3
0
Fork 0
mirror of https://github.com/JulianGro/overte.git synced 2025-04-30 04:42:58 +02:00

Merge remote-tracking branch 'upstream/master'

This commit is contained in:
Mark Peng 2013-07-17 17:28:12 -07:00
commit 6006b8e96b
16 changed files with 560 additions and 245 deletions

View file

@ -3570,6 +3570,7 @@ void Application::updateParticleSystem(float deltaTime) {
ParticleSystem::ParticleAttributes attributes;
attributes.radius = 0.01f;
attributes.gravity = 0.0f + 0.05f * sinf( t * 0.52f );
attributes.airFriction = 2.5 + 2.0f * sinf( t * 0.32f );
attributes.jitter = 0.05f + 0.05f * sinf( t * 0.42f );
@ -3586,7 +3587,7 @@ void Application::updateParticleSystem(float deltaTime) {
attributes.gravity = 0.0f;
}
_particleSystem.setParticleAttributesForEmitter(_coolDemoParticleEmitter, attributes);
_particleSystem.setParticleAttributes(_coolDemoParticleEmitter, attributes);
}
_particleSystem.setUpDirection(glm::vec3(0.0f, 1.0f, 0.0f));

View file

@ -98,6 +98,7 @@ Avatar::Avatar(Node* owningNode) :
_elapsedTimeMoving(0.0f),
_elapsedTimeStopped(0.0f),
_elapsedTimeSinceCollision(0.0f),
_lastCollisionPosition(0, 0, 0),
_speedBrakes(false),
_isThrustOn(false),
_voxels(this)
@ -541,11 +542,11 @@ void Avatar::simulate(float deltaTime, Transmitter* transmitter) {
// For gravity, always move the avatar by the amount driven by gravity, so that the collision
// routines will detect it and collide every frame when pulled by gravity to a surface
//
_velocity += _scale * _gravity * (GRAVITY_EARTH * deltaTime);
_position += _scale * _gravity * (GRAVITY_EARTH * deltaTime) * deltaTime;
const float MIN_DISTANCE_AFTER_COLLISION_FOR_GRAVITY = 0.02f;
if (glm::length(_position - _lastCollisionPosition) > MIN_DISTANCE_AFTER_COLLISION_FOR_GRAVITY) {
_velocity += _scale * _gravity * (GRAVITY_EARTH * deltaTime);
}
}
updateCollisionWithEnvironment(deltaTime);
updateCollisionWithVoxels(deltaTime);
updateAvatarCollisions(deltaTime);
@ -821,10 +822,13 @@ void Avatar::updateHandMovementAndTouching(float deltaTime, bool enableHandMovem
}
// If there's a leap-interaction hand visible, use that as the endpoint
if (getHand().getHandPositions().size() > 0) {
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position =
getHand().leapPositionToWorldPosition(getHand().getHandPositions()[0]);
for (size_t i = 0; i < getHand().getPalms().size(); ++i) {
PalmData& palm = getHand().getPalms()[i];
if (palm.isActive()) {
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = palm.getPosition();
}
}
}//if (_isMine)
//constrain right arm length and re-adjust elbow position as it bends
@ -890,11 +894,9 @@ void Avatar::updateCollisionWithEnvironment(float deltaTime) {
if (velocityTowardCollision > VISIBLE_GROUND_COLLISION_VELOCITY) {
Application::getInstance()->setGroundPlaneImpact(1.0f);
}
_lastCollisionPosition = _position;
updateCollisionSound(penetration, deltaTime, ENVIRONMENT_COLLISION_FREQUENCY);
applyHardCollision(penetration, ENVIRONMENT_SURFACE_ELASTICITY, ENVIRONMENT_SURFACE_DAMPING);
}
}
@ -908,6 +910,7 @@ void Avatar::updateCollisionWithVoxels(float deltaTime) {
if (Application::getInstance()->getVoxels()->findCapsulePenetration(
_position - glm::vec3(0.0f, _pelvisFloatingHeight - radius, 0.0f),
_position + glm::vec3(0.0f, _height - _pelvisFloatingHeight - radius, 0.0f), radius, penetration)) {
_lastCollisionPosition = _position;
updateCollisionSound(penetration, deltaTime, VOXEL_COLLISION_FREQUENCY);
applyHardCollision(penetration, VOXEL_ELASTICITY, VOXEL_DAMPING);
}

View file

@ -118,7 +118,8 @@ public:
const glm::vec3& amplifyAngle,
float yawFromTouch,
float pitchFromTouch);
void addBodyYaw(float y) {_bodyYaw += y;};
void addBodyYaw(float bodyYaw) {_bodyYaw += bodyYaw;};
void addBodyYawDelta(float bodyYawDelta) {_bodyYawDelta += bodyYawDelta;}
void render(bool lookingInMirror, bool renderAvatarBalls);
//setters
@ -155,6 +156,7 @@ public:
float getElapsedTimeStopped () const { return _elapsedTimeStopped;}
float getElapsedTimeMoving () const { return _elapsedTimeMoving;}
float getElapsedTimeSinceCollision() const { return _elapsedTimeSinceCollision;}
const glm::vec3& getLastCollisionPosition () const { return _lastCollisionPosition;}
float getAbsoluteHeadYaw () const;
float getAbsoluteHeadPitch () const;
Head& getHead () {return _head; }
@ -245,6 +247,7 @@ private:
float _elapsedTimeMoving; // Timers to drive camera transitions when moving
float _elapsedTimeStopped;
float _elapsedTimeSinceCollision;
glm::vec3 _lastCollisionPosition;
bool _speedBrakes;
bool _isThrustOn;

