mirror of
https://github.com/JulianGro/overte.git
synced 2025-04-15 21:18:06 +02:00
Moving the load of the texture and the generation of the cube map irradiance in the same thread
This commit is contained in:
parent
ad9834283d
commit
765145b898
9 changed files with 560 additions and 506 deletions
|
@ -462,7 +462,7 @@ void EntityTreeRenderer::render(RenderArgs::RenderMode renderMode,
|
|||
if (_bestZone->getBackgroundMode() == BACKGROUND_MODE_SKYBOX) {
|
||||
stage->getSkybox()->setColor(_bestZone->getSkyboxProperties().getColorVec3());
|
||||
if (_bestZone->getSkyboxProperties().getURL().isEmpty()) {
|
||||
stage->getSkybox()->clearCubemap();
|
||||
stage->getSkybox()->setCubemap(gpu::TexturePointer());
|
||||
} else {
|
||||
// Update the Texture of the Skybox with the one pointed by this zone
|
||||
auto cubeMap = DependencyManager::get<TextureCache>()->getTexture(_bestZone->getSkyboxProperties().getURL(), CUBE_TEXTURE);
|
||||
|
|
|
@ -11,6 +11,8 @@
|
|||
|
||||
#include "Texture.h"
|
||||
#include <math.h>
|
||||
#include <glm/gtc/constants.hpp>
|
||||
|
||||
#include <QDebug>
|
||||
|
||||
using namespace gpu;
|
||||
|
@ -407,3 +409,362 @@ void Texture::setSampler(const Sampler& sampler) {
|
|||
_sampler = sampler;
|
||||
_samplerStamp++;
|
||||
}
|
||||
|
||||
|
||||
bool Texture::generateIrradiance() {
|
||||
if (getType() != TEX_CUBE) {
|
||||
return false;
|
||||
}
|
||||
if (!isDefined()) {
|
||||
return false;
|
||||
}
|
||||
if (!_irradiance) {
|
||||
_irradiance.reset(new SphericalHarmonics());
|
||||
}
|
||||
|
||||
_irradiance->evalFromTexture(*this);
|
||||
return true;
|
||||
}
|
||||
|
||||
void SphericalHarmonics::assignPreset(int p) {
|
||||
switch (p) {
|
||||
case OLD_TOWN_SQUARE: {
|
||||
L00 = glm::vec3( 0.871297f, 0.875222f, 0.864470f);
|
||||
L1m1 = glm::vec3( 0.175058f, 0.245335f, 0.312891f);
|
||||
L10 = glm::vec3( 0.034675f, 0.036107f, 0.037362f);
|
||||
L11 = glm::vec3(-0.004629f,-0.029448f,-0.048028f);
|
||||
L2m2 = glm::vec3(-0.120535f,-0.121160f,-0.117507f);
|
||||
L2m1 = glm::vec3( 0.003242f, 0.003624f, 0.007511f);
|
||||
L20 = glm::vec3(-0.028667f,-0.024926f,-0.020998f);
|
||||
L21 = glm::vec3(-0.077539f,-0.086325f,-0.091591f);
|
||||
L22 = glm::vec3(-0.161784f,-0.191783f,-0.219152f);
|
||||
}
|
||||
break;
|
||||
case GRACE_CATHEDRAL: {
|
||||
L00 = glm::vec3( 0.79f, 0.44f, 0.54f);
|
||||
L1m1 = glm::vec3( 0.39f, 0.35f, 0.60f);
|
||||
L10 = glm::vec3(-0.34f, -0.18f, -0.27f);
|
||||
L11 = glm::vec3(-0.29f, -0.06f, 0.01f);
|
||||
L2m2 = glm::vec3(-0.11f, -0.05f, -0.12f);
|
||||
L2m1 = glm::vec3(-0.26f, -0.22f, -0.47f);
|
||||
L20 = glm::vec3(-0.16f, -0.09f, -0.15f);
|
||||
L21 = glm::vec3( 0.56f, 0.21f, 0.14f);
|
||||
L22 = glm::vec3( 0.21f, -0.05f, -0.30f);
|
||||
}
|
||||
break;
|
||||
case EUCALYPTUS_GROVE: {
|
||||
L00 = glm::vec3( 0.38f, 0.43f, 0.45f);
|
||||
L1m1 = glm::vec3( 0.29f, 0.36f, 0.41f);
|
||||
L10 = glm::vec3( 0.04f, 0.03f, 0.01f);
|
||||
L11 = glm::vec3(-0.10f, -0.10f, -0.09f);
|
||||
L2m2 = glm::vec3(-0.06f, -0.06f, -0.04f);
|
||||
L2m1 = glm::vec3( 0.01f, -0.01f, -0.05f);
|
||||
L20 = glm::vec3(-0.09f, -0.13f, -0.15f);
|
||||
L21 = glm::vec3(-0.06f, -0.05f, -0.04f);
|
||||
L22 = glm::vec3( 0.02f, 0.00f, -0.05f);
|
||||
}
|
||||
break;
|
||||
case ST_PETERS_BASILICA: {
|
||||
L00 = glm::vec3( 0.36f, 0.26f, 0.23f);
|
||||
L1m1 = glm::vec3( 0.18f, 0.14f, 0.13f);
|
||||
L10 = glm::vec3(-0.02f, -0.01f, 0.00f);
|
||||
L11 = glm::vec3( 0.03f, 0.02f, -0.00f);
|
||||
L2m2 = glm::vec3( 0.02f, 0.01f, -0.00f);
|
||||
L2m1 = glm::vec3(-0.05f, -0.03f, -0.01f);
|
||||
L20 = glm::vec3(-0.09f, -0.08f, -0.07f);
|
||||
L21 = glm::vec3( 0.01f, 0.00f, 0.00f);
|
||||
L22 = glm::vec3(-0.08f, -0.03f, -0.00f);
|
||||
}
|
||||
break;
|
||||
case UFFIZI_GALLERY: {
|
||||
L00 = glm::vec3( 0.32f, 0.31f, 0.35f);
|
||||
L1m1 = glm::vec3( 0.37f, 0.37f, 0.43f);
|
||||
L10 = glm::vec3( 0.00f, 0.00f, 0.00f);
|
||||
L11 = glm::vec3(-0.01f, -0.01f, -0.01f);
|
||||
L2m2 = glm::vec3(-0.02f, -0.02f, -0.03f);
|
||||
L2m1 = glm::vec3(-0.01f, -0.01f, -0.01f);
|
||||
L20 = glm::vec3(-0.28f, -0.28f, -0.32f);
|
||||
L21 = glm::vec3( 0.00f, 0.00f, 0.00f);
|
||||
L22 = glm::vec3(-0.24f, -0.24f, -0.28f);
|
||||
}
|
||||
break;
|
||||
case GALILEOS_TOMB: {
|
||||
L00 = glm::vec3( 1.04f, 0.76f, 0.71f);
|
||||
L1m1 = glm::vec3( 0.44f, 0.34f, 0.34f);
|
||||
L10 = glm::vec3(-0.22f, -0.18f, -0.17f);
|
||||
L11 = glm::vec3( 0.71f, 0.54f, 0.56f);
|
||||
L2m2 = glm::vec3( 0.64f, 0.50f, 0.52f);
|
||||
L2m1 = glm::vec3(-0.12f, -0.09f, -0.08f);
|
||||
L20 = glm::vec3(-0.37f, -0.28f, -0.32f);
|
||||
L21 = glm::vec3(-0.17f, -0.13f, -0.13f);
|
||||
L22 = glm::vec3( 0.55f, 0.42f, 0.42f);
|
||||
}
|
||||
break;
|
||||
case VINE_STREET_KITCHEN: {
|
||||
L00 = glm::vec3( 0.64f, 0.67f, 0.73f);
|
||||
L1m1 = glm::vec3( 0.28f, 0.32f, 0.33f);
|
||||
L10 = glm::vec3( 0.42f, 0.60f, 0.77f);
|
||||
L11 = glm::vec3(-0.05f, -0.04f, -0.02f);
|
||||
L2m2 = glm::vec3(-0.10f, -0.08f, -0.05f);
|
||||
L2m1 = glm::vec3( 0.25f, 0.39f, 0.53f);
|
||||
L20 = glm::vec3( 0.38f, 0.54f, 0.71f);
|
||||
L21 = glm::vec3( 0.06f, 0.01f, -0.02f);
|
||||
L22 = glm::vec3(-0.03f, -0.02f, -0.03f);
|
||||
}
|
||||
break;
|
||||
case BREEZEWAY: {
|
||||
L00 = glm::vec3( 0.32f, 0.36f, 0.38f);
|
||||
L1m1 = glm::vec3( 0.37f, 0.41f, 0.45f);
|
||||
L10 = glm::vec3(-0.01f, -0.01f, -0.01f);
|
||||
L11 = glm::vec3(-0.10f, -0.12f, -0.12f);
|
||||
L2m2 = glm::vec3(-0.13f, -0.15f, -0.17f);
|
||||
L2m1 = glm::vec3(-0.01f, -0.02f, 0.02f);
|
||||
L20 = glm::vec3(-0.07f, -0.08f, -0.09f);
|
||||
L21 = glm::vec3( 0.02f, 0.03f, 0.03f);
|
||||
L22 = glm::vec3(-0.29f, -0.32f, -0.36f);
|
||||
}
|
||||
break;
|
||||
case CAMPUS_SUNSET: {
|
||||
L00 = glm::vec3( 0.79f, 0.94f, 0.98f);
|
||||
L1m1 = glm::vec3( 0.44f, 0.56f, 0.70f);
|
||||
L10 = glm::vec3(-0.10f, -0.18f, -0.27f);
|
||||
L11 = glm::vec3( 0.45f, 0.38f, 0.20f);
|
||||
L2m2 = glm::vec3( 0.18f, 0.14f, 0.05f);
|
||||
L2m1 = glm::vec3(-0.14f, -0.22f, -0.31f);
|
||||
L20 = glm::vec3(-0.39f, -0.40f, -0.36f);
|
||||
L21 = glm::vec3( 0.09f, 0.07f, 0.04f);
|
||||
L22 = glm::vec3( 0.67f, 0.67f, 0.52f);
|
||||
}
|
||||
break;
|
||||
case FUNSTON_BEACH_SUNSET: {
|
||||
L00 = glm::vec3( 0.68f, 0.69f, 0.70f);
|
||||
L1m1 = glm::vec3( 0.32f, 0.37f, 0.44f);
