
Q_OBJECT
Q_PROPERTY(float mean READ getMean CONSTANT)
Q_PROPERTY(float max READ getMax CONSTANT)
Q_PROPERTY(float min READ getMin CONSTANT)
Q_PROPERTY(float standardDeviation READ getStandardDeviation CONSTANT)
public:
Q_INVOKABLE void start();
Q_INVOKABLE void addValue(uint64_t value);
Q_INVOKABLE void finish();
Q_INVOKABLE QVariantList getValues() const;
uint64_t getMax() const { return _max; }
uint64_t getMin() const { return _min; }
float getStandardDeviation() const { return _stdDev; }
float getMean() const { return _mean; }
protected:
std::vector<uint64_t> _values;
bool _active { false };
uint64_t _max { 0 };
uint64_t _min { 0 };
float _stdDev { 0 };
float _mean { 0 };
};

View file

@ -204,6 +204,15 @@ MyAvatar::~MyAvatar() {
_lookAtTargetAvatar.reset();
}
void MyAvatar::setOrientationVar(const QVariant& newOrientationVar) {
Avatar::setOrientation(quatFromVariant(newOrientationVar));
}
QVariant MyAvatar::getOrientationVar() const {
return quatToVariant(Avatar::getOrientation());
}
// virtual
void MyAvatar::simulateAttachments(float deltaTime) {
// don't update attachments here, do it in harvestResultsFromPhysicsSimulation()

View file

@ -105,6 +105,10 @@ public:
// thread safe
Q_INVOKABLE glm::mat4 getSensorToWorldMatrix() const;
Q_INVOKABLE void setOrientationVar(const QVariant& newOrientationVar);
Q_INVOKABLE QVariant getOrientationVar() const;
// Pass a recent sample of the HMD to the avatar.
// This can also update the avatar's position to follow the HMD
// as it moves through the world.

View file

@ -126,7 +126,7 @@ ShapeWrapperPtr loadPlane(ProgramPtr program, float aspect) {
}
ShapeWrapperPtr loadSkybox(ProgramPtr program) {
return ShapeWrapperPtr(new shapes::ShapeWrapper({ { "Position" } }, shapes::SkyBox(), *program));
return ShapeWrapperPtr(new shapes::ShapeWrapper(std::initializer_list<std::string>{ "Position" }, shapes::SkyBox(), *program));
}
// Return a point's cartesian coordinates on a sphere from pitch and yaw

View file

@ -139,7 +139,7 @@ public:
GLuint _virtualSize; // theorical size as expected
GLuint _numLevels{ 0 };
void transferMip(GLenum target, const Texture::PixelsPointer& mip) const;
void transferMip(uint16_t mipLevel, uint8_t face = 0) const;
// The owning texture
const Texture& _gpuTexture;