View file

@ -22,8 +22,6 @@ Hand::Hand(Avatar* owningAvatar) :
_renderAlpha(1.0),
_lookingInMirror(false),
_ballColor(0.0, 0.0, 0.4),
_position(0.0, 0.4, 0.0),
_orientation(0.0, 0.0, 0.0, 1.0),
_particleSystemInitialized(false)
{
// initialize all finger particle emitters with an invalid id as default
@ -45,48 +43,55 @@ void Hand::reset() {
}
void Hand::simulate(float deltaTime, bool isMine) {
updateFingerParticles(deltaTime);
}
glm::vec3 Hand::leapPositionToWorldPosition(const glm::vec3& leapPosition) {
float unitScale = 0.001; // convert mm to meters
return _position + _orientation * (leapPosition * unitScale);
if (_isRaveGloveActive) {
updateFingerParticles(deltaTime);
}
}
void Hand::calculateGeometry() {
glm::vec3 offset(0.2, -0.2, -0.3); // place the hand in front of the face where we can see it
Head& head = _owningAvatar->getHead();
_position = head.getPosition() + head.getOrientation() * offset;
_orientation = head.getOrientation();
_basePosition = head.getPosition() + head.getOrientation() * offset;
_baseOrientation = head.getOrientation();
int numLeapBalls = _fingerTips.size();
_leapBalls.resize(numLeapBalls);
for (int i = 0; i < _fingerTips.size(); ++i) {
_leapBalls[i].rotation = _orientation;
_leapBalls[i].position = leapPositionToWorldPosition(_fingerTips[i]);
_leapBalls[i].radius = 0.01;
_leapBalls[i].touchForce = 0.0;
_leapBalls[i].isCollidable = true;
_leapBalls.clear();
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
if (palm.isActive()) {
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
if (finger.isActive()) {
const float standardBallRadius = 0.01f;
_leapBalls.resize(_leapBalls.size() + 1);
HandBall& ball = _leapBalls.back();
ball.rotation = _baseOrientation;
ball.position = finger.getTipPosition();
ball.radius = standardBallRadius;
ball.touchForce = 0.0;
ball.isCollidable = true;
}
}
}
}
}
void Hand::render(bool lookingInMirror) {
if (_particleSystemInitialized) {
_particleSystem.render();
}
_renderAlpha = 1.0;
_lookingInMirror = lookingInMirror;
calculateGeometry();
if (_isRaveGloveActive)
if (_isRaveGloveActive) {
renderRaveGloveStage();
if (_particleSystemInitialized) {
_particleSystem.render();
}
}
glEnable(GL_DEPTH_TEST);
glEnable(GL_RESCALE_NORMAL);
@ -138,21 +143,29 @@ void Hand::renderHandSpheres() {
}
// Draw the finger root cones
if (_fingerTips.size() == _fingerRoots.size()) {
for (size_t i = 0; i < _fingerTips.size(); ++i) {
glColor4f(_ballColor.r, _ballColor.g, _ballColor.b, 0.5);
glm::vec3 tip = leapPositionToWorldPosition(_fingerTips[i]);
glm::vec3 root = leapPositionToWorldPosition(_fingerRoots[i]);
Avatar::renderJointConnectingCone(root, tip, 0.001, 0.003);
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
if (palm.isActive()) {
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
if (finger.isActive()) {
glColor4f(_ballColor.r, _ballColor.g, _ballColor.b, 0.5);
glm::vec3 tip = finger.getTipPosition();
glm::vec3 root = finger.getRootPosition();
Avatar::renderJointConnectingCone(root, tip, 0.001, 0.003);
}
}
}
}
// Draw the palms
if (_handPositions.size() == _handNormals.size()) {
for (size_t i = 0; i < _handPositions.size(); ++i) {
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
if (palm.isActive()) {
const float palmThickness = 0.002f;
glColor4f(_ballColor.r, _ballColor.g, _ballColor.b, 0.25);
glm::vec3 tip = leapPositionToWorldPosition(_handPositions[i]);
glm::vec3 root = leapPositionToWorldPosition(_handPositions[i] + (_handNormals[i] * 2.0f));
glm::vec3 tip = palm.getPosition();
glm::vec3 root = palm.getPosition() + palm.getNormal() * palmThickness;
Avatar::renderJointConnectingCone(root, tip, 0.05, 0.03);
}
}
@ -162,57 +175,123 @@ void Hand::renderHandSpheres() {
void Hand::setLeapFingers(const std::vector<glm::vec3>& fingerTips,
const std::vector<glm::vec3>& fingerRoots) {
_fingerTips = fingerTips;
_fingerRoots = fingerRoots;
// TODO: add id-checking here to increase finger stability
size_t fingerIndex = 0;
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
if (fingerIndex < fingerTips.size()) {
finger.setActive(true);
finger.setRawTipPosition(fingerTips[fingerIndex]);
finger.setRawRootPosition(fingerRoots[fingerIndex]);
fingerIndex++;
}
else {
finger.setActive(false);
}
}
}
}
void Hand::setLeapHands(const std::vector<glm::vec3>& handPositions,
const std::vector<glm::vec3>& handNormals) {
_handPositions = handPositions;
_handNormals = handNormals;
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
if (i < handPositions.size()) {
palm.setActive(true);
palm.setRawPosition(handPositions[i]);
palm.setRawNormal(handNormals[i]);
}
else {
palm.setActive(false);
}
}
}
void Hand::updateFingerParticles(float deltaTime) {
if (!_particleSystemInitialized) {
for ( int f = 0; f< NUM_FINGERS_PER_HAND; f ++ ) {
_fingerParticleEmitter[f] = _particleSystem.addEmitter();
_particleSystem.setShowingEmitter(_fingerParticleEmitter[f], true);
ParticleSystem::ParticleAttributes attributes;
// set attributes for each life stage of the particle:
attributes.radius = 0.0f;
attributes.color = glm::vec4( 1.0f, 1.0f, 0.5f, 0.5f);
attributes.gravity = 0.0f;
attributes.airFriction = 0.0f;
attributes.jitter = 0.002f;
attributes.emitterAttraction = 0.0f;
attributes.tornadoForce = 0.0f;
attributes.neighborAttraction = 0.0f;
attributes.neighborRepulsion = 0.0f;
attributes.bounce = 1.0f;
attributes.usingCollisionSphere = false;
_particleSystem.setParticleAttributes(_fingerParticleEmitter[f], 0, attributes);
attributes.radius = 0.01f;
attributes.jitter = 0.0f;
attributes.gravity = -0.005f;
attributes.color = glm::vec4( 1.0f, 0.2f, 0.0f, 0.4f);
_particleSystem.setParticleAttributes(_fingerParticleEmitter[f], 1, attributes);
attributes.radius = 0.01f;
attributes.gravity = 0.0f;
attributes.color = glm::vec4( 0.0f, 0.0f, 0.0f, 0.2f);
_particleSystem.setParticleAttributes(_fingerParticleEmitter[f], 2, attributes);
attributes.radius = 0.02f;
attributes.color = glm::vec4( 0.0f, 0.0f, 0.0f, 0.0f);
_particleSystem.setParticleAttributes(_fingerParticleEmitter[f], 3, attributes);
}
_particleSystemInitialized = true;
} else {
// update the particles
static float t = 0.0f;
t += deltaTime;
for ( int f = 0; f< _fingerTips.size(); f ++ ) {
if (_fingerParticleEmitter[f] != -1) {
glm::vec3 particleEmitterPosition = leapPositionToWorldPosition(_fingerTips[f]);
// this aspect is still being designed....
glm::vec3 tilt = glm::vec3
(
30.0f * sinf( t * 0.55f ),
0.0f,
30.0f * cosf( t * 0.75f )
);
glm::quat particleEmitterRotation = glm::quat(glm::radians(tilt));
_particleSystem.setEmitterPosition(_fingerParticleEmitter[0], particleEmitterPosition);
_particleSystem.setEmitterRotation(_fingerParticleEmitter[0], particleEmitterRotation);
float radius = 0.005f;
glm::vec4 color(1.0f, 0.6f, 0.0f, 0.5f);
glm::vec3 velocity(0.0f, 0.005f, 0.0f);
float lifespan = 0.3f;
_particleSystem.emitParticlesNow(_fingerParticleEmitter[0], 1, radius, color, velocity, lifespan);
}
int fingerIndex = 0;
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
if (palm.isActive()) {
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
if (finger.isActive()) {
if (_fingerParticleEmitter[fingerIndex] != -1) {
glm::vec3 particleEmitterPosition = finger.getTipPosition();
glm::vec3 fingerDirection = particleEmitterPosition - leapPositionToWorldPosition(finger.getRootPosition());
float fingerLength = glm::length(fingerDirection);
if (fingerLength > 0.0f) {
fingerDirection /= fingerLength;
} else {
fingerDirection = IDENTITY_UP;
}
glm::quat particleEmitterRotation = rotationBetween(IDENTITY_UP, fingerDirection);
_particleSystem.setEmitterPosition(_fingerParticleEmitter[f], particleEmitterPosition);
_particleSystem.setEmitterRotation(_fingerParticleEmitter[f], particleEmitterRotation);
float radius = 0.005f;
const glm::vec4 color(1.0f, 0.6f, 0.0f, 0.5f);
const glm::vec3 velocity = fingerDirection * 0.002f;
const float lifespan = 1.0f;
_particleSystem.emitParticlesNow(_fingerParticleEmitter[f], 1, radius, color, velocity, lifespan);
}
}
}
}
}
_particleSystem.setUpDirection(glm::vec3(0.0f, 1.0f, 0.0f));