|
||||
L10 = glm::vec3(-0.17f, -0.17f, -0.17f);
|
||||
L11 = glm::vec3(-0.45f, -0.42f, -0.34f);
|
||||
L2m2 = glm::vec3(-0.17f, -0.17f, -0.15f);
|
||||
L2m1 = glm::vec3(-0.08f, -0.09f, -0.10f);
|
||||
L20 = glm::vec3(-0.03f, -0.02f, -0.01f);
|
||||
L21 = glm::vec3( 0.16f, 0.14f, 0.10f);
|
||||
L22 = glm::vec3( 0.37f, 0.31f, 0.20f);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
glm::vec3 sRGBToLinear(glm::vec3& color) {
|
||||
const float GAMMA_CORRECTION = 2.2f;
|
||||
return glm::pow(color, glm::vec3(GAMMA_CORRECTION));
|
||||
}
|
||||
|
||||
glm::vec3 linearTosRGB(glm::vec3& color) {
|
||||
const float GAMMA_CORRECTION_INV = 1.0f / 2.2f;
|
||||
return glm::pow(color, glm::vec3(GAMMA_CORRECTION_INV));
|
||||
}
|
||||
|
||||
// Originial code for the Spherical Harmonics taken from "Sun and Black Cat- Igor Dykhta (igor dykhta email) © 2007-2014 "
|
||||
void sphericalHarmonicsAdd(float * result, int order, const float * inputA, const float * inputB) {
|
||||
const int numCoeff = order * order;
|
||||
for(int i=0; i < numCoeff; i++) {
|
||||
result[i] = inputA[i] + inputB[i];
|
||||
}
|
||||
}
|
||||
|
||||
void sphericalHarmonicsScale(float * result, int order, const float * input, float scale) {
|
||||
const int numCoeff = order * order;
|
||||
for(int i=0; i < numCoeff; i++) {
|
||||
result[i] = input[i] * scale;
|
||||
}
|
||||
}
|
||||
|
||||
void sphericalHarmonicsEvaluateDirection(float * result, int order, const glm::vec3 & dir) {
|
||||
// calculate coefficients for first 3 bands of spherical harmonics
|
||||
double P_0_0 = 0.282094791773878140;
|
||||
double P_1_0 = 0.488602511902919920 * dir.z;
|
||||
double P_1_1 = -0.488602511902919920;
|
||||
double P_2_0 = 0.946174695757560080 * dir.z * dir.z - 0.315391565252520050;
|
||||
double P_2_1 = -1.092548430592079200 * dir.z;
|
||||
double P_2_2 = 0.546274215296039590;
|
||||
result[0] = P_0_0;
|
||||
result[1] = P_1_1 * dir.y;
|
||||
result[2] = P_1_0;
|
||||
result[3] = P_1_1 * dir.x;
|
||||
result[4] = P_2_2 * (dir.x * dir.y + dir.y * dir.x);
|
||||
result[5] = P_2_1 * dir.y;
|
||||
result[6] = P_2_0;
|
||||
result[7] = P_2_1 * dir.x;
|
||||
result[8] = P_2_2 * (dir.x * dir.x - dir.y * dir.y);
|
||||
}
|
||||
|
||||
bool sphericalHarmonicsFromTexture(const gpu::Texture& cubeTexture, std::vector<glm::vec3> & output, const uint order) {
|
||||
const uint sqOrder = order*order;
|
||||
|
||||
// allocate memory for calculations
|
||||
output.resize(sqOrder);
|
||||
std::vector<float> resultR(sqOrder);
|
||||
std::vector<float> resultG(sqOrder);
|
||||
std::vector<float> resultB(sqOrder);
|
||||
|
||||
int width, height;
|
||||
|
||||
// initialize values
|
||||
float fWt = 0.0f;
|
||||
for(uint i=0; i < sqOrder; i++) {
|
||||
output[i] = glm::vec3(0.0f);
|
||||
resultR[i] = 0.0f;
|
||||
resultG[i] = 0;
|
||||
resultB[i] = 0;
|
||||
}
|
||||
std::vector<float> shBuff(sqOrder);
|
||||
std::vector<float> shBuffB(sqOrder);
|
||||
// get width and height
|
||||
width = height = cubeTexture.getWidth();
|
||||
if(width != height) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const float UCHAR_TO_FLOAT = 1.0f / float(std::numeric_limits<unsigned char>::max());
|
||||
|
||||
// for each face of cube texture
|
||||
for(int face=0; face < gpu::Texture::NUM_CUBE_FACES; face++) {
|
||||
|
||||
auto numComponents = cubeTexture.accessStoredMipFace(0,face)->_format.getDimensionCount();
|
||||
auto data = cubeTexture.accessStoredMipFace(0,face)->_sysmem.readData();
|
||||
if (data == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// step between two texels for range [0, 1]
|
||||
float invWidth = 1.0f / float(width);
|
||||
// initial negative bound for range [-1, 1]
|
||||
float negativeBound = -1.0f + invWidth;
|
||||
// step between two texels for range [-1, 1]
|
||||
float invWidthBy2 = 2.0f / float(width);
|
||||
|
||||
for(int y=0; y < width; y++) {
|
||||
// texture coordinate V in range [-1 to 1]
|
||||
const float fV = negativeBound + float(y) * invWidthBy2;
|
||||
|
||||
for(int x=0; x < width; x++) {
|
||||
// texture coordinate U in range [-1 to 1]
|
||||
const float fU = negativeBound + float(x) * invWidthBy2;
|
||||
|
||||
// determine direction from center of cube texture to current texel
|
||||
glm::vec3 dir;
|
||||
switch(face) {
|
||||
case gpu::Texture::CUBE_FACE_RIGHT_POS_X: {
|
||||
dir.x = 1.0f;
|
||||
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir.z = 1.0f - (invWidthBy2 * float(x) + invWidth);
|
||||
dir = -dir;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_LEFT_NEG_X: {
|
||||
dir.x = -1.0f;
|
||||
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir.z = -1.0f + (invWidthBy2 * float(x) + invWidth);
|
||||
dir = -dir;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_TOP_POS_Y: {
|
||||
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
|
||||
dir.y = 1.0f;
|
||||
dir.z = - 1.0f + (invWidthBy2 * float(y) + invWidth);
|
||||
dir = -dir;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_BOTTOM_NEG_Y: {
|
||||
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
|
||||
dir.y = - 1.0f;
|
||||
dir.z = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir = -dir;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_BACK_POS_Z: {
|
||||
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
|
||||
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir.z = 1.0f;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_FRONT_NEG_Z: {
|
||||
dir.x = 1.0f - (invWidthBy2 * float(x) + invWidth);
|
||||
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir.z = - 1.0f;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
// normalize direction
|
||||
dir = glm::normalize(dir);
|
||||
|
||||
// scale factor depending on distance from center of the face
|
||||
const float fDiffSolid = 4.0f / ((1.0f + fU*fU + fV*fV) *
|
||||
sqrtf(1.0f + fU*fU + fV*fV));
|
||||
fWt += fDiffSolid;
|
||||
|
||||
// calculate coefficients of spherical harmonics for current direction
|
||||
sphericalHarmonicsEvaluateDirection(shBuff.data(), order, dir);
|
||||
|
||||
// index of texel in texture
|
||||
uint pixOffsetIndex = (x + y * width) * numComponents;
|
||||
|
||||
// get color from texture and map to range [0, 1]
|
||||
