model emitters!

This commit is contained in:
SamGondelman 2019-03-20 21:14:54 -07:00
parent 38864e5b6e
commit 3ff0770441
12 changed files with 222 additions and 24 deletions

View file

@ -1,4 +1,4 @@
//
//
// RenderableParticleEffectEntityItem.cpp
// interface/src
//
@ -14,6 +14,8 @@
#include <GeometryCache.h>
#include <shaders/Shaders.h>
#include <glm/gtx/transform.hpp>
using namespace render;
using namespace render::entities;
@ -111,6 +113,7 @@ void ParticleEffectEntityRenderer::doRenderUpdateSynchronousTyped(const ScenePoi
QString compoundShapeURL = entity->getCompoundShapeURL();
if (_compoundShapeURL != compoundShapeURL) {
_compoundShapeURL = compoundShapeURL;
_hasComputedTriangles = false;
fetchGeometryResource();
}
});
@ -217,7 +220,8 @@ float importanceSample3DDimension(float startDim) {
}
ParticleEffectEntityRenderer::CpuParticle ParticleEffectEntityRenderer::createParticle(uint64_t now, const Transform& baseTransform, const particle::Properties& particleProperties,
const ShapeType& shapeType, const GeometryResource::Pointer& geometryResource) {
const ShapeType& shapeType, const GeometryResource::Pointer& geometryResource,
const TriangleInfo& triangleInfo) {
CpuParticle particle;
const auto& accelerationSpread = particleProperties.emission.acceleration.spread;
@ -259,7 +263,7 @@ ParticleEffectEntityRenderer::CpuParticle ParticleEffectEntityRenderer::createPa
} else {
azimuth = azimuthStart + (TWO_PI + azimuthFinish - azimuthStart) * randFloat();
}
// TODO: azimuth and elevation are only used for ellipsoids, but could be used for other shapes too
// TODO: azimuth and elevation are only used for ellipsoids/circles, but could be used for other shapes too
if (emitDimensions == Vectors::ZERO) {
// Point
@ -301,7 +305,7 @@ ParticleEffectEntityRenderer::CpuParticle ParticleEffectEntityRenderer::createPa
break;
}
case SHAPE_TYPE_CIRCLE: { // FIXME: SHAPE_TYPE_CIRCLE is not exposed to scripts in buildStringToShapeTypeLookup()
case SHAPE_TYPE_CIRCLE: {
glm::vec2 radii = importanceSample2DDimension(emitRadiusStart) * 0.5f * glm::vec2(emitDimensions.x, emitDimensions.z);
float x = radii.x * glm::cos(azimuth);
float z = radii.y * glm::sin(azimuth);
@ -326,7 +330,43 @@ ParticleEffectEntityRenderer::CpuParticle ParticleEffectEntityRenderer::createPa
break;
}
case SHAPE_TYPE_COMPOUND:
case SHAPE_TYPE_COMPOUND: {
// if we get here we know that geometryResource is loaded
size_t index = randFloat() * triangleInfo.totalSamples;
Triangle triangle;
for (size_t i = 0; i < triangleInfo.samplesPerTriangle.size(); i++) {
size_t numSamples = triangleInfo.samplesPerTriangle[i];
if (index < numSamples) {
triangle = triangleInfo.triangles[i];
break;
}
index -= numSamples;
}
float edgeLength1 = glm::length(triangle.v1 - triangle.v0);
float edgeLength2 = glm::length(triangle.v2 - triangle.v1);
float edgeLength3 = glm::length(triangle.v0 - triangle.v2);
float perimeter = edgeLength1 + edgeLength2 + edgeLength3;
float fraction1 = randFloatInRange(0.0f, 1.0f);
float fractionEdge1 = glm::min(fraction1 * perimeter / edgeLength1, 1.0f);
float fraction2 = fraction1 - edgeLength1 / perimeter;
float fractionEdge2 = glm::clamp(fraction2 * perimeter / edgeLength2, 0.0f, 1.0f);
float fraction3 = fraction2 - edgeLength2 / perimeter;
float fractionEdge3 = glm::clamp(fraction3 * perimeter / edgeLength3, 0.0f, 1.0f);
float dim = importanceSample2DDimension(emitRadiusStart);
triangle = triangle * (glm::scale(emitDimensions) * triangleInfo.transform);
glm::vec3 center = (triangle.v0 + triangle.v1 + triangle.v2) / 3.0f;
glm::vec3 v0 = (dim * (triangle.v0 - center)) + center;
glm::vec3 v1 = (dim * (triangle.v1 - center)) + center;
glm::vec3 v2 = (dim * (triangle.v2 - center)) + center;
emitPosition = glm::mix(v0, glm::mix(v1, glm::mix(v2, v0, fractionEdge3), fractionEdge2), fractionEdge1);
emitDirection = triangle.getNormal();
break;
}
case SHAPE_TYPE_SPHERE:
case SHAPE_TYPE_ELLIPSOID:
@ -374,13 +414,16 @@ void ParticleEffectEntityRenderer::stepSimulation() {
const auto& modelTransform = getModelTransform();
if (_emitting && particleProperties.emitting() &&
(_shapeType != SHAPE_TYPE_COMPOUND || (_geometryResource && _geometryResource->isLoaded()))) {
(shapeType != SHAPE_TYPE_COMPOUND || (geometryResource && geometryResource->isLoaded()))) {
uint64_t emitInterval = particleProperties.emitIntervalUsecs();
if (emitInterval > 0 && interval >= _timeUntilNextEmit) {