View file

@ -19,8 +19,6 @@
#include <SharedUtil.h>
#include <vector>
const int NUM_FINGERS_PER_HAND = 5;
class Avatar;
class ProgramObject;
@ -56,9 +54,6 @@ public:
const glm::vec3& getLeapBallPosition (int ball) const { return _leapBalls[ball].position;}
bool isRaveGloveActive () const { return _isRaveGloveActive; }
// position conversion
glm::vec3 leapPositionToWorldPosition(const glm::vec3& leapPosition);
private:
// disallow copies of the Hand, copy of owning Avatar is disallowed too
Hand(const Hand&);
@ -71,8 +66,6 @@ private:
bool _lookingInMirror;
bool _isRaveGloveActive;
glm::vec3 _ballColor;
glm::vec3 _position;
glm::quat _orientation;
std::vector<HandBall> _leapBalls;
bool _particleSystemInitialized;

View file

@ -11,34 +11,47 @@
#include "ParticleSystem.h"
#include "Application.h"
const float DEFAULT_PARTICLE_RADIUS = 0.01f;
const float DEFAULT_PARTICLE_BOUNCE = 1.0f;
const float DEFAULT_PARTICLE_AIR_FRICTION = 2.0f;
ParticleSystem::ParticleSystem() {
_timer = 0.0f;
_numEmitters = 0;
_numParticles = 0;
_upDirection = glm::vec3(0.0f, 1.0f, 0.0f); // default
for (unsigned int e = 0; e < MAX_EMITTERS; e++) {
_emitter[e].position = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[e].rotation = glm::quat();
_emitter[e].right = IDENTITY_RIGHT;
_emitter[e].up = IDENTITY_UP;
_emitter[e].front = IDENTITY_FRONT;
_emitter[e].showingEmitter = false;
_emitter[e].particleAttributes.bounce = DEFAULT_PARTICLE_BOUNCE;
_emitter[e].particleAttributes.airFriction = DEFAULT_PARTICLE_AIR_FRICTION;
_emitter[e].particleAttributes.gravity = 0.0f;
_emitter[e].particleAttributes.jitter = 0.0f;
_emitter[e].particleAttributes.emitterAttraction = 0.0f;
_emitter[e].particleAttributes.tornadoForce = 0.0f;
_emitter[e].particleAttributes.neighborAttraction = 0.0f;
_emitter[e].particleAttributes.neighborRepulsion = 0.0f;
_emitter[e].particleAttributes.collisionSphereRadius = 0.0f;
_emitter[e].particleAttributes.collisionSpherePosition = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[e].particleAttributes.usingCollisionSphere = false;
_emitter[e].position = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[e].rotation = glm::quat();
_emitter[e].right = IDENTITY_RIGHT;
_emitter[e].up = IDENTITY_UP;
_emitter[e].front = IDENTITY_FRONT;
_emitter[e].visible = false;
_emitter[e].baseParticle.alive = false;
_emitter[e].baseParticle.age = 0.0f;
_emitter[e].baseParticle.lifespan = 0.0f;
_emitter[e].baseParticle.radius = 0.0f;
_emitter[e].baseParticle.emitterIndex = 0;
_emitter[e].baseParticle.position = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[e].baseParticle.velocity = glm::vec3(0.0f, 0.0f, 0.0f);
for (int s = 0; s<NUM_PARTICLE_LIFE_STAGES; s++) {
_emitter[e].particleAttributes[s].radius = DEFAULT_PARTICLE_RADIUS;
_emitter[e].particleAttributes[s].color = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
_emitter[e].particleAttributes[s].bounce = DEFAULT_PARTICLE_BOUNCE;
_emitter[e].particleAttributes[s].airFriction = DEFAULT_PARTICLE_AIR_FRICTION;
_emitter[e].particleAttributes[s].gravity = 0.0f;
_emitter[e].particleAttributes[s].jitter = 0.0f;
_emitter[e].particleAttributes[s].emitterAttraction = 0.0f;
_emitter[e].particleAttributes[s].tornadoForce = 0.0f;
_emitter[e].particleAttributes[s].neighborAttraction = 0.0f;
_emitter[e].particleAttributes[s].neighborRepulsion = 0.0f;
_emitter[e].particleAttributes[s].collisionSphereRadius = 0.0f;
_emitter[e].particleAttributes[s].collisionSpherePosition = glm::vec3(0.0f, 0.0f, 0.0f);
_emitter[e].particleAttributes[s].usingCollisionSphere = false;
}
};
for (unsigned int p = 0; p < MAX_PARTICLES; p++) {
@ -52,7 +65,6 @@ ParticleSystem::ParticleSystem() {
}
}
int ParticleSystem::addEmitter() {
_numEmitters ++;
@ -75,11 +87,16 @@ void ParticleSystem::simulate(float deltaTime) {
// update particles
for (unsigned int p = 0; p < _numParticles; p++) {
if (_particle[p].alive) {
updateParticle(p, deltaTime);
if (_particle[p].age > _particle[p].lifespan) {
killParticle(p);
} else {
updateParticle(p, deltaTime);
}
}
}
}
void ParticleSystem::updateEmitter(int e, float deltaTime) {
_emitter[e].front = _emitter[e].rotation * IDENTITY_FRONT;
@ -106,9 +123,11 @@ void ParticleSystem::createParticle(int e, glm::vec3 position, glm::vec3 velocit
_particle[p].age = 0.0f;
_particle[p].position = position;
_particle[p].velocity = velocity;
_particle[p].radius = radius;
_particle[p].color = color;
_particle[p].radius = _emitter[e].particleAttributes[0].radius;
_particle[p].color = _emitter[e].particleAttributes[0].color;
_numParticles ++;
assert(_numParticles <= MAX_PARTICLES);
@ -146,45 +165,72 @@ void ParticleSystem::setOrangeBlueColorPalette() {
}
void ParticleSystem::setParticleAttributesForEmitter(int emitterIndex, ParticleAttributes attributes) {
void ParticleSystem::setParticleAttributes(int emitterIndex, ParticleAttributes attributes) {
_emitter[emitterIndex].particleAttributes.bounce = attributes.bounce;
_emitter[emitterIndex].particleAttributes.gravity = attributes.gravity;
_emitter[emitterIndex].particleAttributes.airFriction = attributes.airFriction;
_emitter[emitterIndex].particleAttributes.jitter = attributes.jitter;
_emitter[emitterIndex].particleAttributes.emitterAttraction = attributes.emitterAttraction;