glm::vec3 clr(float(data[pixOffsetIndex]) * UCHAR_TO_FLOAT,
|
||||
float(data[pixOffsetIndex+1]) * UCHAR_TO_FLOAT,
|
||||
float(data[pixOffsetIndex+2]) * UCHAR_TO_FLOAT);
|
||||
|
||||
// Gamma correct
|
||||
clr = sRGBToLinear(clr);
|
||||
|
||||
// scale color and add to previously accumulated coefficients
|
||||
sphericalHarmonicsScale(shBuffB.data(), order,
|
||||
shBuff.data(), clr.r * fDiffSolid);
|
||||
sphericalHarmonicsAdd(resultR.data(), order,
|
||||
resultR.data(), shBuffB.data());
|
||||
sphericalHarmonicsScale(shBuffB.data(), order,
|
||||
shBuff.data(), clr.g * fDiffSolid);
|
||||
sphericalHarmonicsAdd(resultG.data(), order,
|
||||
resultG.data(), shBuffB.data());
|
||||
sphericalHarmonicsScale(shBuffB.data(), order,
|
||||
shBuff.data(), clr.b * fDiffSolid);
|
||||
sphericalHarmonicsAdd(resultB.data(), order,
|
||||
resultB.data(), shBuffB.data());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// final scale for coefficients
|
||||
const float fNormProj = (4.0f * glm::pi<float>()) / fWt;
|
||||
sphericalHarmonicsScale(resultR.data(), order, resultR.data(), fNormProj);
|
||||
sphericalHarmonicsScale(resultG.data(), order, resultG.data(), fNormProj);
|
||||
sphericalHarmonicsScale(resultB.data(), order, resultB.data(), fNormProj);
|
||||
|
||||
// save result
|
||||
for(uint i=0; i < sqOrder; i++) {
|
||||
// gamma Correct
|
||||
// output[i] = linearTosRGB(glm::vec3(resultR[i], resultG[i], resultB[i]));
|
||||
output[i] = glm::vec3(resultR[i], resultG[i], resultB[i]);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void SphericalHarmonics::evalFromTexture(const Texture& texture) {
|
||||
if (texture.isDefined()) {
|
||||
std::vector< glm::vec3 > coefs;
|
||||
sphericalHarmonicsFromTexture(texture, coefs, 3);
|
||||
|
||||
L00 = coefs[0];
|
||||
L1m1 = coefs[1];
|
||||
L10 = coefs[2];
|
||||
L11 = coefs[3];
|
||||
L2m2 = coefs[4];
|
||||
L2m1 = coefs[5];
|
||||
L20 = coefs[6];
|
||||
L21 = coefs[7];
|
||||
L22 = coefs[8];
|
||||
}
|
||||
}
|
|
@ -17,6 +17,44 @@
|
|||
|
||||
namespace gpu {
|
||||
|
||||
// THe spherical harmonics is a nice tool for cubemap, so if required, the irradiance SH can be automatically generated
|
||||
// with the cube texture
|
||||
class Texture;
|
||||
class SphericalHarmonics {
|
||||
public:
|
||||
glm::vec3 L00 ; float spare0;
|
||||
glm::vec3 L1m1 ; float spare1;
|
||||
glm::vec3 L10 ; float spare2;
|
||||
glm::vec3 L11 ; float spare3;
|
||||
glm::vec3 L2m2 ; float spare4;
|
||||
glm::vec3 L2m1 ; float spare5;
|
||||
glm::vec3 L20 ; float spare6;
|
||||
glm::vec3 L21 ; float spare7;
|
||||
glm::vec3 L22 ; float spare8;
|
||||
|
||||
static const int NUM_COEFFICIENTS = 9;
|
||||
|
||||
enum Preset {
|
||||
OLD_TOWN_SQUARE = 0,
|
||||
GRACE_CATHEDRAL,
|
||||
EUCALYPTUS_GROVE,
|
||||
ST_PETERS_BASILICA,
|
||||
UFFIZI_GALLERY,
|
||||
GALILEOS_TOMB,
|
||||
VINE_STREET_KITCHEN,
|
||||
BREEZEWAY,
|
||||
CAMPUS_SUNSET,
|
||||
FUNSTON_BEACH_SUNSET,
|
||||
|
||||
NUM_PRESET,
|
||||
};
|
||||
|
||||
void assignPreset(int p);
|
||||
|
||||
void evalFromTexture(const Texture& texture);
|
||||
};
|
||||
typedef std::shared_ptr< SphericalHarmonics > SHPointer;
|
||||
|
||||
class Sampler {
|
||||
public:
|
||||
|
||||
|
@ -173,6 +211,7 @@ public:
|
|||
|
||||
static Texture* createFromStorage(Storage* storage);
|
||||
|
||||
Texture();
|
||||
Texture(const Texture& buf); // deep copy of the sysmem texture
|
||||
Texture& operator=(const Texture& buf); // deep copy of the sysmem texture
|
||||
~Texture();
|
||||
|
@ -302,6 +341,10 @@ public:
|
|||
|
||||
bool isDefined() const { return _defined; }
|
||||
|
||||
// For Cube Texture, it's possible to generate the irradiance spherical harmonics and make them availalbe with the texture
|
||||
bool generateIrradiance();
|
||||
const SHPointer& getIrradiance(uint16 slice = 0) const { return _irradiance; }
|
||||
bool isIrradianceValid() const { return _isIrradianceValid; }
|
||||
|
||||
// Own sampler
|
||||
void setSampler(const Sampler& sampler);
|
||||
|
@ -332,11 +375,14 @@ protected:
|
|||
uint16 _maxMip = 0;
|
||||
|
||||
Type _type = TEX_1D;
|
||||
|
||||
SHPointer _irradiance;
|
||||
bool _autoGenerateMips = false;
|
||||
bool _isIrradianceValid = false;
|
||||
bool _defined = false;
|
||||
|
||||
|
||||
static Texture* create(Type type, const Element& texelFormat, uint16 width, uint16 height, uint16 depth, uint16 numSamples, uint16 numSlices, const Sampler& sampler);
|
||||
Texture();
|
||||
|
||||
Size resize(Type type, const Element& texelFormat, uint16 width, uint16 height, uint16 depth, uint16 numSamples, uint16 numSlices);
|
||||
|
||||
|
@ -392,7 +438,7 @@ public:
|
|||
explicit operator bool() const { return bool(_texture); }
|
||||
bool operator !() const { return (!_texture); }
|
||||
};
|
||||
typedef std::vector<TextureView> TextureViews;
|
||||
typedef std::vector<TextureView> TextureViews;
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -26,162 +26,6 @@ typedef glm::vec3 Vec3;
|
|||
typedef glm::vec4 Vec4;
|
||||
typedef glm::quat Quat;
|
||||
|
||||
class SphericalHarmonics {
|
||||
public:
|
||||
glm::vec3 L00 ; float spare0;
|
||||
glm::vec3 L1m1 ; float spare1;
|
||||
glm::vec3 L10 ; float spare2;
|
||||
glm::vec3 L11 ; float spare3;
|
||||
glm::vec3 L2m2 ; float spare4;
|
||||
glm::vec3 L2m1 ; float spare5;
|
||||
glm::vec3 L20 ; float spare6;
|
||||
glm::vec3 L21 ; float spare7;
|
||||
glm::vec3 L22 ; float spare8;
|
||||
|
||||
static const int NUM_COEFFICIENTS = 9;
|
||||
|
||||
enum Preset {
|
||||
OLD_TOWN_SQUARE = 0,
|
||||
GRACE_CATHEDRAL,
|
||||
EUCALYPTUS_GROVE,
|
||||
ST_PETERS_BASILICA,
|
||||
UFFIZI_GALLERY,
|
||||
GALILEOS_TOMB,
|
||||
VINE_STREET_KITCHEN,
|
||||
BREEZEWAY,
|
||||
CAMPUS_SUNSET,
|
||||
FUNSTON_BEACH_SUNSET,
|
||||
|
||||
NUM_PRESET,
|
||||
};
|
||||
|
||||
void assignPreset(int p) {
|
||||
switch (p) {
|
||||
case OLD_TOWN_SQUARE: {
|
||||
L00 = glm::vec3( 0.871297f, 0.875222f, 0.864470f);
|
||||
L1m1 = glm::vec3( 0.175058f, 0.245335f, 0.312891f);
|
||||
L10 = glm::vec3( 0.034675f, 0.036107f, 0.037362f);
|
||||
L11 = glm::vec3(-0.004629f,-0.029448f,-0.048028f);
|
||||
L2m2 = glm::vec3(-0.120535f,-0.121160f,-0.117507f);
|
||||
L2m1 = glm::vec3( 0.003242f, 0.003624f, 0.007511f);
|
||||
