Merge branch 'master' of https://github.com/highfidelity/hifi into daft

This commit is contained in:
Sam Gateau 2015-06-14 18:56:34 +02:00
commit 38694e4f65
21 changed files with 593 additions and 395 deletions

View file

@ -5,7 +5,7 @@ ExternalProject_Add(
${EXTERNAL_NAME}
URL http://hifi-public.s3.amazonaws.com/dependencies/polyvox.zip
URL_MD5 904b840328278c9b36fa7a14be730c34
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=<INSTALL_DIR>
CMAKE_ARGS -DENABLE_EXAMPLES=OFF -DCMAKE_INSTALL_PREFIX:PATH=<INSTALL_DIR>
BINARY_DIR ${EXTERNAL_PROJECT_PREFIX}/build
LOG_DOWNLOAD 1
LOG_CONFIGURE 1

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 KiB

View file

@ -955,15 +955,17 @@ void Application::paintGL() {
glPushMatrix();
glLoadIdentity();
displaySide(&renderArgs, _myCamera);
_applicationOverlay.displayOverlayTexture(&renderArgs);
glPopMatrix();
renderArgs._renderMode = RenderArgs::MIRROR_RENDER_MODE;
if (Menu::getInstance()->isOptionChecked(MenuOption::FullscreenMirror)) {
_rearMirrorTools->render(&renderArgs, true, _glWidget->mapFromGlobal(QCursor::pos()));
} else if (Menu::getInstance()->isOptionChecked(MenuOption::Mirror)) {
renderRearViewMirror(&renderArgs, _mirrorViewRect);
}
renderArgs._renderMode = RenderArgs::NORMAL_RENDER_MODE;
auto finalFbo = DependencyManager::get<GlowEffect>()->render(&renderArgs);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
@ -972,6 +974,8 @@ void Application::paintGL() {
0, 0, _glWidget->getDeviceSize().width(), _glWidget->getDeviceSize().height(),
GL_COLOR_BUFFER_BIT, GL_NEAREST);
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
_applicationOverlay.displayOverlayTexture();
}
if (!OculusManager::isConnected() || OculusManager::allowSwap()) {
@ -3439,7 +3443,6 @@ void Application::displaySide(RenderArgs* renderArgs, Camera& theCamera, bool se
"Application::displaySide() ... entities...");
RenderArgs::DebugFlags renderDebugFlags = RenderArgs::RENDER_DEBUG_NONE;
RenderArgs::RenderMode renderMode = RenderArgs::DEFAULT_RENDER_MODE;
if (Menu::getInstance()->isOptionChecked(MenuOption::PhysicsShowHulls)) {
renderDebugFlags = (RenderArgs::DebugFlags) (renderDebugFlags | (int) RenderArgs::RENDER_DEBUG_HULLS);
@ -3448,10 +3451,6 @@ void Application::displaySide(RenderArgs* renderArgs, Camera& theCamera, bool se
renderDebugFlags =
(RenderArgs::DebugFlags) (renderDebugFlags | (int) RenderArgs::RENDER_DEBUG_SIMULATION_OWNERSHIP);
}
if (theCamera.getMode() == CAMERA_MODE_MIRROR) {
renderMode = RenderArgs::MIRROR_RENDER_MODE;
}
renderArgs->_renderMode = renderMode;
renderArgs->_debugFlags = renderDebugFlags;
_entities.render(renderArgs);
}