View file

@ -93,25 +93,22 @@ void GLBackend::GLTexture::createTexture() {
(void)CHECK_GL_ERROR();
// Fixme: this usage of TexStorage doesn;t work wtih compressed texture, altuogh it should.
// GO through the process of allocating the correct storage
/* if (GLEW_VERSION_4_2 && !texture.getTexelFormat().isCompressed()) {
glTexStorage2D(_target, _numLevels, texelFormat.internalFormat, width, height);
(void)CHECK_GL_ERROR();
} else*/
{
if (GLEW_VERSION_4_2 && !_gpuTexture.getTexelFormat().isCompressed()) {
glTexStorage2D(_target, _numLevels, texelFormat.internalFormat, width, height);
(void)CHECK_GL_ERROR();
} else {
glTexParameteri(_target, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(_target, GL_TEXTURE_MAX_LEVEL, _numLevels - 1);
// for (int l = 0; l < _numLevels; l++) {
{ int l = 0;
if (_gpuTexture.getType() == gpu::Texture::TEX_CUBE) {
for (size_t face = 0; face < CUBE_NUM_FACES; face++) {
glTexImage2D(CUBE_FACE_LAYOUT[face], l, texelFormat.internalFormat, width, height, 0, texelFormat.format, texelFormat.type, NULL);
for (uint16_t l = 0; l < _numLevels; l++) {
if (_gpuTexture.getType() == gpu::Texture::TEX_CUBE) {
for (size_t face = 0; face < CUBE_NUM_FACES; face++) {
glTexImage2D(CUBE_FACE_LAYOUT[face], l, texelFormat.internalFormat, width, height, 0, texelFormat.format, texelFormat.type, NULL);
}
} else {
glTexImage2D(_target, l, texelFormat.internalFormat, width, height, 0, texelFormat.format, texelFormat.type, NULL);
}
} else {
glTexImage2D(_target, l, texelFormat.internalFormat, width, height, 0, texelFormat.format, texelFormat.type, NULL);
}
width = std::max(1, (width / 2));
height = std::max(1, (height / 2));
width = std::max(1, (width / 2));
height = std::max(1, (height / 2));
}
(void)CHECK_GL_ERROR();
}
@ -213,9 +210,13 @@ bool GLBackend::GLTexture::isReady() const {
}
// Move content bits from the CPU to the GPU for a given mip / face
void GLBackend::GLTexture::transferMip(GLenum target, const Texture::PixelsPointer& mip) const {
void GLBackend::GLTexture::transferMip(uint16_t mipLevel, uint8_t face) const {
auto mip = _gpuTexture.accessStoredMipFace(mipLevel, face);
GLTexelFormat texelFormat = GLTexelFormat::evalGLTexelFormat(_gpuTexture.getTexelFormat(), mip->getFormat());
glTexSubImage2D(target, 0, 0, 0, _gpuTexture.getWidth(), _gpuTexture.getHeight(), texelFormat.format, texelFormat.type, mip->readData());
GLenum target = _target == GL_TEXTURE_2D ? GL_TEXTURE_2D : CUBE_FACE_LAYOUT[face];
uvec2 size = uvec2(_gpuTexture.getWidth(), _gpuTexture.getHeight());
size >>= mipLevel;
glTexSubImage2D(target, mipLevel, 0, 0, size.x, size.y, texelFormat.format, texelFormat.type, mip->readData());
(void)CHECK_GL_ERROR();
}
@ -234,16 +235,20 @@ void GLBackend::GLTexture::transfer() const {
// GO through the process of allocating the correct storage and/or update the content
switch (_gpuTexture.getType()) {
case Texture::TEX_2D:
if (_gpuTexture.isStoredMipFaceAvailable(0)) {
transferMip(GL_TEXTURE_2D, _gpuTexture.accessStoredMipFace(0));
for (uint16_t i = 0; i < Sampler::MAX_MIP_LEVEL; ++i) {
if (_gpuTexture.isStoredMipFaceAvailable(i)) {
transferMip(i);
}
}
break;
case Texture::TEX_CUBE:
// transfer pixels from each faces
for (uint8_t f = 0; f < CUBE_NUM_FACES; f++) {
if (_gpuTexture.isStoredMipFaceAvailable(0, f)) {
transferMip(CUBE_FACE_LAYOUT[f], _gpuTexture.accessStoredMipFace(0, f));
for (uint16_t i = 0; i < Sampler::MAX_MIP_LEVEL; ++i) {
if (_gpuTexture.isStoredMipFaceAvailable(i, f)) {
transferMip(i, f);
}
}
}
break;
@ -269,12 +274,21 @@ void GLBackend::GLTexture::postTransfer() {
// At this point the mip pixels have been loaded, we can notify the gpu texture to abandon it's memory
switch (_gpuTexture.getType()) {
case Texture::TEX_2D:
_gpuTexture.notifyMipFaceGPULoaded(0, 0);
for (uint16_t i = 0; i < Sampler::MAX_MIP_LEVEL; ++i) {
if (_gpuTexture.isStoredMipFaceAvailable(i)) {
_gpuTexture.notifyMipFaceGPULoaded(i);
}
}
break;
case Texture::TEX_CUBE:
for (uint8_t f = 0; f < CUBE_NUM_FACES; ++f) {
_gpuTexture.notifyMipFaceGPULoaded(0, f);
// transfer pixels from each faces
for (uint8_t f = 0; f < CUBE_NUM_FACES; f++) {
for (uint16_t i = 0; i < Sampler::MAX_MIP_LEVEL; ++i) {
if (_gpuTexture.isStoredMipFaceAvailable(i, f)) {
_gpuTexture.notifyMipFaceGPULoaded(i, f);
}
}
}
break;
@ -345,7 +359,7 @@ GLuint GLBackend::getTextureID(const TexturePointer& texture, bool sync) {
} else {
object = Backend::getGPUObject<GLBackend::GLTexture>(*texture);
}
if (object) {
if (object && object->getSyncState() == GLTexture::Idle) {
return object->_texture;
} else {
return 0;

View file

@ -428,7 +428,7 @@ public:
Stamp getSamplerStamp() const { return _samplerStamp; }
// Only callable by the Backend
void notifyMipFaceGPULoaded(uint16 level, uint8 face) const { return _storage->notifyMipFaceGPULoaded(level, face); }
void notifyMipFaceGPULoaded(uint16 level, uint8 face = 0) const { return _storage->notifyMipFaceGPULoaded(level, face); }
const GPUObjectPointer gpuObject {};