auto timeRemaining = interval;
while (timeRemaining > _timeUntilNextEmit) {
if (_shapeType == SHAPE_TYPE_COMPOUND && !_hasComputedTriangles) {
computeTriangles(geometryResource->getHFMModel());
}
// emit particle
_cpuParticles.push_back(createParticle(now, modelTransform, particleProperties, shapeType, geometryResource));
_cpuParticles.push_back(createParticle(now, modelTransform, particleProperties, shapeType, geometryResource, _triangleInfo));
_timeUntilNextEmit = emitInterval;
if (emitInterval < timeRemaining) {
timeRemaining -= emitInterval;
@ -467,4 +510,120 @@ void ParticleEffectEntityRenderer::fetchGeometryResource() {
} else {
_geometryResource = DependencyManager::get<ModelCache>()->getCollisionGeometryResource(hullURL);
}
}
// FIXME: this is very similar to Model::calculateTriangleSets
void ParticleEffectEntityRenderer::computeTriangles(const hfm::Model& hfmModel) {
PROFILE_RANGE(render, __FUNCTION__);
int numberOfMeshes = hfmModel.meshes.size();
_hasComputedTriangles = true;
_triangleInfo.triangles.clear();
_triangleInfo.samplesPerTriangle.clear();
std::vector<float> areas;
float minArea = FLT_MAX;
AABox bounds;
for (int i = 0; i < numberOfMeshes; i++) {
const HFMMesh& mesh = hfmModel.meshes.at(i);
const int numberOfParts = mesh.parts.size();
for (int j = 0; j < numberOfParts; j++) {
const HFMMeshPart& part = mesh.parts.at(j);
const int INDICES_PER_TRIANGLE = 3;
const int INDICES_PER_QUAD = 4;
const int TRIANGLES_PER_QUAD = 2;
// tell our triangleSet how many triangles to expect.
int numberOfQuads = part.quadIndices.size() / INDICES_PER_QUAD;
int numberOfTris = part.triangleIndices.size() / INDICES_PER_TRIANGLE;
int totalTriangles = (numberOfQuads * TRIANGLES_PER_QUAD) + numberOfTris;
_triangleInfo.triangles.reserve(_triangleInfo.triangles.size() + totalTriangles);
areas.reserve(areas.size() + totalTriangles);
auto meshTransform = hfmModel.offset * mesh.modelTransform;
if (part.quadIndices.size() > 0) {
int vIndex = 0;
for (int q = 0; q < numberOfQuads; q++) {
int i0 = part.quadIndices[vIndex++];
int i1 = part.quadIndices[vIndex++];
int i2 = part.quadIndices[vIndex++];
int i3 = part.quadIndices[vIndex++];
// track the model space version... these points will be transformed by the FST's offset,
// which includes the scaling, rotation, and translation specified by the FST/FBX,
// this can't change at runtime, so we can safely store these in our TriangleSet
glm::vec3 v0 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i0], 1.0f));
glm::vec3 v1 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i1], 1.0f));
glm::vec3 v2 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i2], 1.0f));
glm::vec3 v3 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i3], 1.0f));
Triangle tri1 = { v0, v1, v3 };
Triangle tri2 = { v1, v2, v3 };
_triangleInfo.triangles.push_back(tri1);
_triangleInfo.triangles.push_back(tri2);
float area1 = tri1.getArea();
areas.push_back(area1);
if (area1 > EPSILON) {
minArea = std::min(minArea, area1);
}
float area2 = tri2.getArea();
areas.push_back(area2);
if (area2 > EPSILON) {
minArea = std::min(minArea, area2);
}
bounds += v0;
bounds += v1;
bounds += v2;
bounds += v3;
}
}
if (part.triangleIndices.size() > 0) {
int vIndex = 0;
for (int t = 0; t < numberOfTris; t++) {
int i0 = part.triangleIndices[vIndex++];
int i1 = part.triangleIndices[vIndex++];
int i2 = part.triangleIndices[vIndex++];
// track the model space version... these points will be transformed by the FST's offset,
// which includes the scaling, rotation, and translation specified by the FST/FBX,
// this can't change at runtime, so we can safely store these in our TriangleSet
glm::vec3 v0 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i0], 1.0f));
glm::vec3 v1 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i1], 1.0f));
glm::vec3 v2 = glm::vec3(meshTransform * glm::vec4(mesh.vertices[i2], 1.0f));
Triangle tri = { v0, v1, v2 };
_triangleInfo.triangles.push_back(tri);
float area = tri.getArea();
areas.push_back(area);
if (area > EPSILON) {
minArea = std::min(minArea, area);
}
bounds += v0;
bounds += v1;
bounds += v2;
}
}
}
}
_triangleInfo.totalSamples = 0;
for (auto& area : areas) {
size_t numSamples = area / minArea;
_triangleInfo.samplesPerTriangle.push_back(numSamples);
_triangleInfo.totalSamples += numSamples;
}
glm::vec3 scale = bounds.getScale();
_triangleInfo.transform = glm::scale(1.0f / scale) * glm::translate(-bounds.calcCenter());
}