View file

@ -328,6 +328,7 @@ void Avatar::render(RenderArgs* renderArgs, const glm::vec3& cameraPosition, boo
if (postLighting &&
glm::distance(DependencyManager::get<AvatarManager>()->getMyAvatar()->getPosition(), _position) < 10.0f) {
auto geometryCache = DependencyManager::get<GeometryCache>();
auto deferredLighting = DependencyManager::get<DeferredLightingEffect>();
// render pointing lasers
glm::vec3 laserColor = glm::vec3(1.0f, 0.0f, 1.0f);
@ -354,6 +355,7 @@ void Avatar::render(RenderArgs* renderArgs, const glm::vec3& cameraPosition, boo
pointerTransform.setTranslation(position);
pointerTransform.setRotation(rotation);
batch->setModelTransform(pointerTransform);
deferredLighting->bindSimpleProgram(*batch);
geometryCache->renderLine(*batch, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, laserLength, 0.0f), laserColor);
}
}
@ -376,6 +378,7 @@ void Avatar::render(RenderArgs* renderArgs, const glm::vec3& cameraPosition, boo
pointerTransform.setTranslation(position);
pointerTransform.setRotation(rotation);
batch->setModelTransform(pointerTransform);
deferredLighting->bindSimpleProgram(*batch);
geometryCache->renderLine(*batch, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, laserLength, 0.0f), laserColor);
}
}
@ -462,7 +465,8 @@ void Avatar::render(RenderArgs* renderArgs, const glm::vec3& cameraPosition, boo
Transform transform;
transform.setTranslation(position);
batch->setModelTransform(transform);
DependencyManager::get<GeometryCache>()->renderSphere(*batch, LOOK_AT_INDICATOR_RADIUS, 15, 15, LOOK_AT_INDICATOR_COLOR);
DependencyManager::get<DeferredLightingEffect>()->renderSolidSphere(*batch, LOOK_AT_INDICATOR_RADIUS
, 15, 15, LOOK_AT_INDICATOR_COLOR);
}
}
@ -494,6 +498,7 @@ void Avatar::render(RenderArgs* renderArgs, const glm::vec3& cameraPosition, boo
_voiceSphereID = DependencyManager::get<GeometryCache>()->allocateID();
}
DependencyManager::get<DeferredLightingEffect>()->bindSimpleProgram(*batch);
DependencyManager::get<GeometryCache>()->renderSphere(*batch, sphereRadius, 15, 15,
glm::vec4(SPHERE_COLOR[0], SPHERE_COLOR[1], SPHERE_COLOR[2], 1.0f - angle / MAX_SPHERE_ANGLE), true,
_voiceSphereID);

View file

@ -615,10 +615,12 @@ void OculusManager::display(QGLWidget * glCanvas, RenderArgs* renderArgs, const
renderArgs->_renderSide = RenderArgs::MONO;
qApp->displaySide(renderArgs, *_camera, false);
qApp->getApplicationOverlay().displayOverlayTextureHmd(renderArgs, *_camera);
qApp->getApplicationOverlay().displayOverlayTextureHmd(*_camera);
});
_activeEye = ovrEye_Count;
glPopMatrix();
gpu::FramebufferPointer finalFbo;
//Bind the output texture from the glow shader. If glow effect is disabled, we just grab the texture
if (Menu::getInstance()->isOptionChecked(MenuOption::EnableGlowEffect)) {
@ -629,7 +631,6 @@ void OculusManager::display(QGLWidget * glCanvas, RenderArgs* renderArgs, const
finalFbo = DependencyManager::get<TextureCache>()->getPrimaryFramebuffer();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
glPopMatrix();
glMatrixMode(GL_PROJECTION);
glPopMatrix();

View file

@ -12,7 +12,6 @@
#include "InterfaceConfig.h"
#include <glm/glm.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <GlowEffect.h>
#include "gpu/GLBackend.h"
@ -107,20 +106,21 @@ void TV3DManager::display(RenderArgs* renderArgs, Camera& whichCamera) {
_activeEye = &eye;
glViewport(portalX, portalY, portalW, portalH);
glScissor(portalX, portalY, portalW, portalH);
glm::mat4 projection = glm::frustum<float>(eye.left, eye.right, eye.bottom, eye.top, nearZ, farZ);
float fov = atan(1.0f / projection[1][1]);
projection = glm::translate(projection, vec3(eye.modelTranslation, 0, 0));
eyeCamera.setProjection(projection);
glMatrixMode(GL_PROJECTION);
glLoadIdentity(); // reset projection matrix
glLoadMatrixf(glm::value_ptr(projection));
glFrustum(eye.left, eye.right, eye.bottom, eye.top, nearZ, farZ); // set left view frustum
GLfloat p[4][4];
// Really?
glGetFloatv(GL_PROJECTION_MATRIX, &(p[0][0]));
float cotangent = p[1][1];
GLfloat fov = atan(1.0f / cotangent);
glTranslatef(eye.modelTranslation, 0.0, 0.0); // translate to cancel parallax
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
renderArgs->_renderSide = RenderArgs::MONO;
qApp->displaySide(renderArgs, eyeCamera, false);
qApp->getApplicationOverlay().displayOverlayTexture(renderArgs);
qApp->getApplicationOverlay().displayOverlayTextureStereo(whichCamera, _aspect, fov);
_activeEye = NULL;
}, [&]{
// render right side view