View file

@ -154,21 +154,63 @@ NetworkTexturePointer TextureCache::getTexture(const QUrl& url, TextureType type
return ResourceCache::getResource(url, QUrl(), content.isEmpty(), &extra).staticCast<NetworkTexture>();
}
/// Returns a texture version of an image file
gpu::TexturePointer TextureCache::getImageTexture(const QString& path) {
QImage image = QImage(path).mirrored(false, true);
gpu::Element formatGPU = gpu::Element(gpu::VEC3, gpu::NUINT8, gpu::RGB);
gpu::Element formatMip = gpu::Element(gpu::VEC3, gpu::NUINT8, gpu::RGB);
if (image.hasAlphaChannel()) {
formatGPU = gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::RGBA);
formatMip = gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::BGRA);
TextureCache::TextureLoaderFunc getTextureLoaderForType(TextureType type) {
switch (type) {
case ALBEDO_TEXTURE: {
return model::TextureUsage::createAlbedoTextureFromImage;
break;
}
case EMISSIVE_TEXTURE: {
return model::TextureUsage::createEmissiveTextureFromImage;
break;
}
case LIGHTMAP_TEXTURE: {
return model::TextureUsage::createLightmapTextureFromImage;
break;
}
case CUBE_TEXTURE: {
return model::TextureUsage::createCubeTextureFromImage;
break;
}
case BUMP_TEXTURE: {
return model::TextureUsage::createNormalTextureFromBumpImage;
break;
}
case NORMAL_TEXTURE: {
return model::TextureUsage::createNormalTextureFromNormalImage;
break;
}
case ROUGHNESS_TEXTURE: {
return model::TextureUsage::createRoughnessTextureFromImage;
break;
}
case GLOSS_TEXTURE: {
return model::TextureUsage::createRoughnessTextureFromGlossImage;
break;
}
case SPECULAR_TEXTURE: {
return model::TextureUsage::createMetallicTextureFromImage;
break;
}
case CUSTOM_TEXTURE: {
Q_ASSERT(false);
return TextureCache::TextureLoaderFunc();
break;
}
case DEFAULT_TEXTURE:
default: {
return model::TextureUsage::create2DTextureFromImage;
break;
}
}
gpu::TexturePointer texture = gpu::TexturePointer(
gpu::Texture::create2D(formatGPU, image.width(), image.height(),
gpu::Sampler(gpu::Sampler::FILTER_MIN_MAG_MIP_LINEAR)));
texture->assignStoredMip(0, formatMip, image.byteCount(), image.constBits());
texture->autoGenerateMips(-1);
return texture;
}
/// Returns a texture version of an image file
gpu::TexturePointer TextureCache::getImageTexture(const QString& path, TextureType type) {
QImage image = QImage(path);
auto loader = getTextureLoaderForType(type);
return gpu::TexturePointer(loader(image, QUrl::fromLocalFile(path).fileName().toStdString()));
}
QSharedPointer<Resource> TextureCache::createResource(const QUrl& url,
@ -203,53 +245,10 @@ NetworkTexture::NetworkTexture(const QUrl& url, const TextureLoaderFunc& texture
}
NetworkTexture::TextureLoaderFunc NetworkTexture::getTextureLoader() const {
switch (_type) {
case ALBEDO_TEXTURE: {
return TextureLoaderFunc(model::TextureUsage::createAlbedoTextureFromImage);
break;
}
case EMISSIVE_TEXTURE: {
return TextureLoaderFunc(model::TextureUsage::createEmissiveTextureFromImage);
break;
}
case LIGHTMAP_TEXTURE: {
return TextureLoaderFunc(model::TextureUsage::createLightmapTextureFromImage);
break;
}
case CUBE_TEXTURE: {
return TextureLoaderFunc(model::TextureUsage::createCubeTextureFromImage);
break;
}
case BUMP_TEXTURE: {
return TextureLoaderFunc(model::TextureUsage::createNormalTextureFromBumpImage);
break;
}
case NORMAL_TEXTURE: {
return TextureLoaderFunc(model::TextureUsage::createNormalTextureFromNormalImage);
break;
}
case ROUGHNESS_TEXTURE: {
return TextureLoaderFunc(model::TextureUsage::createRoughnessTextureFromImage);
break;
}
case GLOSS_TEXTURE: {
return TextureLoaderFunc(model::TextureUsage::createRoughnessTextureFromGlossImage);
break;
}
case SPECULAR_TEXTURE: {
return TextureLoaderFunc(model::TextureUsage::createMetallicTextureFromImage);
break;
}
case CUSTOM_TEXTURE: {
return _textureLoader;
break;
}
case DEFAULT_TEXTURE:
default: {
return TextureLoaderFunc(model::TextureUsage::create2DTextureFromImage);
break;
}
if (_type == CUSTOM_TEXTURE) {
return _textureLoader;
}
return getTextureLoaderForType(_type);
}

View file

@ -72,7 +72,7 @@ public:
const gpu::TexturePointer& getNormalFittingTexture();
/// Returns a texture version of an image file
static gpu::TexturePointer getImageTexture(const QString& path);
static gpu::TexturePointer getImageTexture(const QString& path, TextureType type = DEFAULT_TEXTURE);
/// Loads a texture from the specified URL.
NetworkTexturePointer getTexture(const QUrl& url, TextureType type = DEFAULT_TEXTURE,