_emitter[emitterIndex].particleAttributes.tornadoForce = attributes.tornadoForce;
_emitter[emitterIndex].particleAttributes.neighborAttraction = attributes.neighborAttraction;
_emitter[emitterIndex].particleAttributes.neighborRepulsion = attributes.neighborRepulsion;
_emitter[emitterIndex].particleAttributes.usingCollisionSphere = attributes.usingCollisionSphere;
_emitter[emitterIndex].particleAttributes.collisionSpherePosition = attributes.collisionSpherePosition;
_emitter[emitterIndex].particleAttributes.collisionSphereRadius = attributes.collisionSphereRadius;
for (int lifeStage = 0; lifeStage < NUM_PARTICLE_LIFE_STAGES; lifeStage ++ ) {
setParticleAttributes(emitterIndex, lifeStage, attributes);
}
}
void ParticleSystem::setParticleAttributes(int emitterIndex, int lifeStage, ParticleAttributes attributes) {
ParticleAttributes * a = &_emitter[emitterIndex].particleAttributes[lifeStage];
a->radius = attributes.radius;
a->color = attributes.color;
a->bounce = attributes.bounce;
a->gravity = attributes.gravity;
a->airFriction = attributes.airFriction;
a->jitter = attributes.jitter;
a->emitterAttraction = attributes.emitterAttraction;
a->tornadoForce = attributes.tornadoForce;
a->neighborAttraction = attributes.neighborAttraction;
a->neighborRepulsion = attributes.neighborRepulsion;
a->usingCollisionSphere = attributes.usingCollisionSphere;
a->collisionSpherePosition = attributes.collisionSpherePosition;
a->collisionSphereRadius = attributes.collisionSphereRadius;
}
void ParticleSystem::updateParticle(int p, float deltaTime) {
_particle[p].age += deltaTime;
assert(_particle[p].age <= _particle[p].lifespan);
if (_particle[p].age > _particle[p].lifespan) {
killParticle(p);
float ageFraction = _particle[p].age / _particle[p].lifespan;
int lifeStage = (int)( ageFraction * (NUM_PARTICLE_LIFE_STAGES-1) );
float lifeStageFraction = ageFraction * ( NUM_PARTICLE_LIFE_STAGES - 1 ) - lifeStage;
/*
if ( p == 0 ) {
printf( "lifespan = %f ageFraction = %f lifeStage = %d lifeStageFraction = %f\n", _particle[p].lifespan, ageFraction, lifeStage, lifeStageFraction );
}
*/
_particle[p].radius
= _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage ].radius * (1.0f - lifeStageFraction)
+ _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage+1].radius * lifeStageFraction;
_particle[p].color
= _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage ].color * (1.0f - lifeStageFraction)
+ _emitter[_particle[p].emitterIndex].particleAttributes[lifeStage+1].color * lifeStageFraction;
Emitter myEmitter = _emitter[_particle[p].emitterIndex];
// apply random jitter
float j = myEmitter.particleAttributes[lifeStage].jitter;
_particle[p].velocity +=
glm::vec3
(
-myEmitter.particleAttributes.jitter * ONE_HALF + myEmitter.particleAttributes.jitter * randFloat(),
-myEmitter.particleAttributes.jitter * ONE_HALF + myEmitter.particleAttributes.jitter * randFloat(),
-myEmitter.particleAttributes.jitter * ONE_HALF + myEmitter.particleAttributes.jitter * randFloat()
-j * ONE_HALF + j * randFloat(),
-j * ONE_HALF + j * randFloat(),
-j * ONE_HALF + j * randFloat()
) * deltaTime;
// apply attraction to home position
glm::vec3 vectorToHome = myEmitter.position - _particle[p].position;
_particle[p].velocity += vectorToHome * myEmitter.particleAttributes.emitterAttraction * deltaTime;
_particle[p].velocity += vectorToHome * myEmitter.particleAttributes[lifeStage].emitterAttraction * deltaTime;
// apply neighbor attraction
int neighbor = p + 1;
@ -195,20 +241,20 @@ void ParticleSystem::updateParticle(int p, float deltaTime) {
if ( _particle[neighbor].emitterIndex == _particle[p].emitterIndex) {
glm::vec3 vectorToNeighbor = _particle[p].position - _particle[neighbor].position;
_particle[p].velocity -= vectorToNeighbor * myEmitter.particleAttributes.neighborAttraction * deltaTime;
_particle[p].velocity -= vectorToNeighbor * myEmitter.particleAttributes[lifeStage].neighborAttraction * deltaTime;
float distanceToNeighbor = glm::length(vectorToNeighbor);
if (distanceToNeighbor > 0.0f) {
_particle[neighbor].velocity += (vectorToNeighbor / ( 1.0f + distanceToNeighbor * distanceToNeighbor)) * myEmitter.particleAttributes.neighborRepulsion * deltaTime;
_particle[neighbor].velocity += (vectorToNeighbor / ( 1.0f + distanceToNeighbor * distanceToNeighbor)) * myEmitter.particleAttributes[lifeStage].neighborRepulsion * deltaTime;
}
}
// apply tornado force
glm::vec3 tornadoDirection = glm::cross(vectorToHome, myEmitter.up);
_particle[p].velocity += tornadoDirection * myEmitter.particleAttributes.tornadoForce * deltaTime;
_particle[p].velocity += tornadoDirection * myEmitter.particleAttributes[lifeStage].tornadoForce * deltaTime;
// apply air friction
float drag = 1.0 - myEmitter.particleAttributes.airFriction * deltaTime;
float drag = 1.0 - myEmitter.particleAttributes[lifeStage].airFriction * deltaTime;
if (drag < 0.0f) {
_particle[p].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
} else {
@ -216,7 +262,7 @@ void ParticleSystem::updateParticle(int p, float deltaTime) {
}
// apply gravity
_particle[p].velocity -= _upDirection * myEmitter.particleAttributes.gravity * deltaTime;
_particle[p].velocity -= _upDirection * myEmitter.particleAttributes[lifeStage].gravity * deltaTime;
// update position by velocity