L20 = glm::vec3(-0.028667f,-0.024926f,-0.020998f);
|
||||
L21 = glm::vec3(-0.077539f,-0.086325f,-0.091591f);
|
||||
L22 = glm::vec3(-0.161784f,-0.191783f,-0.219152f);
|
||||
}
|
||||
break;
|
||||
case GRACE_CATHEDRAL: {
|
||||
L00 = glm::vec3( 0.79f, 0.44f, 0.54f);
|
||||
L1m1 = glm::vec3( 0.39f, 0.35f, 0.60f);
|
||||
L10 = glm::vec3(-0.34f, -0.18f, -0.27f);
|
||||
L11 = glm::vec3(-0.29f, -0.06f, 0.01f);
|
||||
L2m2 = glm::vec3(-0.11f, -0.05f, -0.12f);
|
||||
L2m1 = glm::vec3(-0.26f, -0.22f, -0.47f);
|
||||
L20 = glm::vec3(-0.16f, -0.09f, -0.15f);
|
||||
L21 = glm::vec3( 0.56f, 0.21f, 0.14f);
|
||||
L22 = glm::vec3( 0.21f, -0.05f, -0.30f);
|
||||
}
|
||||
break;
|
||||
case EUCALYPTUS_GROVE: {
|
||||
L00 = glm::vec3( 0.38f, 0.43f, 0.45f);
|
||||
L1m1 = glm::vec3( 0.29f, 0.36f, 0.41f);
|
||||
L10 = glm::vec3( 0.04f, 0.03f, 0.01f);
|
||||
L11 = glm::vec3(-0.10f, -0.10f, -0.09f);
|
||||
L2m2 = glm::vec3(-0.06f, -0.06f, -0.04f);
|
||||
L2m1 = glm::vec3( 0.01f, -0.01f, -0.05f);
|
||||
L20 = glm::vec3(-0.09f, -0.13f, -0.15f);
|
||||
L21 = glm::vec3(-0.06f, -0.05f, -0.04f);
|
||||
L22 = glm::vec3( 0.02f, 0.00f, -0.05f);
|
||||
}
|
||||
break;
|
||||
case ST_PETERS_BASILICA: {
|
||||
L00 = glm::vec3( 0.36f, 0.26f, 0.23f);
|
||||
L1m1 = glm::vec3( 0.18f, 0.14f, 0.13f);
|
||||
L10 = glm::vec3(-0.02f, -0.01f, 0.00f);
|
||||
L11 = glm::vec3( 0.03f, 0.02f, -0.00f);
|
||||
L2m2 = glm::vec3( 0.02f, 0.01f, -0.00f);
|
||||
L2m1 = glm::vec3(-0.05f, -0.03f, -0.01f);
|
||||
L20 = glm::vec3(-0.09f, -0.08f, -0.07f);
|
||||
L21 = glm::vec3( 0.01f, 0.00f, 0.00f);
|
||||
L22 = glm::vec3(-0.08f, -0.03f, -0.00f);
|
||||
}
|
||||
break;
|
||||
case UFFIZI_GALLERY: {
|
||||
L00 = glm::vec3( 0.32f, 0.31f, 0.35f);
|
||||
L1m1 = glm::vec3( 0.37f, 0.37f, 0.43f);
|
||||
L10 = glm::vec3( 0.00f, 0.00f, 0.00f);
|
||||
L11 = glm::vec3(-0.01f, -0.01f, -0.01f);
|
||||
L2m2 = glm::vec3(-0.02f, -0.02f, -0.03f);
|
||||
L2m1 = glm::vec3(-0.01f, -0.01f, -0.01f);
|
||||
L20 = glm::vec3(-0.28f, -0.28f, -0.32f);
|
||||
L21 = glm::vec3( 0.00f, 0.00f, 0.00f);
|
||||
L22 = glm::vec3(-0.24f, -0.24f, -0.28f);
|
||||
}
|
||||
break;
|
||||
case GALILEOS_TOMB: {
|
||||
L00 = glm::vec3( 1.04f, 0.76f, 0.71f);
|
||||
L1m1 = glm::vec3( 0.44f, 0.34f, 0.34f);
|
||||
L10 = glm::vec3(-0.22f, -0.18f, -0.17f);
|
||||
L11 = glm::vec3( 0.71f, 0.54f, 0.56f);
|
||||
L2m2 = glm::vec3( 0.64f, 0.50f, 0.52f);
|
||||
L2m1 = glm::vec3(-0.12f, -0.09f, -0.08f);
|
||||
L20 = glm::vec3(-0.37f, -0.28f, -0.32f);
|
||||
L21 = glm::vec3(-0.17f, -0.13f, -0.13f);
|
||||
L22 = glm::vec3( 0.55f, 0.42f, 0.42f);
|
||||
}
|
||||
break;
|
||||
case VINE_STREET_KITCHEN: {
|
||||
L00 = glm::vec3( 0.64f, 0.67f, 0.73f);
|
||||
L1m1 = glm::vec3( 0.28f, 0.32f, 0.33f);
|
||||
L10 = glm::vec3( 0.42f, 0.60f, 0.77f);
|
||||
L11 = glm::vec3(-0.05f, -0.04f, -0.02f);
|
||||
L2m2 = glm::vec3(-0.10f, -0.08f, -0.05f);
|
||||
L2m1 = glm::vec3( 0.25f, 0.39f, 0.53f);
|
||||
L20 = glm::vec3( 0.38f, 0.54f, 0.71f);
|
||||
L21 = glm::vec3( 0.06f, 0.01f, -0.02f);
|
||||
L22 = glm::vec3(-0.03f, -0.02f, -0.03f);
|
||||
}
|
||||
break;
|
||||
case BREEZEWAY: {
|
||||
L00 = glm::vec3( 0.32f, 0.36f, 0.38f);
|
||||
L1m1 = glm::vec3( 0.37f, 0.41f, 0.45f);
|
||||
L10 = glm::vec3(-0.01f, -0.01f, -0.01f);
|
||||
L11 = glm::vec3(-0.10f, -0.12f, -0.12f);
|
||||
L2m2 = glm::vec3(-0.13f, -0.15f, -0.17f);
|
||||
L2m1 = glm::vec3(-0.01f, -0.02f, 0.02f);
|
||||
L20 = glm::vec3(-0.07f, -0.08f, -0.09f);
|
||||
L21 = glm::vec3( 0.02f, 0.03f, 0.03f);
|
||||
L22 = glm::vec3(-0.29f, -0.32f, -0.36f);
|
||||
}
|
||||
break;
|
||||
case CAMPUS_SUNSET: {
|
||||
L00 = glm::vec3( 0.79f, 0.94f, 0.98f);
|
||||
L1m1 = glm::vec3( 0.44f, 0.56f, 0.70f);
|
||||
L10 = glm::vec3(-0.10f, -0.18f, -0.27f);
|
||||
L11 = glm::vec3( 0.45f, 0.38f, 0.20f);
|
||||
L2m2 = glm::vec3( 0.18f, 0.14f, 0.05f);
|
||||
L2m1 = glm::vec3(-0.14f, -0.22f, -0.31f);
|
||||
L20 = glm::vec3(-0.39f, -0.40f, -0.36f);
|
||||
L21 = glm::vec3( 0.09f, 0.07f, 0.04f);
|
||||
L22 = glm::vec3( 0.67f, 0.67f, 0.52f);
|
||||
}
|
||||
break;
|
||||
case FUNSTON_BEACH_SUNSET: {
|
||||
L00 = glm::vec3( 0.68f, 0.69f, 0.70f);
|
||||
L1m1 = glm::vec3( 0.32f, 0.37f, 0.44f);
|
||||
L10 = glm::vec3(-0.17f, -0.17f, -0.17f);
|
||||
L11 = glm::vec3(-0.45f, -0.42f, -0.34f);
|
||||
L2m2 = glm::vec3(-0.17f, -0.17f, -0.15f);
|
||||
L2m1 = glm::vec3(-0.08f, -0.09f, -0.10f);
|
||||
L20 = glm::vec3(-0.03f, -0.02f, -0.01f);
|
||||
L21 = glm::vec3( 0.16f, 0.14f, 0.10f);
|
||||
L22 = glm::vec3( 0.37f, 0.31f, 0.20f);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
};
|
||||
typedef std::shared_ptr< SphericalHarmonics > SHPointer;
|
||||
|
||||
class Light {
|
||||
public:
|
||||
enum Type {
|
||||
|
@ -250,9 +94,9 @@ public:
|
|||
float getAmbientIntensity() const { return getSchema()._ambientIntensity; }
|
||||
|
||||
// Spherical Harmonics storing the Ambien lighting approximation used for the Sun typed light
|
||||
void setAmbientSphere(const SphericalHarmonics& sphere) { _ambientSphere = sphere; }
|
||||
const SphericalHarmonics& getAmbientSphere() const { return _ambientSphere; }
|
||||
void setAmbientSpherePreset(SphericalHarmonics::Preset preset) { _ambientSphere.assignPreset(preset); }
|
||||
void setAmbientSphere(const gpu::SphericalHarmonics& sphere) { _ambientSphere = sphere; }
|
||||
const gpu::SphericalHarmonics& getAmbientSphere() const { return _ambientSphere; }
|
||||
void setAmbientSpherePreset(gpu::SphericalHarmonics::Preset preset) { _ambientSphere.assignPreset(preset); }
|
||||
|
||||
// Schema to access the attribute values of the light
|
||||
class Schema {
|
||||
|
@ -278,7 +122,7 @@ protected:
|
|||
Flags _flags;
|
||||
UniformBufferView _schemaBuffer;
|
||||
Transform _transform;
|
||||
SphericalHarmonics _ambientSphere;
|
||||
gpu::SphericalHarmonics _ambientSphere;
|
||||
|
||||
const Schema& getSchema() const { return _schemaBuffer.get<Schema>(); }
|
||||
Schema& editSchema() { return _schemaBuffer.edit<Schema>(); }
|
||||
|
|
|
@ -39,22 +39,13 @@ void Skybox::setColor(const Color& color) {
|
|||
}
|
||||
|
||||
void Skybox::setCubemap(const gpu::TexturePointer& cubemap) {
|
||||
if (_isSHValid && (cubemap != _cubemap)) {
|
||||
_isSHValid = false;
|
||||
}
|
||||
_cubemap = cubemap;
|
||||
}
|
||||
|
||||