View file

@ -14,16 +14,13 @@
#include <QOpenGLFramebufferObject>
#include <QOpenGLTexture>
#include <glm/gtc/type_ptr.hpp>
#include <avatar/AvatarManager.h>
#include <DeferredLightingEffect.h>
#include <GLMHelpers.h>
#include <PathUtils.h>
#include <gpu/GLBackend.h>
#include <GLMHelpers.h>
#include <OffscreenUi.h>
#include <CursorManager.h>
#include <PerfStat.h>
#include <OffscreenUi.h>
#include "AudioClient.h"
#include "audio/AudioIOStatsRenderer.h"
@ -36,9 +33,6 @@
#include "Util.h"
#include "ui/Stats.h"
#include "../../libraries/render-utils/standardTransformPNTC_vert.h"
#include "../../libraries/render-utils/standardDrawTexture_frag.h"
// Used to animate the magnification windows
const float MAG_SPEED = 0.08f;
@ -120,6 +114,27 @@ bool raySphereIntersect(const glm::vec3 &dir, const glm::vec3 &origin, float r,
}
}
void ApplicationOverlay::renderReticle(glm::quat orientation, float alpha) {
glPushMatrix(); {
glm::vec3 axis = glm::axis(orientation);
glRotatef(glm::degrees(glm::angle(orientation)), axis.x, axis.y, axis.z);
glm::vec3 topLeft = getPoint(reticleSize / 2.0f, -reticleSize / 2.0f);
glm::vec3 topRight = getPoint(-reticleSize / 2.0f, -reticleSize / 2.0f);
glm::vec3 bottomLeft = getPoint(reticleSize / 2.0f, reticleSize / 2.0f);
glm::vec3 bottomRight = getPoint(-reticleSize / 2.0f, reticleSize / 2.0f);
// TODO: this version of renderQuad() needs to take a color
glm::vec4 reticleColor = { RETICLE_COLOR[0], RETICLE_COLOR[1], RETICLE_COLOR[2], alpha };
DependencyManager::get<GeometryCache>()->renderQuad(topLeft, bottomLeft, bottomRight, topRight,
glm::vec2(0.0f, 0.0f), glm::vec2(1.0f, 0.0f),
glm::vec2(1.0f, 1.0f), glm::vec2(0.0f, 1.0f),
reticleColor, _reticleQuad);
} glPopMatrix();
}
ApplicationOverlay::ApplicationOverlay() :
_textureFov(glm::radians(DEFAULT_HMD_UI_ANGULAR_SIZE)),
_textureAspectRatio(1.0f),
@ -133,8 +148,7 @@ ApplicationOverlay::ApplicationOverlay() :
_previousMagnifierBottomLeft(),
_previousMagnifierBottomRight(),
_previousMagnifierTopLeft(),
_previousMagnifierTopRight(),
_framebufferObject(nullptr)
_previousMagnifierTopRight()
{
memset(_reticleActive, 0, sizeof(_reticleActive));
memset(_magActive, 0, sizeof(_reticleActive));
@ -181,17 +195,16 @@ void ApplicationOverlay::renderOverlay(RenderArgs* renderArgs) {
//Handle fading and deactivation/activation of UI
// Render 2D overlay
glMatrixMode(GL_PROJECTION);
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
buildFramebufferObject();
_framebufferObject->bind();
_overlays.buildFramebufferObject();
_overlays.bind();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glViewport(0, 0, size.x, size.y);
glMatrixMode(GL_PROJECTION);
glPushMatrix(); {
const float NEAR_CLIP = -10000;
const float FAR_CLIP = 10000;
@ -213,22 +226,6 @@ void ApplicationOverlay::renderOverlay(RenderArgs* renderArgs) {
renderPointers();
renderDomainConnectionStatusBorder();
if (_newUiTexture) {
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glBindTexture(GL_TEXTURE_2D, _newUiTexture);
DependencyManager::get<GeometryCache>()->renderUnitQuad();
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
}
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
} glPopMatrix();
@ -238,161 +235,259 @@ void ApplicationOverlay::renderOverlay(RenderArgs* renderArgs) {
glEnable(GL_LIGHTING);
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_ALPHA, GL_ONE);
_framebufferObject->release();
_overlays.release();
}
gpu::PipelinePointer ApplicationOverlay::getDrawPipeline() {
if (!_standardDrawPipeline) {
auto vs = gpu::ShaderPointer(gpu::Shader::createVertex(std::string(standardTransformPNTC_vert)));
auto ps = gpu::ShaderPointer(gpu::Shader::createPixel(std::string(standardDrawTexture_frag)));
auto program = gpu::ShaderPointer(gpu::Shader::createProgram(vs, ps));
gpu::Shader::makeProgram((*program));
auto state = gpu::StatePointer(new gpu::State());
// enable decal blend
state->setBlendFunction(true, gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA);
_standardDrawPipeline.reset(gpu::Pipeline::create(program, state));
// A quick and dirty solution for compositing the old overlay