View file

@ -150,8 +150,8 @@ gpu::Texture* TextureUsage::process2DTextureColorFromImage(const QImage& srcImag
QImage image = process2DImageColor(srcImage, validAlpha, alphaAsMask);
gpu::Texture* theTexture = nullptr;
if ((image.width() > 0) && (image.height() > 0)) {
if ((image.width() > 0) && (image.height() > 0)) {
gpu::Element formatGPU;
gpu::Element formatMip;
defineColorTexelFormats(formatGPU, formatMip, image, isLinear, doCompress);
@ -171,6 +171,14 @@ gpu::Texture* TextureUsage::process2DTextureColorFromImage(const QImage& srcImag
if (generateMips) {
theTexture->autoGenerateMips(-1);
auto levels = theTexture->maxMip();
uvec2 size(image.width(), image.height());
for (uint8_t i = 1; i <= levels; ++i) {
size >>= 1;
size = glm::max(size, uvec2(1));
image = image.scaled(size.x, size.y, Qt::IgnoreAspectRatio, Qt::SmoothTransformation);
theTexture->assignStoredMip(i, formatMip, image.byteCount(), image.constBits());
}
}
}
@ -291,7 +299,6 @@ gpu::Texture* TextureUsage::createNormalTextureFromBumpImage(const QImage& srcIm
gpu::Element formatGPU = gpu::Element(gpu::VEC3, gpu::NUINT8, gpu::RGB);
gpu::Element formatMip = gpu::Element(gpu::VEC3, gpu::NUINT8, gpu::RGB);
theTexture = (gpu::Texture::create2D(formatGPU, image.width(), image.height(), gpu::Sampler(gpu::Sampler::FILTER_MIN_MAG_MIP_LINEAR)));
theTexture->assignStoredMip(0, formatMip, image.byteCount(), image.constBits());
theTexture->autoGenerateMips(-1);