void Skybox::clearCubemap() {
|
||||
_cubemap.reset();
|
||||
}
|
||||
|
||||
void Skybox::render(gpu::Batch& batch, const ViewFrustum& viewFrustum, const Skybox& skybox) {
|
||||
|
||||
if (skybox.getCubemap() && skybox.getCubemap()->isDefined()) {
|
||||
|
||||
skybox.getIrradianceSH();
|
||||
|
||||
static gpu::PipelinePointer thePipeline;
|
||||
static gpu::BufferPointer theBuffer;
|
||||
static gpu::Stream::FormatPointer theFormat;
|
||||
|
@ -120,222 +111,3 @@ void Skybox::render(gpu::Batch& batch, const ViewFrustum& viewFrustum, const Sky
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
glm::vec3 sRGBToLinear(glm::vec3& color) {
|
||||
const float GAMMA_CORRECTION = 2.2f;
|
||||
return glm::pow(color, glm::vec3(GAMMA_CORRECTION));
|
||||
}
|
||||
|
||||
glm::vec3 linearTosRGB(glm::vec3& color) {
|
||||
const float GAMMA_CORRECTION_INV = 1.0f / 2.2f;
|
||||
return glm::pow(color, glm::vec3(GAMMA_CORRECTION_INV));
|
||||
}
|
||||
|
||||
// Originial code for the Spherical Harmonics taken from "Sun and Black Cat- Igor Dykhta (igor dykhta email) © 2007-2014 "
|
||||
void sphericalHarmonicsAdd(float * result, int order, const float * inputA, const float * inputB) {
|
||||
const int numCoeff = order * order;
|
||||
for(int i=0; i < numCoeff; i++) {
|
||||
result[i] = inputA[i] + inputB[i];
|
||||
}
|
||||
}
|
||||
|
||||
void sphericalHarmonicsScale(float * result, int order, const float * input, float scale) {
|
||||
const int numCoeff = order * order;
|
||||
for(int i=0; i < numCoeff; i++) {
|
||||
result[i] = input[i] * scale;
|
||||
}
|
||||
}
|
||||
|
||||
void sphericalHarmonicsEvaluateDirection(float * result, int order, const glm::vec3 & dir) {
|
||||
// calculate coefficients for first 3 bands of spherical harmonics
|
||||
double P_0_0 = 0.282094791773878140;
|
||||
double P_1_0 = 0.488602511902919920 * dir.z;
|
||||
double P_1_1 = -0.488602511902919920;
|
||||
double P_2_0 = 0.946174695757560080 * dir.z * dir.z - 0.315391565252520050;
|
||||
double P_2_1 = -1.092548430592079200 * dir.z;
|
||||
double P_2_2 = 0.546274215296039590;
|
||||
result[0] = P_0_0;
|
||||
result[1] = P_1_1 * dir.y;
|
||||
result[2] = P_1_0;
|
||||
result[3] = P_1_1 * dir.x;
|
||||
result[4] = P_2_2 * (dir.x * dir.y + dir.y * dir.x);
|
||||
result[5] = P_2_1 * dir.y;
|
||||
result[6] = P_2_0;
|
||||
result[7] = P_2_1 * dir.x;
|
||||
result[8] = P_2_2 * (dir.x * dir.x - dir.y * dir.y);
|
||||
}
|
||||
|
||||
void sphericalHarmonicsFromTexture(const gpu::Texture& cubeTexture, std::vector<glm::vec3> & output, const uint order) {
|
||||
const uint sqOrder = order*order;
|
||||
|
||||
// allocate memory for calculations
|
||||
output.resize(sqOrder);
|
||||
std::vector<float> resultR(sqOrder);
|
||||
std::vector<float> resultG(sqOrder);
|
||||
std::vector<float> resultB(sqOrder);
|
||||
|
||||
int width, height;
|
||||
|
||||
// initialize values
|
||||
float fWt = 0.0f;
|
||||
for(uint i=0; i < sqOrder; i++) {
|
||||
output[i] = glm::vec3(0.0f);
|
||||
resultR[i] = 0.0f;
|
||||
resultG[i] = 0;
|
||||
resultB[i] = 0;
|
||||
}
|
||||
std::vector<float> shBuff(sqOrder);
|
||||
std::vector<float> shBuffB(sqOrder);
|
||||
// get width and height
|
||||
width = height = cubeTexture.getWidth();
|
||||
if(width != height) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float UCHAR_TO_FLOAT = 1.0f / float(std::numeric_limits<unsigned char>::max());
|
||||
|
||||
// for each face of cube texture
|
||||
for(int face=0; face < gpu::Texture::NUM_CUBE_FACES; face++) {
|
||||
|
||||
auto numComponents = cubeTexture.accessStoredMipFace(0,face)->_format.getDimensionCount();
|
||||
auto data = cubeTexture.accessStoredMipFace(0,face)->_sysmem.readData();
|
||||
if (data == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// step between two texels for range [0, 1]
|
||||
float invWidth = 1.0f / float(width);
|
||||
// initial negative bound for range [-1, 1]
|
||||
float negativeBound = -1.0f + invWidth;
|
||||
// step between two texels for range [-1, 1]
|
||||
float invWidthBy2 = 2.0f / float(width);
|
||||
|
||||
for(int y=0; y < width; y++) {
|
||||
// texture coordinate V in range [-1 to 1]
|
||||
const float fV = negativeBound + float(y) * invWidthBy2;
|
||||
|
||||
for(int x=0; x < width; x++) {
|
||||
// texture coordinate U in range [-1 to 1]
|
||||
const float fU = negativeBound + float(x) * invWidthBy2;
|
||||
|
||||
// determine direction from center of cube texture to current texel
|
||||
glm::vec3 dir;
|
||||
switch(face) {
|
||||
case gpu::Texture::CUBE_FACE_RIGHT_POS_X: {
|
||||
dir.x = 1.0f;
|
||||
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir.z = 1.0f - (invWidthBy2 * float(x) + invWidth);
|
||||
dir = -dir;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_LEFT_NEG_X: {
|
||||
dir.x = -1.0f;
|
||||
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir.z = -1.0f + (invWidthBy2 * float(x) + invWidth);
|
||||
dir = -dir;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_TOP_POS_Y: {
|
||||
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
|
||||
dir.y = 1.0f;
|
||||
dir.z = - 1.0f + (invWidthBy2 * float(y) + invWidth);
|
||||
dir = -dir;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_BOTTOM_NEG_Y: {
|
||||
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
|
||||
dir.y = - 1.0f;
|
||||
dir.z = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir = -dir;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_BACK_POS_Z: {
|
||||
dir.x = - 1.0f + (invWidthBy2 * float(x) + invWidth);
|
||||
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir.z = 1.0f;
|
||||
break;
|
||||
}
|
||||
case gpu::Texture::CUBE_FACE_FRONT_NEG_Z: {
|
||||
dir.x = 1.0f - (invWidthBy2 * float(x) + invWidth);
|
||||
dir.y = 1.0f - (invWidthBy2 * float(y) + invWidth);
|
||||
dir.z = - 1.0f;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
return;
|
||||
}
|
||||
|
||||
// normalize direction
|
||||
dir = glm::normalize(dir);
|
||||
|
||||
// scale factor depending on distance from center of the face
|
||||
const float fDiffSolid = 4.0f / ((1.0f + fU*fU + fV*fV) *
|
||||
sqrtf(1.0f + fU*fU + fV*fV));
|
||||
fWt += fDiffSolid;
|
||||
|
||||
// calculate coefficients of spherical harmonics for current direction
|
||||