_particle[p].position += _particle[p].velocity;
@ -226,36 +272,66 @@ void ParticleSystem::updateParticle(int p, float deltaTime) {
_particle[p].position.y = _particle[p].radius;
if (_particle[p].velocity.y < 0.0f) {
_particle[p].velocity.y *= -myEmitter.particleAttributes.bounce;
_particle[p].velocity.y *= -myEmitter.particleAttributes[lifeStage].bounce;
}
}
// collision with sphere
if (myEmitter.particleAttributes.usingCollisionSphere) {
glm::vec3 vectorToSphereCenter = myEmitter.particleAttributes.collisionSpherePosition - _particle[p].position;
if (myEmitter.particleAttributes[lifeStage].usingCollisionSphere) {
glm::vec3 vectorToSphereCenter = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - _particle[p].position;
float distanceToSphereCenter = glm::length(vectorToSphereCenter);
float combinedRadius = myEmitter.particleAttributes.collisionSphereRadius + _particle[p].radius;
float combinedRadius = myEmitter.particleAttributes[lifeStage].collisionSphereRadius + _particle[p].radius;
if (distanceToSphereCenter < combinedRadius) {
if (distanceToSphereCenter > 0.0f){
glm::vec3 directionToSphereCenter = vectorToSphereCenter / distanceToSphereCenter;
_particle[p].position = myEmitter.particleAttributes.collisionSpherePosition - directionToSphereCenter * combinedRadius;
_particle[p].position = myEmitter.particleAttributes[lifeStage].collisionSpherePosition - directionToSphereCenter * combinedRadius;
}
}
}
// do this at the end...
_particle[p].age += deltaTime;
}
void ParticleSystem::setCollisionSphere(int e, glm::vec3 position, float radius) {
_emitter[e].particleAttributes.usingCollisionSphere = true;
_emitter[e].particleAttributes.collisionSpherePosition = position;
_emitter[e].particleAttributes.collisionSphereRadius = radius;
int lifeStage = 0;
_emitter[e].particleAttributes[lifeStage].usingCollisionSphere = true;
_emitter[e].particleAttributes[lifeStage].collisionSpherePosition = position;
_emitter[e].particleAttributes[lifeStage].collisionSphereRadius = radius;
}
void ParticleSystem::setEmitterBaseParticle(int emitterIndex, bool showing ) {
_emitter[emitterIndex].baseParticle.alive = true;
_emitter[emitterIndex].baseParticle.emitterIndex = emitterIndex;
}
void ParticleSystem::setEmitterBaseParticle(int emitterIndex, bool showing, float radius, glm::vec4 color ) {
_emitter[emitterIndex].baseParticle.alive = true;
_emitter[emitterIndex].baseParticle.emitterIndex = emitterIndex;
_emitter[emitterIndex].baseParticle.radius = radius;
_emitter[emitterIndex].baseParticle.color = color;
}
void ParticleSystem::render() {
// render the emitters
for (unsigned int e = 0; e < _numEmitters; e++) {
if (_emitter[e].showingEmitter) {
for (int e = 0; e < _numEmitters; e++) {
if (_emitter[e].baseParticle.alive) {
glColor4f(_emitter[e].baseParticle.color.r, _emitter[e].baseParticle.color.g, _emitter[e].baseParticle.color.b, _emitter[e].baseParticle.color.a );
glPushMatrix();
glTranslatef(_emitter[e].position.x, _emitter[e].position.y, _emitter[e].position.z);
glutSolidSphere(_emitter[e].baseParticle.radius, 6, 6);
glPopMatrix();
}
if (_emitter[e].visible) {
renderEmitter(e, 0.2f);
}
};
@ -271,19 +347,49 @@ void ParticleSystem::render() {
void ParticleSystem::renderParticle(int p) {
glColor4f(_particle[p].color.r, _particle[p].color.g, _particle[p].color.b, _particle[p].color.a );
glPushMatrix();
glTranslatef(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glutSolidSphere(_particle[p].radius, 6, 6);
glPopMatrix();
// render velocity lines
glColor4f( _particle[p].color.x, _particle[p].color.y, _particle[p].color.z, 0.5f);
glm::vec3 end = _particle[p].position - _particle[p].velocity * 2.0f;
glBegin(GL_LINES);
glVertex3f(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glVertex3f(end.x, end.y, end.z);
glEnd();
if (USE_BILLBOARD_RENDERING) {
glm::vec3 cameraPosition = Application::getInstance()->getCamera()->getPosition();
glm::vec3 viewVector = _particle[p].position - cameraPosition;
float distance = glm::length(viewVector);
if (distance >= 0.0f) {
viewVector /= distance;
glm::vec3 up = glm::vec3(viewVector.y, viewVector.z, viewVector.x);
glm::vec3 right = glm::vec3(viewVector.z, viewVector.x, viewVector.y);
glm::vec3 p0 = _particle[p].position - right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p1 = _particle[p].position + right * _particle[p].radius - up * _particle[p].radius;
glm::vec3 p2 = _particle[p].position + right * _particle[p].radius + up * _particle[p].radius;
glm::vec3 p3 = _particle[p].position - right * _particle[p].radius + up * _particle[p].radius;
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p1.x, p1.y, p1.z);
glVertex3f(p2.x, p2.y, p2.z);
glEnd();
glBegin(GL_TRIANGLES);
glVertex3f(p0.x, p0.y, p0.z);
glVertex3f(p2.x, p2.y, p2.z);
glVertex3f(p3.x, p3.y, p3.z);
glEnd();
}
} else {
glPushMatrix();
glTranslatef(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glutSolidSphere(_particle[p].radius, 6, 6);
glPopMatrix();
if (SHOW_VELOCITY_TAILS) {
glColor4f( _particle[p].color.x, _particle[p].color.y, _particle[p].color.z, 0.5f);
glm::vec3 end = _particle[p].position - _particle[p].velocity * 2.0f;
glBegin(GL_LINES);
glVertex3f(_particle[p].position.x, _particle[p].position.y, _particle[p].position.z);
glVertex3f(end.x, end.y, end.z);
glEnd();
}
}
}