View file

@ -38,9 +38,11 @@
#include <GLMHelpers.h>
#include <PathUtils.h>
#include <NumericalConstants.h>
#include <GeometryCache.h>
#include <DeferredLightingEffect.h>
#include <NumericalConstants.h>
#include <TextureCache.h>
#include "unlit_frag.h"
#include "unlit_vert.h"
@ -83,6 +85,93 @@ public:
uint32_t toCompactColor(const glm::vec4& color);
const char* VERTEX_SHADER = R"SHADER(
#version 450 core
layout(location = 0) in vec4 inPosition;
layout(location = 3) in vec2 inTexCoord0;
struct TransformObject {
mat4 _model;
mat4 _modelInverse;
};
layout(location=15) in ivec2 _drawCallInfo;
uniform samplerBuffer transformObjectBuffer;
TransformObject getTransformObject() {
int offset = 8 * _drawCallInfo.x;
TransformObject object;
object._model[0] = texelFetch(transformObjectBuffer, offset);
object._model[1] = texelFetch(transformObjectBuffer, offset + 1);
object._model[2] = texelFetch(transformObjectBuffer, offset + 2);
object._model[3] = texelFetch(transformObjectBuffer, offset + 3);
object._modelInverse[0] = texelFetch(transformObjectBuffer, offset + 4);
object._modelInverse[1] = texelFetch(transformObjectBuffer, offset + 5);
object._modelInverse[2] = texelFetch(transformObjectBuffer, offset + 6);
object._modelInverse[3] = texelFetch(transformObjectBuffer, offset + 7);
return object;
}
struct TransformCamera {
mat4 _view;
mat4 _viewInverse;
mat4 _projectionViewUntranslated;
mat4 _projection;
mat4 _projectionInverse;
vec4 _viewport;
};
layout(std140) uniform transformCameraBuffer {
TransformCamera _camera;
};
TransformCamera getTransformCamera() {
return _camera;
}
// the interpolated normal
out vec2 _texCoord0;
void main(void) {
_texCoord0 = inTexCoord0.st;
// standard transform
TransformCamera cam = getTransformCamera();
TransformObject obj = getTransformObject();
{ // transformModelToClipPos
vec4 eyeWAPos;
{ // _transformModelToEyeWorldAlignedPos
highp mat4 _mv = obj._model;
_mv[3].xyz -= cam._viewInverse[3].xyz;
highp vec4 _eyeWApos = (_mv * inPosition);
eyeWAPos = _eyeWApos;
}
gl_Position = cam._projectionViewUntranslated * eyeWAPos;
}
})SHADER";
const char* FRAGMENT_SHADER = R"SHADER(
#version 450 core
uniform sampler2D originalTexture;
in vec2 _texCoord0;
layout(location = 0) out vec4 _fragColor0;
void main(void) {
//_fragColor0 = vec4(_texCoord0, 0.0, 1.0);
_fragColor0 = texture(originalTexture, _texCoord0);
}
)SHADER";
gpu::ShaderPointer makeShader(const std::string & vertexShaderSrc, const std::string & fragmentShaderSrc, const gpu::Shader::BindingSet & bindings) {
auto vs = gpu::Shader::createVertex(vertexShaderSrc);
auto fs = gpu::Shader::createPixel(fragmentShaderSrc);
@ -125,6 +214,7 @@ class QTestWindow : public QWindow {
glm::mat4 _projectionMatrix;
RateCounter fps;
QTime _time;
glm::mat4 _camera;
protected:
void renderText();
@ -145,7 +235,7 @@ public:
setGLFormatVersion(format);
format.setProfile(QSurfaceFormat::OpenGLContextProfile::CoreProfile);
format.setOption(QSurfaceFormat::DebugContext);
format.setSwapInterval(0);
//format.setSwapInterval(0);
setFormat(format);
@ -158,19 +248,22 @@ public:
gpu::Context::init<gpu::GLBackend>();
_context = std::make_shared<gpu::Context>();
makeCurrent();
auto shader = makeShader(unlit_vert, unlit_frag, gpu::Shader::BindingSet{});
auto state = std::make_shared<gpu::State>();
state->setMultisampleEnable(true);
state->setDepthTest(gpu::State::DepthTest { true });
_pipeline = gpu::Pipeline::create(shader, state);
// Clear screen
gpu::Batch batch;
batch.clearColorFramebuffer(gpu::Framebuffer::BUFFER_COLORS, { 1.0, 0.0, 0.5, 1.0 });
_context->render(batch);
DependencyManager::set<GeometryCache>();
DependencyManager::set<TextureCache>();
DependencyManager::set<DeferredLightingEffect>();
resize(QSize(800, 600));
@ -181,182 +274,227 @@ public:
virtual ~QTestWindow() {
}
void updateCamera() {
float t = _time.elapsed() * 1e-4f;
glm::vec3 unitscale { 1.0f };
glm::vec3 up { 0.0f, 1.0f, 0.0f };
float distance = 3.0f;
glm::vec3 camera_position { distance * sinf(t), 0.5f, distance * cosf(t) };
static const vec3 camera_focus(0);
static const vec3 camera_up(0, 1, 0);
_camera = glm::inverse(glm::lookAt(camera_position, camera_focus, up));
}
void drawFloorGrid(gpu::Batch& batch) {
auto geometryCache = DependencyManager::get<GeometryCache>();
// Render grid on xz plane (not the optimal way to do things, but w/e)
// Note: GeometryCache::renderGrid will *not* work, as it is apparenly unaffected by batch rotations and renders xy only
static const std::string GRID_INSTANCE = "Grid";
static auto compactColor1 = toCompactColor(vec4 { 0.35f, 0.25f, 0.15f, 1.0f });