sphericalHarmonicsEvaluateDirection(shBuff.data(), order, dir);
|
||||
|
||||
// index of texel in texture
|
||||
uint pixOffsetIndex = (x + y * width) * numComponents;
|
||||
|
||||
// get color from texture and map to range [0, 1]
|
||||
glm::vec3 clr(float(data[pixOffsetIndex]) * UCHAR_TO_FLOAT,
|
||||
float(data[pixOffsetIndex+1]) * UCHAR_TO_FLOAT,
|
||||
float(data[pixOffsetIndex+2]) * UCHAR_TO_FLOAT);
|
||||
|
||||
// Gamma correct
|
||||
clr = sRGBToLinear(clr);
|
||||
|
||||
// scale color and add to previously accumulated coefficients
|
||||
sphericalHarmonicsScale(shBuffB.data(), order,
|
||||
shBuff.data(), clr.r * fDiffSolid);
|
||||
sphericalHarmonicsAdd(resultR.data(), order,
|
||||
resultR.data(), shBuffB.data());
|
||||
sphericalHarmonicsScale(shBuffB.data(), order,
|
||||
shBuff.data(), clr.g * fDiffSolid);
|
||||
sphericalHarmonicsAdd(resultG.data(), order,
|
||||
resultG.data(), shBuffB.data());
|
||||
sphericalHarmonicsScale(shBuffB.data(), order,
|
||||
shBuff.data(), clr.b * fDiffSolid);
|
||||
sphericalHarmonicsAdd(resultB.data(), order,
|
||||
resultB.data(), shBuffB.data());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// final scale for coefficients
|
||||
const float fNormProj = (4.0f * glm::pi<float>()) / fWt;
|
||||
sphericalHarmonicsScale(resultR.data(), order, resultR.data(), fNormProj);
|
||||
sphericalHarmonicsScale(resultG.data(), order, resultG.data(), fNormProj);
|
||||
sphericalHarmonicsScale(resultB.data(), order, resultB.data(), fNormProj);
|
||||
|
||||
// save result
|
||||
for(uint i=0; i < sqOrder; i++) {
|
||||
// gamma Correct
|
||||
// output[i] = linearTosRGB(glm::vec3(resultR[i], resultG[i], resultB[i]));
|
||||
output[i] = glm::vec3(resultR[i], resultG[i], resultB[i]);
|
||||
}
|
||||
}
|
||||
|
||||
const SphericalHarmonics& Skybox::getIrradianceSH() const {
|
||||
if (!_isSHValid) {
|
||||
if (_cubemap && _cubemap->isDefined()) {
|
||||
std::vector< glm::vec3 > coefs;
|
||||
sphericalHarmonicsFromTexture(*_cubemap, coefs, 3);
|
||||
|
||||
_irradianceSH.L00 = coefs[0];
|
||||
_irradianceSH.L1m1 = coefs[1];
|
||||
_irradianceSH.L10 = coefs[2];
|
||||
_irradianceSH.L11 = coefs[3];
|
||||
_irradianceSH.L2m2 = coefs[4];
|
||||
_irradianceSH.L2m1 = coefs[5];
|
||||
_irradianceSH.L20 = coefs[6];
|
||||
_irradianceSH.L21 = coefs[7];
|
||||
_irradianceSH.L22 = coefs[8];
|
||||
|
||||
_isSHValid = true;
|
||||
}
|
||||
}
|
||||
return _irradianceSH;
|
||||
}
|
||||
|
|
|
@ -34,17 +34,11 @@ public:
|
|||
|
||||
void setCubemap(const gpu::TexturePointer& cubemap);
|
||||
const gpu::TexturePointer& getCubemap() const { return _cubemap; }
|
||||
void clearCubemap();
|
||||
|
||||
const SphericalHarmonics& getIrradianceSH() const;
|
||||
|
||||
static void render(gpu::Batch& batch, const ViewFrustum& frustum, const Skybox& skybox);
|
||||
|
||||
protected:
|
||||
gpu::TexturePointer _cubemap;
|
||||
|
||||
mutable SphericalHarmonics _irradianceSH;
|
||||
mutable bool _isSHValid = false;
|
||||
|
||||
Color _color{1.0f, 1.0f, 1.0f};
|
||||
};
|
||||
|
|
|
@ -89,7 +89,7 @@ void DeferredLightingEffect::init(AbstractViewStateInterface* viewState) {
|
|||
lp->setColor(glm::vec3(1.0f));
|
||||
lp->setIntensity(1.0f);
|
||||
lp->setType(model::Light::SUN);
|
||||
lp->setAmbientSpherePreset(model::SphericalHarmonics::Preset(_ambientLightMode % model::SphericalHarmonics::NUM_PRESET));
|
||||
lp->setAmbientSpherePreset(gpu::SphericalHarmonics::Preset(_ambientLightMode % gpu::SphericalHarmonics::NUM_PRESET));
|
||||
}
|
||||
|
||||
void DeferredLightingEffect::bindSimpleProgram() {
|
||||
|
@ -291,13 +291,11 @@ void DeferredLightingEffect::render() {
|
|||
auto globalLight = _allocatedLights[_globalLights.front()];
|
||||
|
||||
if (locations->ambientSphere >= 0) {
|
||||
model::SphericalHarmonics sh;
|
||||
if (useSkyboxCubemap) {
|
||||
sh = _skybox->getIrradianceSH();
|
||||
} else {
|
||||
sh = globalLight->getAmbientSphere();
|
||||
gpu::SphericalHarmonics sh = globalLight->getAmbientSphere();
|
||||
if (useSkyboxCubemap && _skybox->getCubemap()->getIrradiance()) {
|
||||
sh = (*_skybox->getCubemap()->getIrradiance());
|
||||
}
|
||||
for (int i =0; i <model::SphericalHarmonics::NUM_COEFFICIENTS; i++) {
|
||||
for (int i =0; i <gpu::SphericalHarmonics::NUM_COEFFICIENTS; i++) {
|
||||
program->setUniformValue(locations->ambientSphere + i, *(((QVector4D*) &sh) + i));
|
||||
}
|
||||
}
|
||||
|
@ -590,10 +588,10 @@ void DeferredLightingEffect::loadLightProgram(const char* fragSource, bool limit
|
|||
}
|
||||
|
||||
void DeferredLightingEffect::setAmbientLightMode(int preset) {
|
||||
if ((preset >= 0) && (preset < model::SphericalHarmonics::NUM_PRESET)) {
|
||||
if ((preset >= 0) && (preset < gpu::SphericalHarmonics::NUM_PRESET)) {
|
||||
_ambientLightMode = preset;
|
||||
auto light = _allocatedLights.front();
|
||||
light->setAmbientSpherePreset(model::SphericalHarmonics::Preset(preset % model::SphericalHarmonics::NUM_PRESET));
|
||||
light->setAmbientSpherePreset(gpu::SphericalHarmonics::Preset(preset % gpu::SphericalHarmonics::NUM_PRESET));
|
||||
} else {
|
||||
// force to preset 0
|
||||
setAmbientLightMode(0);
|
||||
|
|
|
@ -348,7 +348,7 @@ NetworkTexture::NetworkTexture(const QUrl& url, TextureType type, const QByteArr
|
|||
class ImageReader : public QRunnable {
|
||||
public:
|
||||
|
||||
ImageReader(const QWeakPointer<Resource>& texture, QNetworkReply* reply, const QUrl& url = QUrl(),
|
||||
ImageReader(const QWeakPointer<Resource>& texture, TextureType type, QNetworkReply* reply, const QUrl& url = QUrl(),
|
||||
const QByteArray& content = QByteArray());
|
||||
|
||||
virtual void run();
|
||||
|
@ -356,14 +356,25 @@ public:
|
|||
private:
|
||||
|
||||
QWeakPointer<Resource> _texture;
|
||||
TextureType _type;
|
||||
QNetworkReply* _reply;
|
||||
QUrl _url;
|
||||
QByteArray _content;
|
||||
};
|
||||
|
||||
ImageReader::ImageReader(const QWeakPointer<Resource>& texture, QNetworkReply* reply,
|
||||
void NetworkTexture::downloadFinished(QNetworkReply* reply) {
|
||||
// send the reader off to the thread pool
|
||||
QThreadPool::globalInstance()->start(new ImageReader(_self, _type, reply));
|
||||
}
|
||||
|
||||
void NetworkTexture::loadContent(const QByteArray& content) {
|
||||