View file

@ -11,13 +11,18 @@
#include <glm/gtc/quaternion.hpp>
const int MAX_PARTICLES = 5000;
const int MAX_EMITTERS = 20;
const int MAX_PARTICLES = 5000;
const int MAX_EMITTERS = 20;
const int NUM_PARTICLE_LIFE_STAGES = 4;
const bool USE_BILLBOARD_RENDERING = false;
const bool SHOW_VELOCITY_TAILS = false;
class ParticleSystem {
public:
struct ParticleAttributes {
float radius;
glm::vec4 color;
float bounce;
float gravity;
float airFriction;
@ -34,31 +39,23 @@ public:
ParticleSystem();
int addEmitter(); // add (create) an emitter and get its unique id
void emitParticlesNow(int e, int numParticles, float radius, glm::vec4 color, glm::vec3 velocity, float lifespan);
void emitParticlesNow(int emitterIndex, int numParticles, float radius, glm::vec4 color, glm::vec3 velocity, float lifespan);
void simulate(float deltaTime);
void render();
void setEmitterBaseParticle(int emitterIndex, bool showing );
void setEmitterBaseParticle(int emitterIndex, bool showing, float radius, glm::vec4 color );
void setParticleAttributesForEmitter(int emitterIndex, ParticleAttributes attributes);
void setOrangeBlueColorPalette(); // apply a nice preset color palette to the particles
void setUpDirection(glm::vec3 upDirection) {_upDirection = upDirection;} // tell particle system which direction is up
void setCollisionSphere(int emitterIndex, glm::vec3 position, float radius); // specify a sphere for the particles to collide with
void setEmitterPosition(int emitterIndex, glm::vec3 position) { _emitter[emitterIndex].position = position; } // set position of emitter
void setEmitterRotation(int emitterIndex, glm::quat rotation) { _emitter[emitterIndex].rotation = rotation; } // set rotation of emitter
void setShowingEmitter (int emitterIndex, bool showing ) { _emitter[emitterIndex].showingEmitter = showing; } // set its visibiity
void setParticleAttributes(int emitterIndex, ParticleAttributes attributes);
void setParticleAttributes(int emitterIndex, int lifeStage, ParticleAttributes attributes);
void setCollisionSphere (int emitterIndex, glm::vec3 position, float radius); // specify a sphere for the particles to collide with
void setEmitterPosition (int emitterIndex, glm::vec3 position) { _emitter[emitterIndex].position = position; } // set position of emitter
void setEmitterRotation (int emitterIndex, glm::quat rotation) { _emitter[emitterIndex].rotation = rotation; } // set rotation of emitter
void setShowingEmitter (int emitterIndex, bool showing ) { _emitter[emitterIndex].visible = showing; } // set its visibiity
private:
struct Emitter {
glm::vec3 position;
glm::quat rotation;
glm::vec3 right;
glm::vec3 up;
glm::vec3 front;
bool showingEmitter;
ParticleAttributes particleAttributes;
};
struct Particle {
bool alive; // is the particle active?
glm::vec3 position; // position
@ -70,8 +67,18 @@ private:
int emitterIndex; // which emitter created this particle?
};
struct Emitter {
glm::vec3 position;
glm::quat rotation;
glm::vec3 right; // derived from rotation
glm::vec3 up; // derived from rotation
glm::vec3 front; // derived from rotation
bool visible;
Particle baseParticle; // a non-physical particle at the emitter position
ParticleAttributes particleAttributes[NUM_PARTICLE_LIFE_STAGES]; // the attributes of particles emitted from this emitter
};
glm::vec3 _upDirection;
float _timer;
Emitter _emitter[MAX_EMITTERS];
Particle _particle[MAX_PARTICLES];
int _numParticles;

View file

@ -18,6 +18,8 @@
using namespace std;
static const float fingerVectorRadix = 4; // bits of precision when converting from float<->fixed
AvatarData::AvatarData(Node* owningNode) :
NodeData(owningNode),
_handPosition(0,0,0),
@ -127,36 +129,22 @@ int AvatarData::getBroadcastData(unsigned char* destinationBuffer) {
*destinationBuffer++ = bitItems;
// leap hand data
// In order to make the hand data version-robust, hand data packing is just a series of vec3's,
// with conventions. If a client doesn't know the conventions, they can just get the vec3's
// and render them as balls, or ignore them, without crashing or disrupting anyone.
// Current convention:
// Zero or more fingetTip positions, followed by the same number of fingerRoot positions
const std::vector<glm::vec3>& fingerTips = _handData->getFingerTips();
const std::vector<glm::vec3>& fingerRoots = _handData->getFingerRoots();
size_t numFingerVectors = fingerTips.size() + fingerRoots.size();
if (numFingerVectors > 255)
numFingerVectors = 0; // safety. We shouldn't ever get over 255, so consider that invalid.
std::vector<glm::vec3> fingerVectors;
_handData->encodeRemoteData(fingerVectors);
/////////////////////////////////
// Temporarily disable Leap finger sending, as it's causing a crash whenever someone's got a Leap connected
numFingerVectors = 0;
fingerVectors.clear();
/////////////////////////////////
*destinationBuffer++ = (unsigned char)numFingerVectors;
if (numFingerVectors > 0) {
for (size_t i = 0; i < fingerTips.size(); ++i) {
destinationBuffer += packFloatScalarToSignedTwoByteFixed(destinationBuffer, fingerTips[i].x, 4);
destinationBuffer += packFloatScalarToSignedTwoByteFixed(destinationBuffer, fingerTips[i].y, 4);
destinationBuffer += packFloatScalarToSignedTwoByteFixed(destinationBuffer, fingerTips[i].z, 4);
}
for (size_t i = 0; i < fingerRoots.size(); ++i) {
destinationBuffer += packFloatScalarToSignedTwoByteFixed(destinationBuffer, fingerRoots[i].x, 4);
destinationBuffer += packFloatScalarToSignedTwoByteFixed(destinationBuffer, fingerRoots[i].y, 4);
destinationBuffer += packFloatScalarToSignedTwoByteFixed(destinationBuffer, fingerRoots[i].z, 4);
}
if (fingerVectors.size() > 255)
fingerVectors.clear(); // safety. We shouldn't ever get over 255, so consider that invalid.
*destinationBuffer++ = (unsigned char)fingerVectors.size();
for (size_t i = 0; i < fingerVectors.size(); ++i) {
destinationBuffer += packFloatScalarToSignedTwoByteFixed(destinationBuffer, fingerVectors[i].x, fingerVectorRadix);
destinationBuffer += packFloatScalarToSignedTwoByteFixed(destinationBuffer, fingerVectors[i].y, fingerVectorRadix);
destinationBuffer += packFloatScalarToSignedTwoByteFixed(destinationBuffer, fingerVectors[i].z, fingerVectorRadix);
}
// skeleton joints
@ -263,25 +251,16 @@ int AvatarData::parseData(unsigned char* sourceBuffer, int numBytes) {
// leap hand data
if (sourceBuffer - startPosition < numBytes) // safety check
{
std::vector<glm::vec3> fingerTips;
std::vector<glm::vec3> fingerRoots;
unsigned int numFingerVectors = *sourceBuffer++;
unsigned int numFingerTips = numFingerVectors / 2;
unsigned int numFingerRoots = numFingerVectors - numFingerTips;
fingerTips.resize(numFingerTips);
fingerRoots.resize(numFingerRoots);
for (size_t i = 0; i < numFingerTips; ++i) {
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(fingerTips[i].x), 4);
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(fingerTips[i].y), 4);
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(fingerTips[i].z), 4);
if (numFingerVectors > 0) {
std::vector<glm::vec3> fingerVectors(numFingerVectors);
for (size_t i = 0; i < numFingerVectors; ++i) {
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(fingerVectors[i].x), fingerVectorRadix);
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(fingerVectors[i].y), fingerVectorRadix);
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(fingerVectors[i].z), fingerVectorRadix);
}
_handData->decodeRemoteData(fingerVectors);
}
for (size_t i = 0; i < numFingerRoots; ++i) {
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(fingerRoots[i].x), 4);
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(fingerRoots[i].y), 4);
sourceBuffer += unpackFloatScalarFromSignedTwoByteFixed((int16_t*) sourceBuffer, &(fingerRoots[i].z), 4);
}
_handData->setFingerTips(fingerTips);
_handData->setFingerRoots(fingerRoots);
}
// skeleton joints