static auto compactColor2 = toCompactColor(vec4 { 0.15f, 0.25f, 0.35f, 1.0f });
static std::vector<glm::mat4> transforms;
static gpu::BufferPointer colorBuffer;
if (!transforms.empty()) {
transforms.reserve(200);
colorBuffer = std::make_shared<gpu::Buffer>();
for (int i = 0; i < 100; ++i) {
{
glm::mat4 transform = glm::translate(mat4(), vec3(0, -1, -50 + i));
transform = glm::scale(transform, vec3(100, 1, 1));
transforms.push_back(transform);
colorBuffer->append(compactColor1);
}
{
glm::mat4 transform = glm::mat4_cast(quat(vec3(0, PI / 2.0f, 0)));
transform = glm::translate(transform, vec3(0, -1, -50 + i));
transform = glm::scale(transform, vec3(100, 1, 1));
transforms.push_back(transform);
colorBuffer->append(compactColor2);
}
}
}
auto pipeline = geometryCache->getSimplePipeline();
for (auto& transform : transforms) {
batch.setModelTransform(transform);
batch.setupNamedCalls(GRID_INSTANCE, [=](gpu::Batch& batch, gpu::Batch::NamedBatchData& data) {
batch.setViewTransform(_camera);
batch.setPipeline(_pipeline);
geometryCache->renderWireShapeInstances(batch, GeometryCache::Line, data.count(), colorBuffer);
});
}
}
void drawSimpleShapes(gpu::Batch& batch) {
auto geometryCache = DependencyManager::get<GeometryCache>();
static const size_t ITEM_COUNT = 1000;
static const float SHAPE_INTERVAL = (PI * 2.0f) / ITEM_COUNT;
static const float ITEM_INTERVAL = SHAPE_INTERVAL / TYPE_COUNT;
static const gpu::Element POSITION_ELEMENT { gpu::VEC3, gpu::FLOAT, gpu::XYZ };
static const gpu::Element NORMAL_ELEMENT { gpu::VEC3, gpu::FLOAT, gpu::XYZ };
static const gpu::Element COLOR_ELEMENT { gpu::VEC4, gpu::NUINT8, gpu::RGBA };
static std::vector<Transform> transforms;
static std::vector<vec4> colors;
static gpu::BufferPointer colorBuffer;
static gpu::BufferView colorView;
static gpu::BufferView instanceXfmView;
if (!colorBuffer) {
colorBuffer = std::make_shared<gpu::Buffer>();
static const float ITEM_RADIUS = 20;
static const vec3 ITEM_TRANSLATION { 0, 0, -ITEM_RADIUS };
for (size_t i = 0; i < TYPE_COUNT; ++i) {
GeometryCache::Shape shape = SHAPE[i];
GeometryCache::ShapeData shapeData = geometryCache->_shapes[shape];
//indirectCommand._count
float startingInterval = ITEM_INTERVAL * i;
for (size_t j = 0; j < ITEM_COUNT; ++j) {
float theta = j * SHAPE_INTERVAL + startingInterval;
auto transform = glm::rotate(mat4(), theta, Vectors::UP);
transform = glm::rotate(transform, (randFloat() - 0.5f) * PI / 4.0f, Vectors::UNIT_X);
transform = glm::translate(transform, ITEM_TRANSLATION);
transform = glm::scale(transform, vec3(randFloat() / 2.0f + 0.5f));
transforms.push_back(transform);
auto color = vec4 { randomColorValue(64), randomColorValue(64), randomColorValue(64), 255 };
color /= 255.0f;
colors.push_back(color);
colorBuffer->append(toCompactColor(color));
}
}
colorView = gpu::BufferView(colorBuffer, COLOR_ELEMENT);
}
batch.setViewTransform(_camera);
batch.setPipeline(_pipeline);
batch.setInputFormat(getInstancedSolidStreamFormat());
for (size_t i = 0; i < TYPE_COUNT; ++i) {
GeometryCache::Shape shape = SHAPE[i];
GeometryCache::ShapeData shapeData = geometryCache->_shapes[shape];
batch.setInputBuffer(gpu::Stream::COLOR, colorView);
for (size_t j = 0; j < ITEM_COUNT; ++j) {
batch.setModelTransform(transforms[j]);
shapeData.draw(batch);
}
}
}
void drawCenterShape(gpu::Batch& batch) {
// Render unlit cube + sphere
static auto startUsecs = usecTimestampNow();
float seconds = getSeconds(startUsecs);
seconds /= 4.0f;
batch.setModelTransform(Transform());
batch._glColor4f(0.8f, 0.25f, 0.25f, 1.0f);
bool wire = (seconds - floorf(seconds) > 0.5f);
auto geometryCache = DependencyManager::get<GeometryCache>();
int shapeIndex = ((int)seconds) % TYPE_COUNT;
if (wire) {
geometryCache->renderWireShape(batch, SHAPE[shapeIndex]);
} else {
geometryCache->renderShape(batch, SHAPE[shapeIndex]);
}
batch.setModelTransform(Transform().setScale(2.05f));
batch._glColor4f(1, 1, 1, 1);
geometryCache->renderWireCube(batch);
}
void drawTerrain(gpu::Batch& batch) {
auto geometryCache = DependencyManager::get<GeometryCache>();
static std::once_flag once;
static gpu::BufferPointer vertexBuffer { std::make_shared<gpu::Buffer>() };
static gpu::BufferPointer indexBuffer { std::make_shared<gpu::Buffer>() };
static gpu::BufferView positionView;
static gpu::BufferView textureView;
static gpu::Stream::FormatPointer vertexFormat { std::make_shared<gpu::Stream::Format>() };
static gpu::TexturePointer texture;
static gpu::PipelinePointer pipeline;
std::call_once(once, [&] {
static const uint SHAPE_VERTEX_STRIDE = sizeof(glm::vec4) * 2; // position, normals, textures