View file

@ -81,8 +81,18 @@ private:
glm::vec2 spare;
};
void computeTriangles(const hfm::Model& hfmModel);
bool _hasComputedTriangles{ false };
struct TriangleInfo {
std::vector<Triangle> triangles;
std::vector<size_t> samplesPerTriangle;
size_t totalSamples;
glm::mat4 transform;
} _triangleInfo;
static CpuParticle createParticle(uint64_t now, const Transform& baseTransform, const particle::Properties& particleProperties,
const ShapeType& shapeType, const GeometryResource::Pointer& geometryResource);
const ShapeType& shapeType, const GeometryResource::Pointer& geometryResource,
const TriangleInfo& triangleInfo);
void stepSimulation();
particle::Properties _particleProperties;

View file

@ -127,6 +127,7 @@ void buildStringToShapeTypeLookup() {
addShapeType(SHAPE_TYPE_SIMPLE_COMPOUND);
addShapeType(SHAPE_TYPE_STATIC_MESH);
addShapeType(SHAPE_TYPE_ELLIPSOID);
addShapeType(SHAPE_TYPE_CIRCLE);
}
QHash<QString, MaterialMappingMode> stringToMaterialMappingModeLookup;
@ -1121,21 +1122,21 @@ EntityPropertyFlags EntityItemProperties::getChangedProperties() const {
* Particles are emitted from the portion of the shape that lies between <code>emitRadiusStart</code> and the
* shape's surface.
* @property {number} polarStart=0 - The angle in radians from the entity's local z-axis at which particles start being emitted
* within the ellipsoid; range <code>0</code> &ndash; <code>Math.PI</code>. Particles are emitted from the portion of the
* ellipsoid that lies between <code>polarStart<code> and <code>polarFinish</code>. Only used if <code>shapeType</code> is
* <code>ellipsoid</code>.
* within the shape; range <code>0</code> &ndash; <code>Math.PI</code>. Particles are emitted from the portion of the
* shape that lies between <code>polarStart<code> and <code>polarFinish</code>. Only used if <code>shapeType</code> is
* <code>ellipsoid</code> or <code>sphere</code>.
* @property {number} polarFinish=0 - The angle in radians from the entity's local z-axis at which particles stop being emitted
* within the ellipsoid; range <code>0</code> &ndash; <code>Math.PI</code>. Particles are emitted from the portion of the
* ellipsoid that lies between <code>polarStart<code> and <code>polarFinish</code>. Only used if <code>shapeType</code> is
* <code>ellipsoid</code>.
* within the shape; range <code>0</code> &ndash; <code>Math.PI</code>. Particles are emitted from the portion of the
* shape that lies between <code>polarStart<code> and <code>polarFinish</code>. Only used if <code>shapeType</code> is
* <code>ellipsoid</code> or <code>sphere</code>.
* @property {number} azimuthStart=-Math.PI - The angle in radians from the entity's local x-axis about the entity's local
* z-axis at which particles start being emitted; range <code>-Math.PI</code> &ndash; <code>Math.PI</code>. Particles are
* emitted from the portion of the ellipsoid that lies between <code>azimuthStart<code> and <code>azimuthFinish</code>.
* Only used if <code>shapeType</code> is <code>ellipsoid</code>.
* emitted from the portion of the shape that lies between <code>azimuthStart<code> and <code>azimuthFinish</code>.
* Only used if <code>shapeType</code> is <code>ellipsoid</code>, <code>sphere</code>, or <code>circle</code>.
* @property {number} azimuthFinish=Math.PI - The angle in radians from the entity's local x-axis about the entity's local
* z-axis at which particles stop being emitted; range <code>-Math.PI</code> &ndash; <code>Math.PI</code>. Particles are
* emitted from the portion of the ellipsoid that lies between <code>azimuthStart<code> and <code>azimuthFinish</code>.
* Only used if <code>shapeType</code> is <code>ellipsoid</code>.
* emitted from the portion of the shape that lies between <code>azimuthStart<code> and <code>azimuthFinish</code>.
* Only used if <code>shapeType</code> is <code>ellipsoid</code>, <code>sphere</code>, or <code>circle</code>..
*
* @property {string} textures="" - The URL of a JPG or PNG image file to display for each particle. If you want transparency,
* use PNG format.