View file

@ -9,7 +9,74 @@
#include "HandData.h"
HandData::HandData(AvatarData* owningAvatar) :
_basePosition(0.0f, 0.0f, 0.0f),
_baseOrientation(0.0f, 0.0f, 0.0f, 1.0f),
_owningAvatarData(owningAvatar)
{
for (int i = 0; i < 2; ++i) {
_palms.push_back(PalmData(this));
}
}
PalmData::PalmData(HandData* owningHandData) :
_rawPosition(0, 0, 0),
_rawNormal(0, 1, 0),
_isActive(false),
_owningHandData(owningHandData)
{
for (int i = 0; i < NUM_FINGERS_PER_HAND; ++i) {
_fingers.push_back(FingerData(this, owningHandData));
}
}
FingerData::FingerData(PalmData* owningPalmData, HandData* owningHandData) :
_tipRawPosition(0, 0, 0),
_rootRawPosition(0, 0, 0),
_isActive(false),
_owningPalmData(owningPalmData),
_owningHandData(owningHandData)
{
}
void HandData::encodeRemoteData(std::vector<glm::vec3>& fingerVectors) {
fingerVectors.clear();
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
fingerVectors.push_back(palm.getRawPosition());
fingerVectors.push_back(palm.getRawNormal());
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
if (finger.isActive()) {
fingerVectors.push_back(finger.getTipRawPosition());
fingerVectors.push_back(finger.getRootRawPosition());
}
else {
fingerVectors.push_back(glm::vec3(0,0,0));
fingerVectors.push_back(glm::vec3(0,0,0));
}
}
}
}
void HandData::decodeRemoteData(const std::vector<glm::vec3>& fingerVectors) {
size_t vectorIndex = 0;
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
// If a palm is active, there will be
// 1 vector for its position
// 1 vector for normal
// 10 vectors for fingers (5 tip/root pairs)
bool palmActive = fingerVectors.size() >= i * 12;
palm.setActive(palmActive);
if (palmActive) {
palm.setRawPosition(fingerVectors[vectorIndex++]);
palm.setRawNormal(fingerVectors[vectorIndex++]);
for (size_t f = 0; f < NUM_FINGERS_PER_HAND; ++f) {
FingerData& finger = palm.getFingers()[i];
finger.setRawTipPosition(fingerVectors[vectorIndex++]);
finger.setRawRootPosition(fingerVectors[vectorIndex++]);
}
}
}
}

View file

@ -13,8 +13,13 @@
#include <vector>
#include <glm/glm.hpp>
#include <glm/gtx/quaternion.hpp>
class AvatarData;
class FingerData;
class PalmData;
const int NUM_FINGERS_PER_HAND = 5;
class HandData {
public:
@ -22,26 +27,79 @@ public:
// These methods return the positions in Leap-relative space.
// To convert to world coordinates, use Hand::leapPositionToWorldPosition.
const std::vector<glm::vec3>& getFingerTips() const { return _fingerTips; }
const std::vector<glm::vec3>& getFingerRoots() const { return _fingerRoots; }
const std::vector<glm::vec3>& getHandPositions() const { return _handPositions; }
const std::vector<glm::vec3>& getHandNormals() const { return _handNormals; }
void setFingerTips(const std::vector<glm::vec3>& fingerTips) { _fingerTips = fingerTips; }
void setFingerRoots(const std::vector<glm::vec3>& fingerRoots) { _fingerRoots = fingerRoots; }
void setHandPositions(const std::vector<glm::vec3>& handPositons) { _handPositions = handPositons; }
void setHandNormals(const std::vector<glm::vec3>& handNormals) { _handNormals = handNormals; }
// position conversion
glm::vec3 leapPositionToWorldPosition(const glm::vec3& leapPosition) {
const float unitScale = 0.001; // convert mm to meters
return _basePosition + _baseOrientation * (leapPosition * unitScale);
}
glm::vec3 leapDirectionToWorldDirection(const glm::vec3& leapDirection) {
return glm::normalize(_baseOrientation * leapDirection);
}
std::vector<PalmData>& getPalms() { return _palms; }
size_t getNumPalms() { return _palms.size(); }
// Use these for sending and receiving hand data
void encodeRemoteData(std::vector<glm::vec3>& fingerVectors);
void decodeRemoteData(const std::vector<glm::vec3>& fingerVectors);
friend class AvatarData;
protected:
std::vector<glm::vec3> _fingerTips;
std::vector<glm::vec3> _fingerRoots;
std::vector<glm::vec3> _handPositions;
std::vector<glm::vec3> _handNormals;
glm::vec3 _basePosition; // Hands are placed relative to this
glm::quat _baseOrientation; // Hands are placed relative to this
AvatarData* _owningAvatarData;
std::vector<PalmData> _palms;
private:
// privatize copy ctor and assignment operator so copies of this object cannot be made
HandData(const HandData&);
HandData& operator= (const HandData&);
};
class FingerData {
public:
FingerData(PalmData* owningPalmData, HandData* owningHandData);
glm::vec3 getTipPosition() const { return _owningHandData->leapPositionToWorldPosition(_tipRawPosition); }
glm::vec3 getRootPosition() const { return _owningHandData->leapPositionToWorldPosition(_rootRawPosition); }
const glm::vec3& getTipRawPosition() const { return _tipRawPosition; }
const glm::vec3& getRootRawPosition() const { return _rootRawPosition; }
bool isActive() const { return _isActive; }
void setActive(bool active) { _isActive = active; }
void setRawTipPosition(const glm::vec3& pos) { _tipRawPosition = pos; }
void setRawRootPosition(const glm::vec3& pos) { _rootRawPosition = pos; }
private:
glm::vec3 _tipRawPosition;
glm::vec3 _rootRawPosition;
bool _isActive; // This has current valid data
PalmData* _owningPalmData;
HandData* _owningHandData;
};
class PalmData {
public:
PalmData(HandData* owningHandData);
glm::vec3 getPosition() const { return _owningHandData->leapPositionToWorldPosition(_rawPosition); }
glm::vec3 getNormal() const { return _owningHandData->leapDirectionToWorldDirection(_rawNormal); }
const glm::vec3& getRawPosition() const { return _rawPosition; }
const glm::vec3& getRawNormal() const { return _rawNormal; }
bool isActive() const { return _isActive; }
std::vector<FingerData>& getFingers() { return _fingers; }
size_t getNumFingers() { return _fingers.size(); }
void setActive(bool active) { _isActive = active; }
void setRawPosition(const glm::vec3& pos) { _rawPosition = pos; }
void setRawNormal(const glm::vec3& normal) { _rawNormal = normal; }
private:
std::vector<FingerData> _fingers;
glm::vec3 _rawPosition;
glm::vec3 _rawNormal;
bool _isActive; // This has current valid data
HandData* _owningHandData;
};
#endif /* defined(__hifi__HandData__) */