static const uint SHAPE_TEXTURES_OFFSET = sizeof(glm::vec4);
static const gpu::Element POSITION_ELEMENT { gpu::VEC3, gpu::FLOAT, gpu::XYZ };
static const gpu::Element TEXTURE_ELEMENT { gpu::VEC2, gpu::FLOAT, gpu::UV };
std::vector<vec4> vertices;
const int MINX = -1000;
const int MAXX = 1000;
// top
vertices.push_back(vec4(MAXX, 0, MAXX, 1));
vertices.push_back(vec4(MAXX, MAXX, 0, 0));
vertices.push_back(vec4(MAXX, 0, MINX, 1));
vertices.push_back(vec4(MAXX, 0, 0, 0));
vertices.push_back(vec4(MINX, 0, MINX, 1));
vertices.push_back(vec4(0, 0, 0, 0));
vertices.push_back(vec4(MINX, 0, MAXX, 1));
vertices.push_back(vec4(0, MAXX, 0, 0));
vertexBuffer->append(vertices);
indexBuffer->append(std::vector<uint16_t>({ 0, 1, 2, 2, 3, 0 }));
positionView = gpu::BufferView(vertexBuffer, 0, vertexBuffer->getSize(), SHAPE_VERTEX_STRIDE, POSITION_ELEMENT);
textureView = gpu::BufferView(vertexBuffer, SHAPE_TEXTURES_OFFSET, vertexBuffer->getSize(), SHAPE_VERTEX_STRIDE, TEXTURE_ELEMENT);
texture = DependencyManager::get<TextureCache>()->getImageTexture("C:/Users/bdavis/Git/openvr/samples/bin/cube_texture.png");
//texture = DependencyManager::get<TextureCache>()->getImageTexture("H:/test.png");
//texture = DependencyManager::get<TextureCache>()->getImageTexture("H:/crate_blue.fbm/lambert8SG_Normal_OpenGL.png");
auto shader = makeShader(VERTEX_SHADER, FRAGMENT_SHADER, gpu::Shader::BindingSet {});
auto state = std::make_shared<gpu::State>();
state->setMultisampleEnable(false);
state->setDepthTest(gpu::State::DepthTest { true });
pipeline = gpu::Pipeline::create(shader, state);
vertexFormat->setAttribute(gpu::Stream::POSITION);
vertexFormat->setAttribute(gpu::Stream::TEXCOORD);
});
batch.setPipeline(pipeline);
batch.setInputBuffer(gpu::Stream::POSITION, positionView);
batch.setInputBuffer(gpu::Stream::TEXCOORD, textureView);
batch.setIndexBuffer(gpu::UINT16, indexBuffer, 0);
batch.setInputFormat(vertexFormat);
batch.setResourceTexture(0, texture);
batch.setModelTransform(glm::translate(glm::mat4(), vec3(0, -0.1, 0)));
batch.drawIndexed(gpu::TRIANGLES, 6, 0);
batch.setResourceTexture(0, DependencyManager::get<TextureCache>()->getBlueTexture());
batch.setModelTransform(glm::translate(glm::mat4(), vec3(0, -0.2, 0)));
batch.drawIndexed(gpu::TRIANGLES, 6, 0);
}
void draw() {
// Attempting to draw before we're visible and have a valid size will
// produce GL errors.
if (!isVisible() || _size.width() <= 0 || _size.height() <= 0) {
return;
}
updateCamera();
makeCurrent();
gpu::Batch batch;
batch.clearColorFramebuffer(gpu::Framebuffer::BUFFER_COLORS, { 0.0f, 0.0f, 0.0f, 1.0f });
batch.resetStages();
batch.clearColorFramebuffer(gpu::Framebuffer::BUFFER_COLORS, { 0.0f, 0.1f, 0.2f, 1.0f });
batch.clearDepthFramebuffer(1e4);
batch.setViewportTransform({ 0, 0, _size.width() * devicePixelRatio(), _size.height() * devicePixelRatio() });
batch.setProjectionTransform(_projectionMatrix);
float t = _time.elapsed() * 1e-3f;
glm::vec3 unitscale { 1.0f };
glm::vec3 up { 0.0f, 1.0f, 0.0f };
float distance = 3.0f;
glm::vec3 camera_position{ distance * sinf(t), 0.0f, distance * cosf(t) };
static const vec3 camera_focus(0);
static const vec3 camera_up(0, 1, 0);
glm::mat4 camera = glm::inverse(glm::lookAt(camera_position, camera_focus, up));
batch.setViewTransform(camera);
batch.setViewTransform(_camera);
batch.setPipeline(_pipeline);
batch.setModelTransform(Transform());
auto geometryCache = DependencyManager::get<GeometryCache>();
// Render grid on xz plane (not the optimal way to do things, but w/e)
// Note: GeometryCache::renderGrid will *not* work, as it is apparenly unaffected by batch rotations and renders xy only
{
static const std::string GRID_INSTANCE = "Grid";
static auto compactColor1 = toCompactColor(vec4{ 0.35f, 0.25f, 0.15f, 1.0f });
static auto compactColor2 = toCompactColor(vec4{ 0.15f, 0.25f, 0.35f, 1.0f });
static std::vector<glm::mat4> transforms;
static gpu::BufferPointer colorBuffer;
if (!transforms.empty()) {
transforms.reserve(200);
colorBuffer = std::make_shared<gpu::Buffer>();
for (int i = 0; i < 100; ++i) {
{
glm::mat4 transform = glm::translate(mat4(), vec3(0, -1, -50 + i));
transform = glm::scale(transform, vec3(100, 1, 1));
transforms.push_back(transform);
colorBuffer->append(compactColor1);
}
{
glm::mat4 transform = glm::mat4_cast(quat(vec3(0, PI / 2.0f, 0)));
transform = glm::translate(transform, vec3(0, -1, -50 + i));
transform = glm::scale(transform, vec3(100, 1, 1));
transforms.push_back(transform);
colorBuffer->append(compactColor2);
}
}
}
auto pipeline = geometryCache->getSimplePipeline();
for (auto& transform : transforms) {