View file

@ -49,8 +49,6 @@ class LineEntityItem : public EntityItem {
QVector<glm::vec3> getLinePoints() const;
virtual ShapeType getShapeType() const override { return SHAPE_TYPE_NONE; }
// never have a ray intersection pick a LineEntityItem.
virtual bool supportsDetailedIntersection() const override { return true; }
virtual bool findDetailedRayIntersection(const glm::vec3& origin, const glm::vec3& direction,

View file

@ -175,7 +175,7 @@ protected:
QString _textures;
ShapeType _shapeType = SHAPE_TYPE_NONE;
ShapeType _shapeType { SHAPE_TYPE_NONE } ;
private:
uint64_t _lastAnimated{ 0 };

View file

@ -112,7 +112,7 @@ protected:
//! This is SHAPE_TYPE_ELLIPSOID rather than SHAPE_TYPE_NONE to maintain
//! prior functionality where new or unsupported shapes are treated as
//! ellipsoids.
ShapeType _collisionShapeType{ ShapeType::SHAPE_TYPE_ELLIPSOID };
ShapeType _collisionShapeType { ShapeType::SHAPE_TYPE_ELLIPSOID };
};
#endif // hifi_ShapeEntityItem_h

View file

@ -352,7 +352,7 @@ bool ZoneEntityItem::contains(const glm::vec3& point) const {
Extents meshExtents = hfmModel.getMeshExtents();
glm::vec3 meshExtentsDiagonal = meshExtents.maximum - meshExtents.minimum;
glm::vec3 offset = -meshExtents.minimum- (meshExtentsDiagonal * getRegistrationPoint());
glm::vec3 offset = -meshExtents.minimum - (meshExtentsDiagonal * getRegistrationPoint());
glm::vec3 scale(getScaledDimensions() / meshExtentsDiagonal);
glm::mat4 hfmToEntityMatrix = glm::scale(scale) * glm::translate(offset);

View file

@ -133,7 +133,7 @@ protected:
KeyLightPropertyGroup _keyLightProperties;
AmbientLightPropertyGroup _ambientLightProperties;
ShapeType _shapeType = DEFAULT_SHAPE_TYPE;
ShapeType _shapeType { DEFAULT_SHAPE_TYPE };
QString _compoundShapeURL;
// The following 3 values are the defaults for zone creation

View file

@ -358,6 +358,12 @@ glm::vec3 Triangle::getNormal() const {
return glm::normalize(glm::cross(edge1, edge2));
}
float Triangle::getArea() const {
glm::vec3 edge1 = v1 - v0;
glm::vec3 edge2 = v2 - v0;
return 0.5f * glm::length(glm::cross(edge1, edge2));
}
Triangle Triangle::operator*(const glm::mat4& transform) const {
return {
glm::vec3(transform * glm::vec4(v0, 1.0f)),

View file

@ -125,6 +125,7 @@ public:
glm::vec3 v1;
glm::vec3 v2;
glm::vec3 getNormal() const;
float getArea() const;
Triangle operator*(const glm::mat4& transform) const;
};

View file

@ -227,6 +227,14 @@
"speedSpread": {
"tooltip": "The spread in speeds at which particles are emitted at, resulting in a variety of speeds."
},
"particleShapeType": {
"tooltip": "The shape of the surface from which to emit particles.",
"jsPropertyName": "shapeType"
},
"particleCompoundShapeURL": {
"tooltip": "The model file to use for the particle emitter if Shape Type is \"Use Compound Shape URL\".",
"jsPropertyName": "compoundShapeURL"
},
"emitDimensions": {
"tooltip": "The outer limit radius in dimensions that the particles can be emitted from."
},

View file

@ -807,6 +807,21 @@ const GROUPS = [
decimals: 2,
propertyID: "speedSpread",
},
{
label: "Shape Type",
type: "dropdown",
options: { "box": "Box", "ellipsoid": "Ellipsoid",
"cylinder-y": "Cylinder", "circle": "Circle", "plane": "Plane",
"compound": "Use Compound Shape URL" },
propertyID: "particleShapeType",
propertyName: "shapeType",
},
{
label: "Compound Shape URL",
type: "string",
propertyID: "particleCompoundShapeURL",
propertyName: "compoundShapeURL",
},
{
label: "Emit Dimensions",
type: "vec3",