QThreadPool::globalInstance()->start(new ImageReader(_self, _type, NULL, _url, content));
|
||||
}
|
||||
|
||||
ImageReader::ImageReader(const QWeakPointer<Resource>& texture, TextureType type, QNetworkReply* reply,
|
||||
const QUrl& url, const QByteArray& content) :
|
||||
_texture(texture),
|
||||
_type(type),
|
||||
_reply(reply),
|
||||
_url(url),
|
||||
_content(content) {
|
||||
|
@ -381,6 +392,41 @@ void listSupportedImageFormats() {
|
|||
});
|
||||
}
|
||||
|
||||
|
||||
class CubeLayout {
|
||||
public:
|
||||
int _widthRatio = 1;
|
||||
int _heightRatio = 1;
|
||||
|
||||
class Face {
|
||||
public:
|
||||
int _x = 0;
|
||||
int _y = 0;
|
||||
bool _horizontalMirror = false;
|
||||
bool _verticalMirror = false;
|
||||
|
||||
Face() {}
|
||||
Face(int x, int y, bool horizontalMirror, bool verticalMirror) : _x(x), _y(y), _horizontalMirror(horizontalMirror), _verticalMirror(verticalMirror) {}
|
||||
};
|
||||
|
||||
Face _faceXPos;
|
||||
Face _faceXNeg;
|
||||
Face _faceYPos;
|
||||
Face _faceYNeg;
|
||||
Face _faceZPos;
|
||||
Face _faceZNeg;
|
||||
|
||||
CubeLayout(int wr, int hr, Face fXP, Face fXN, Face fYP, Face fYN, Face fZP, Face fZN) :
|
||||
_widthRatio(wr),
|
||||
_heightRatio(hr),
|
||||
_faceXPos(fXP),
|
||||
_faceXNeg(fXN),
|
||||
_faceYPos(fYP),
|
||||
_faceYNeg(fYN),
|
||||
_faceZPos(fZP),
|
||||
_faceZNeg(fZN) {}
|
||||
};
|
||||
|
||||
void ImageReader::run() {
|
||||
QSharedPointer<Resource> texture = _texture.toStrongRef();
|
||||
if (texture.isNull()) {
|
||||
|
@ -436,12 +482,17 @@ void ImageReader::run() {
|
|||
}
|
||||
}
|
||||
|
||||
int opaquePixels = 0;
|
||||
int translucentPixels = 0;
|
||||
int redTotal = 0, greenTotal = 0, blueTotal = 0, alphaTotal = 0;
|
||||
const int EIGHT_BIT_MAXIMUM = 255;
|
||||
QColor averageColor(EIGHT_BIT_MAXIMUM, EIGHT_BIT_MAXIMUM, EIGHT_BIT_MAXIMUM);
|
||||
|
||||
if (!image.hasAlphaChannel()) {
|
||||
if (image.format() != QImage::Format_RGB888) {
|
||||
image = image.convertToFormat(QImage::Format_RGB888);
|
||||
}
|
||||
int redTotal = 0, greenTotal = 0, blueTotal = 0;
|
||||
// int redTotal = 0, greenTotal = 0, blueTotal = 0;
|
||||
for (int y = 0; y < image.height(); y++) {
|
||||
for (int x = 0; x < image.width(); x++) {
|
||||
QRgb rgb = image.pixel(x, y);
|
||||
|
@ -450,103 +501,44 @@ void ImageReader::run() {
|
|||
blueTotal += qBlue(rgb);
|
||||
}
|
||||
}
|
||||
QColor averageColor(EIGHT_BIT_MAXIMUM, EIGHT_BIT_MAXIMUM, EIGHT_BIT_MAXIMUM);
|
||||
if (imageArea > 0) {
|
||||
averageColor.setRgb(redTotal / imageArea, greenTotal / imageArea, blueTotal / imageArea);
|
||||
}
|
||||
QMetaObject::invokeMethod(texture.data(), "setImage", Q_ARG(const QImage&, image), Q_ARG(bool, false),
|
||||
Q_ARG(const QColor&, averageColor), Q_ARG(int, originalWidth), Q_ARG(int, originalHeight));
|
||||
return;
|
||||
}
|
||||
if (image.format() != QImage::Format_ARGB32) {
|
||||
image = image.convertToFormat(QImage::Format_ARGB32);
|
||||
}
|
||||
} else {
|
||||
if (image.format() != QImage::Format_ARGB32) {
|
||||
image = image.convertToFormat(QImage::Format_ARGB32);
|
||||
}
|
||||
|
||||
// check for translucency/false transparency
|
||||
int opaquePixels = 0;
|
||||
int translucentPixels = 0;
|
||||
int redTotal = 0, greenTotal = 0, blueTotal = 0, alphaTotal = 0;
|
||||
for (int y = 0; y < image.height(); y++) {
|
||||
for (int x = 0; x < image.width(); x++) {
|
||||
QRgb rgb = image.pixel(x, y);
|
||||
redTotal += qRed(rgb);
|
||||
greenTotal += qGreen(rgb);
|
||||
blueTotal += qBlue(rgb);
|
||||
int alpha = qAlpha(rgb);
|
||||
alphaTotal += alpha;
|
||||
if (alpha == EIGHT_BIT_MAXIMUM) {
|
||||
opaquePixels++;
|
||||
} else if (alpha != 0) {
|
||||
translucentPixels++;
|
||||
// check for translucency/false transparency
|
||||
// int opaquePixels = 0;
|
||||
// int translucentPixels = 0;
|
||||
// int redTotal = 0, greenTotal = 0, blueTotal = 0, alphaTotal = 0;
|
||||
for (int y = 0; y < image.height(); y++) {
|
||||
for (int x = 0; x < image.width(); x++) {
|
||||
QRgb rgb = image.pixel(x, y);
|
||||
redTotal += qRed(rgb);
|
||||
greenTotal += qGreen(rgb);
|
||||
blueTotal += qBlue(rgb);
|
||||
int alpha = qAlpha(rgb);
|
||||
alphaTotal += alpha;
|
||||
if (alpha == EIGHT_BIT_MAXIMUM) {
|
||||
opaquePixels++;
|
||||
} else if (alpha != 0) {
|
||||
translucentPixels++;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (opaquePixels == imageArea) {
|
||||
qCDebug(renderutils) << "Image with alpha channel is completely opaque:" << _url;
|
||||
image = image.convertToFormat(QImage::Format_RGB888);
|
||||
}
|
||||
|
||||
averageColor = QColor(redTotal / imageArea,
|
||||
greenTotal / imageArea, blueTotal / imageArea, alphaTotal / imageArea);
|
||||
}
|
||||
if (opaquePixels == imageArea) {
|
||||
qCDebug(renderutils) << "Image with alpha channel is completely opaque:" << _url;
|
||||
image = image.convertToFormat(QImage::Format_RGB888);
|
||||
}
|
||||
QMetaObject::invokeMethod(texture.data(), "setImage", Q_ARG(const QImage&, image),
|
||||
Q_ARG(bool, translucentPixels >= imageArea / 2), Q_ARG(const QColor&, QColor(redTotal / imageArea,
|
||||
greenTotal / imageArea, blueTotal / imageArea, alphaTotal / imageArea)),
|
||||
Q_ARG(int, originalWidth), Q_ARG(int, originalHeight));
|
||||
}
|
||||
|
||||
void NetworkTexture::downloadFinished(QNetworkReply* reply) {
|
||||
// send the reader off to the thread pool
|
||||
QThreadPool::globalInstance()->start(new ImageReader(_self, reply));
|
||||
}
|
||||
|
||||
void NetworkTexture::loadContent(const QByteArray& content) {
|
||||
QThreadPool::globalInstance()->start(new ImageReader(_self, NULL, _url, content));
|
||||
}
|
||||
|
||||
class CubeLayout {
|
||||
public:
|
||||
int _widthRatio = 1;
|
||||
int _heightRatio = 1;
|
||||
|
||||
class Face {
|
||||
public:
|
||||
int _x = 0;
|
||||
int _y = 0;
|
||||
bool _horizontalMirror = false;
|
||||
bool _verticalMirror = false;
|
||||
|
||||
Face() {}
|
||||
Face(int x, int y, bool horizontalMirror, bool verticalMirror) : _x(x), _y(y), _horizontalMirror(horizontalMirror), _verticalMirror(verticalMirror) {}
|
||||
};
|
||||
|
||||
Face _faceXPos;
|
||||
Face _faceXNeg;
|
||||
Face _faceYPos;
|
||||
Face _faceYNeg;
|
||||
Face _faceZPos;
|
||||
Face _faceZNeg;
|
||||
|
||||