View file

@ -15,7 +15,7 @@
PACKET_VERSION versionForPacketType(PACKET_TYPE type) {
switch (type) {
case PACKET_TYPE_HEAD_DATA:
return 1;
return 2;
break;
default:
return 0;

View file

@ -1114,14 +1114,12 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
return bytesAtThisLevel;
}
/** Not ready for production - coming soon.
// If we're not in delta sending mode, but the voxel hasn't changed, then we can also bail early...
if (!params.deltaViewFrustum && !node->hasChangedSince(params.lastViewFrustumSent - CHANGE_FUDGE)) {
printf("not delta sending, and the node hasn't changed, bail early... lastSent=%lld getLastChanged=%lld\n",
params.lastViewFrustumSent, node->getLastChanged());
// If we're not in delta sending mode, and we weren't asked to do a force send, and the voxel hasn't changed,
// then we can also bail early and save bits
if (!params.forceSendScene && !params.deltaViewFrustum &&
!node->hasChangedSince(params.lastViewFrustumSent - CHANGE_FUDGE)) {
return bytesAtThisLevel;
}
**/
// If the user also asked for occlusion culling, check if this node is occluded, but only if it's not a leaf.
// leaf occlusion is handled down below when we check child nodes

View file

@ -51,7 +51,7 @@ public:
long childWasInViewDiscarded;
int boundaryLevelAdjust;
uint64_t lastViewFrustumSent;
bool forceSendScene;
CoverageMap* map;
EncodeBitstreamParams(
@ -65,7 +65,8 @@ public:
bool wantOcclusionCulling= NO_OCCLUSION_CULLING,
CoverageMap* map = IGNORE_COVERAGE_MAP,
int boundaryLevelAdjust = NO_BOUNDARY_ADJUST,
uint64_t lastViewFrustumSent = IGNORE_LAST_SENT) :
uint64_t lastViewFrustumSent = IGNORE_LAST_SENT,
bool forceSendScene = true) :
maxEncodeLevel (maxEncodeLevel),
maxLevelReached (0),
viewFrustum (viewFrustum),
@ -78,6 +79,7 @@ public:
childWasInViewDiscarded (0),
boundaryLevelAdjust (boundaryLevelAdjust),
lastViewFrustumSent (lastViewFrustumSent),
forceSendScene (forceSendScene),
map (map)
{}
};

View file

@ -20,6 +20,7 @@ VoxelNodeData::VoxelNodeData(Node* owningNode) :
_maxLevelReachedInLastSearch(1),
_lastTimeBagEmpty(0),
_viewFrustumChanging(false),
_viewFrustumJustStoppedChanging(true),
_currentPacketIsColor(true)
{
_voxelPacket = new unsigned char[MAX_VOXEL_PACKET_SIZE];
@ -69,10 +70,25 @@ bool VoxelNodeData::updateCurrentViewFrustum() {
_currentViewFrustum.calculate();
currentViewFrustumChanged = true;
}
// When we first detect that the view stopped changing, we record this.
// but we don't change it back to false until we've completely sent this
// scene.
if (_viewFrustumChanging && !currentViewFrustumChanged) {
_viewFrustumJustStoppedChanging = true;
}
_viewFrustumChanging = currentViewFrustumChanged;
return currentViewFrustumChanged;
}
void VoxelNodeData::setViewSent(bool viewSent) {
_viewSent = viewSent;
if (viewSent) {
_viewFrustumJustStoppedChanging = false;
}
}
void VoxelNodeData::updateLastKnownViewFrustum() {
bool frustumChanges = !_lastKnownViewFrustum.matches(_currentViewFrustum);

View file

@ -48,7 +48,11 @@ public:
void updateLastKnownViewFrustum();
bool getViewSent() const { return _viewSent; };
void setViewSent(bool viewSent) { _viewSent = viewSent; }
void setViewSent(bool viewSent);
bool getViewFrustumChanging() const { return _viewFrustumChanging; };
bool getViewFrustumJustStoppedChanging() const { return _viewFrustumJustStoppedChanging; };
uint64_t getLastTimeBagEmpty() const { return _lastTimeBagEmpty; };
void setLastTimeBagEmpty(uint64_t lastTimeBagEmpty) { _lastTimeBagEmpty = lastTimeBagEmpty; };
@ -69,6 +73,7 @@ private:
ViewFrustum _lastKnownViewFrustum;
uint64_t _lastTimeBagEmpty;
bool _viewFrustumChanging;
bool _viewFrustumJustStoppedChanging;
bool _currentPacketIsColor;
};

View file

@ -205,6 +205,7 @@ void deepestLevelVoxelDistributor(NodeList* nodeList,
}
}
// This is the start of "resending" the scene.
nodeData->nodeBag.insert(serverTree.rootNode);
}
@ -242,15 +243,12 @@ void deepestLevelVoxelDistributor(NodeList* nodeList,
EncodeBitstreamParams params(INT_MAX, &nodeData->getCurrentViewFrustum(), wantColor,
WANT_EXISTS_BITS, DONT_CHOP, wantDelta, lastViewFrustum,
wantOcclusionCulling, coverageMap, boundaryLevelAdjust,
nodeData->getLastTimeBagEmpty());
nodeData->getLastTimeBagEmpty(),
nodeData->getViewFrustumJustStoppedChanging());
bytesWritten = serverTree.encodeTreeBitstream(subTree, &tempOutputBuffer[0], MAX_VOXEL_PACKET_SIZE - 1,
nodeData->nodeBag, params);
if (::debugVoxelSending && wantDelta) {
printf("encodeTreeBitstream() childWasInViewDiscarded=%ld\n", params.childWasInViewDiscarded);
}
if (nodeData->getAvailable() >= bytesWritten) {
nodeData->writeToPacket(&tempOutputBuffer[0], bytesWritten);
} else {