batch.setModelTransform(transform);
batch.setupNamedCalls(GRID_INSTANCE, [=](gpu::Batch& batch, gpu::Batch::NamedBatchData& data) {
batch.setViewTransform(camera);
batch.setPipeline(_pipeline);
geometryCache->renderWireShapeInstances(batch, GeometryCache::Line, data.count(), colorBuffer);
});
}
}
{
static const size_t ITEM_COUNT = 1000;
static const float SHAPE_INTERVAL = (PI * 2.0f) / ITEM_COUNT;
static const float ITEM_INTERVAL = SHAPE_INTERVAL / TYPE_COUNT;
static const gpu::Element POSITION_ELEMENT{ gpu::VEC3, gpu::FLOAT, gpu::XYZ };
static const gpu::Element NORMAL_ELEMENT{ gpu::VEC3, gpu::FLOAT, gpu::XYZ };
static const gpu::Element COLOR_ELEMENT{ gpu::VEC4, gpu::NUINT8, gpu::RGBA };
static const gpu::Element TRANSFORM_ELEMENT{ gpu::MAT4, gpu::FLOAT, gpu::XYZW };
static std::vector<Transform> transforms;
static std::vector<vec4> colors;
static gpu::BufferPointer indirectBuffer;
static gpu::BufferPointer transformBuffer;
static gpu::BufferPointer colorBuffer;
static gpu::BufferView colorView;
static gpu::BufferView instanceXfmView;
if (!transformBuffer) {
transformBuffer = std::make_shared<gpu::Buffer>();
colorBuffer = std::make_shared<gpu::Buffer>();
indirectBuffer = std::make_shared<gpu::Buffer>();
static const float ITEM_RADIUS = 20;
static const vec3 ITEM_TRANSLATION{ 0, 0, -ITEM_RADIUS };
for (size_t i = 0; i < TYPE_COUNT; ++i) {
GeometryCache::Shape shape = SHAPE[i];
GeometryCache::ShapeData shapeData = geometryCache->_shapes[shape];
{
gpu::Batch::DrawIndexedIndirectCommand indirectCommand;
indirectCommand._count = (uint)shapeData._indexCount;
indirectCommand._instanceCount = ITEM_COUNT;
indirectCommand._baseInstance = (uint)(i * ITEM_COUNT);
indirectCommand._firstIndex = (uint)shapeData._indexOffset / 2;
indirectCommand._baseVertex = 0;
indirectBuffer->append(indirectCommand);
}
//indirectCommand._count
float startingInterval = ITEM_INTERVAL * i;
for (size_t j = 0; j < ITEM_COUNT; ++j) {
float theta = j * SHAPE_INTERVAL + startingInterval;
auto transform = glm::rotate(mat4(), theta, Vectors::UP);
transform = glm::rotate(transform, (randFloat() - 0.5f) * PI / 4.0f, Vectors::UNIT_X);
transform = glm::translate(transform, ITEM_TRANSLATION);
transform = glm::scale(transform, vec3(randFloat() / 2.0f + 0.5f));
transformBuffer->append(transform);
transforms.push_back(transform);
auto color = vec4{ randomColorValue(64), randomColorValue(64), randomColorValue(64), 255 };
color /= 255.0f;
colors.push_back(color);
colorBuffer->append(toCompactColor(color));
}
}
colorView = gpu::BufferView(colorBuffer, COLOR_ELEMENT);
instanceXfmView = gpu::BufferView(transformBuffer, TRANSFORM_ELEMENT);
}
#if 1
GeometryCache::ShapeData shapeData = geometryCache->_shapes[GeometryCache::Icosahedron];
{
batch.setViewTransform(camera);
batch.setModelTransform(Transform());
batch.setPipeline(_pipeline);
batch.setInputFormat(getInstancedSolidStreamFormat());
batch.setInputBuffer(gpu::Stream::COLOR, colorView);
batch.setIndirectBuffer(indirectBuffer);
shapeData.setupBatch(batch);
batch.multiDrawIndexedIndirect(TYPE_COUNT, gpu::TRIANGLES);
}
#else
batch.setViewTransform(camera);
batch.setPipeline(_pipeline);
for (size_t i = 0; i < TYPE_COUNT; ++i) {
GeometryCache::Shape shape = SHAPE[i];
for (size_t j = 0; j < ITEM_COUNT; ++j) {
int index = i * ITEM_COUNT + j;
batch.setModelTransform(transforms[index]);
const vec4& color = colors[index];
batch._glColor4f(color.r, color.g, color.b, 1.0);
geometryCache->renderShape(batch, shape);
}
}
#endif
}
// Render unlit cube + sphere
static auto startUsecs = usecTimestampNow();
float seconds = getSeconds(startUsecs);
seconds /= 4.0f;
int shapeIndex = ((int)seconds) % TYPE_COUNT;
bool wire = (seconds - floorf(seconds) > 0.5f);
batch.setModelTransform(Transform());
batch._glColor4f(0.8f, 0.25f, 0.25f, 1.0f);
if (wire) {
geometryCache->renderWireShape(batch, SHAPE[shapeIndex]);
} else {
geometryCache->renderShape(batch, SHAPE[shapeIndex]);
}
batch.setModelTransform(Transform().setScale(2.05f));
batch._glColor4f(1, 1, 1, 1);
geometryCache->renderWireCube(batch);
//drawFloorGrid(batch);
//drawSimpleShapes(batch);
drawCenterShape(batch);
drawTerrain(batch);
_context->render(batch);
_qGlContext.swapBuffers(this);
@ -387,12 +525,12 @@ protected:
int main(int argc, char** argv) {
QGuiApplication app(argc, argv);
QTestWindow window;
QTimer timer;
timer.setInterval(0);
app.connect(&timer, &QTimer::timeout, &app, [&] {
auto timer = new QTimer(&app);
timer->setInterval(0);
app.connect(timer, &QTimer::timeout, &app, [&] {
window.draw();
});
timer.start();
timer->start();
app.exec();
return 0;
}