CubeLayout(int wr, int hr, Face fXP, Face fXN, Face fYP, Face fYN, Face fZP, Face fZN) :
|
||||
_widthRatio(wr),
|
||||
_heightRatio(hr),
|
||||
_faceXPos(fXP),
|
||||
_faceXNeg(fXN),
|
||||
_faceYPos(fYP),
|
||||
_faceYNeg(fYN),
|
||||
_faceZPos(fZP),
|
||||
_faceZNeg(fZN) {}
|
||||
};
|
||||
|
||||
void NetworkTexture::setImage(const QImage& image, bool translucent, const QColor& averageColor, int originalWidth,
|
||||
int originalHeight) {
|
||||
_translucent = translucent;
|
||||
_averageColor = averageColor;
|
||||
_originalWidth = originalWidth;
|
||||
_originalHeight = originalHeight;
|
||||
_width = image.width();
|
||||
_height = image.height();
|
||||
|
||||
finishedLoading(true);
|
||||
imageLoaded(image);
|
||||
|
||||
if ((_width > 0) && (_height > 0)) {
|
||||
gpu::Texture* theTexture = nullptr;
|
||||
if ((image.width() > 0) && (image.height() > 0)) {
|
||||
|
||||
// bool isLinearRGB = true; //(_type == NORMAL_TEXTURE) || (_type == EMISSIVE_TEXTURE);
|
||||
bool isLinearRGB = !(_type == CUBE_TEXTURE); //(_type == NORMAL_TEXTURE) || (_type == EMISSIVE_TEXTURE);
|
||||
|
@ -666,7 +658,7 @@ void NetworkTexture::setImage(const QImage& image, bool translucent, const QColo
|
|||
for (int i = 0; i < NUM_CUBEMAP_LAYOUTS; i++) {
|
||||
if ((image.height() * CUBEMAP_LAYOUTS[i]._widthRatio) == (image.width() * CUBEMAP_LAYOUTS[i]._heightRatio)) {
|
||||
foundLayout = i;
|
||||
// break;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -682,24 +674,66 @@ void NetworkTexture::setImage(const QImage& image, bool translucent, const QColo
|
|||
faces.push_back(image.copy(QRect(layout._faceYNeg._x * faceWidth, layout._faceYNeg._y * faceWidth, faceWidth, faceWidth)).mirrored(layout._faceYNeg._horizontalMirror, layout._faceYNeg._verticalMirror));
|
||||
faces.push_back(image.copy(QRect(layout._faceZPos._x * faceWidth, layout._faceZPos._y * faceWidth, faceWidth, faceWidth)).mirrored(layout._faceZPos._horizontalMirror, layout._faceZPos._verticalMirror));
|
||||
faces.push_back(image.copy(QRect(layout._faceZNeg._x * faceWidth, layout._faceZNeg._y * faceWidth, faceWidth, faceWidth)).mirrored(layout._faceZNeg._horizontalMirror, layout._faceZNeg._verticalMirror));
|
||||
} else {
|
||||
qCDebug(renderutils) << "Failed to find a known cube map layout from this image:" << _url;
|
||||
return;
|
||||
}
|
||||
|
||||
// If the 6 faces have been created go on and define the true Texture
|
||||
if (faces.size() == gpu::Texture::NUM_FACES_PER_TYPE[gpu::Texture::TEX_CUBE]) {
|
||||
_gpuTexture = gpu::TexturePointer(gpu::Texture::createCube(formatGPU, faces[0].width(), gpu::Sampler(gpu::Sampler::FILTER_MIN_MAG_MIP_LINEAR, gpu::Sampler::WRAP_CLAMP)));
|
||||
_gpuTexture->autoGenerateMips(-1);
|
||||
theTexture = gpu::Texture::createCube(formatGPU, faces[0].width(), gpu::Sampler(gpu::Sampler::FILTER_MIN_MAG_MIP_LINEAR, gpu::Sampler::WRAP_CLAMP));
|
||||
theTexture->autoGenerateMips(-1);
|
||||
int f = 0;
|
||||
for (auto& face : faces) {
|
||||
_gpuTexture->assignStoredMipFace(0, formatMip, face.byteCount(), face.constBits(), f);
|
||||
theTexture->assignStoredMipFace(0, formatMip, face.byteCount(), face.constBits(), f);
|
||||
f++;
|
||||
}
|
||||
|
||||
// GEnerate irradiance while we are at it
|
||||
theTexture->generateIrradiance();
|
||||
}
|
||||
|
||||
} else {
|
||||
_gpuTexture = gpu::TexturePointer(gpu::Texture::create2D(formatGPU, image.width(), image.height(), gpu::Sampler(gpu::Sampler::FILTER_MIN_MAG_MIP_LINEAR)));
|
||||
_gpuTexture->assignStoredMip(0, formatMip, image.byteCount(), image.constBits());
|
||||
_gpuTexture->autoGenerateMips(-1);
|
||||
theTexture = (gpu::Texture::create2D(formatGPU, image.width(), image.height(), gpu::Sampler(gpu::Sampler::FILTER_MIN_MAG_MIP_LINEAR)));
|
||||
theTexture->assignStoredMip(0, formatMip, image.byteCount(), image.constBits());
|
||||
theTexture->autoGenerateMips(-1);
|
||||
}
|
||||
}
|
||||
|
||||
QMetaObject::invokeMethod(texture.data(), "setImage",
|
||||
Q_ARG(const QImage&, image),
|
||||
Q_ARG(void*, theTexture),
|
||||
Q_ARG(bool, translucentPixels >= imageArea / 2), Q_ARG(const QColor&, averageColor),
|
||||
Q_ARG(int, originalWidth), Q_ARG(int, originalHeight));
|
||||
|
||||
|
||||
/* QMetaObject::invokeMethod(texture.data(), "setImage", Q_ARG(const QImage&, image), Q_ARG(bool, false),
|
||||
Q_ARG(const QColor&, averageColor), Q_ARG(int, originalWidth), Q_ARG(int, originalHeight));
|
||||
return;
|
||||
*/
|
||||
}
|
||||
|
||||
void NetworkTexture::setImage(const QImage& image, void* voidTexture, bool translucent, const QColor& averageColor, int originalWidth,
|
||||
int originalHeight) {
|
||||
_translucent = translucent;
|
||||
_averageColor = averageColor;
|
||||
_originalWidth = originalWidth;
|
||||
_originalHeight = originalHeight;
|
||||
|
||||
gpu::Texture* texture = static_cast<gpu::Texture*>(voidTexture);
|
||||
// Passing ownership
|
||||
_gpuTexture.reset(texture);
|
||||
|
||||
if (_gpuTexture) {
|
||||
_width = _gpuTexture->getWidth();
|
||||
_height = _gpuTexture->getHeight();
|
||||
} else {
|
||||
_width = _height = 0;
|
||||
}
|
||||
|
||||
finishedLoading(true);
|
||||
|
||||
imageLoaded(image);
|
||||
}
|
||||
|
||||
void NetworkTexture::imageLoaded(const QImage& image) {
|
||||
|
|
|
@ -16,6 +16,8 @@
|
|||
#include <gpu/Texture.h>
|
||||
#include <gpu/Framebuffer.h>
|
||||
|
||||
#include <model/Light.h>
|
||||
|
||||
#include <QImage>
|
||||
#include <QMap>
|
||||
#include <QGLWidget>
|
||||
|
@ -146,6 +148,9 @@ private:
|
|||
};
|
||||
|
||||
/// A texture loaded from the network.
|
||||
|
||||
Q_DECLARE_METATYPE(gpu::Texture);
|
||||
|
||||
class NetworkTexture : public Resource, public Texture {
|
||||
Q_OBJECT
|
||||
|
||||
|
@ -170,7 +175,7 @@ protected:
|
|||
virtual void downloadFinished(QNetworkReply* reply);
|
||||
|
||||
Q_INVOKABLE void loadContent(const QByteArray& content);
|
||||
Q_INVOKABLE void setImage(const QImage& image, bool translucent, const QColor& averageColor, int originalWidth,
|
||||
Q_INVOKABLE void setImage(const QImage& image, void* texture, bool translucent, const QColor& averageColor, int originalWidth,
|
||||
int originalHeight);
|
||||
|
||||
virtual void imageLoaded(const QImage& image);
|
||||
|
|
Loading…
Reference in a new issue