// texture with the new one
template <typename F>
void with_each_texture(GLuint firstPassTexture, GLuint secondPassTexture, F f) {
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE0);
if (firstPassTexture) {
glBindTexture(GL_TEXTURE_2D, firstPassTexture);
f();
}
return _standardDrawPipeline;
}
void ApplicationOverlay::bindCursorTexture(gpu::Batch& batch, uint8_t cursorIndex) {
auto& cursorManager = Cursor::Manager::instance();
auto cursor = cursorManager.getCursor(cursorIndex);
auto iconId = cursor->getIcon();
if (!_cursors.count(iconId)) {
auto iconPath = cursorManager.getIconImage(cursor->getIcon());
_cursors[iconId] = DependencyManager::get<TextureCache>()->
getImageTexture(iconPath);
if (secondPassTexture) {
glBindTexture(GL_TEXTURE_2D, secondPassTexture);
f();
}
batch.setUniformTexture(0, _cursors[iconId]);
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
}
#define CURSOR_PIXEL_SIZE 32.0f
// Draws the FBO texture for the screen
void ApplicationOverlay::displayOverlayTexture(RenderArgs* renderArgs) {
void ApplicationOverlay::displayOverlayTexture() {
if (_alpha == 0.0f) {
return;
}
glMatrixMode(GL_PROJECTION);
glPushMatrix(); {
glLoadIdentity();
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glViewport(0, 0, qApp->getDeviceSize().width(), qApp->getDeviceSize().height());
static const glm::vec2 topLeft(-1, 1);
static const glm::vec2 bottomRight(1, -1);
static const glm::vec2 texCoordTopLeft(0.0f, 1.0f);
static const glm::vec2 texCoordBottomRight(1.0f, 0.0f);
with_each_texture(_overlays.getTexture(), _newUiTexture, [&] {
DependencyManager::get<GeometryCache>()->renderQuad(
topLeft, bottomRight,
texCoordTopLeft, texCoordBottomRight,
glm::vec4(1.0f, 1.0f, 1.0f, _alpha));
});
if (!_crosshairTexture) {
_crosshairTexture = DependencyManager::get<TextureCache>()->
getImageTexture(PathUtils::resourcesPath() + "images/sixense-reticle.png");
}
//draw the mouse pointer
glm::vec2 canvasSize = qApp->getCanvasSize();
glm::vec2 mouseSize = 32.0f / canvasSize;
auto mouseTopLeft = topLeft * mouseSize;
auto mouseBottomRight = bottomRight * mouseSize;
vec2 mousePosition = vec2(qApp->getMouseX(), qApp->getMouseY());
mousePosition /= canvasSize;
mousePosition *= 2.0f;
mousePosition -= 1.0f;
mousePosition.y *= -1.0f;
glEnable(GL_TEXTURE_2D);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glBindTexture(GL_TEXTURE_2D, gpu::GLBackend::getTextureID(_crosshairTexture));
glm::vec4 reticleColor = { RETICLE_COLOR[0], RETICLE_COLOR[1], RETICLE_COLOR[2], 1.0f };
DependencyManager::get<GeometryCache>()->renderQuad(
mouseTopLeft + mousePosition, mouseBottomRight + mousePosition,
texCoordTopLeft, texCoordBottomRight,
reticleColor);
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_ALPHA, GL_ONE);
glDisable(GL_TEXTURE_2D);
} glPopMatrix();
}
// Draws the FBO texture for Oculus rift.
void ApplicationOverlay::displayOverlayTextureHmd(Camera& whichCamera) {
if (_alpha == 0.0f) {
return;
}
glEnable(GL_BLEND);
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_ALPHA, GL_ONE);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glDisable(GL_LIGHTING);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.01f);
//Update and draw the magnifiers
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
const glm::quat& orientation = myAvatar->getOrientation();
// Always display the HMD overlay relative to the camera position but
// remove the HMD pose offset. This results in an overlay that sticks with you
// even in third person mode, but isn't drawn at a fixed distance.
glm::vec3 position = whichCamera.getPosition();
position -= qApp->getCamera()->getHmdPosition();
const float scale = myAvatar->getScale() * _oculusUIRadius;
// glm::vec3 eyeOffset = setEyeOffsetPosition;
glMatrixMode(GL_MODELVIEW);
glPushMatrix(); {
glTranslatef(position.x, position.y, position.z);
glm::mat4 rotation = glm::toMat4(orientation);
glMultMatrixf(&rotation[0][0]);
glScalef(scale, scale, scale);
for (int i = 0; i < NUMBER_OF_RETICLES; i++) {
if (_magActive[i]) {
_magSizeMult[i] += MAG_SPEED;
if (_magSizeMult[i] > 1.0f) {
_magSizeMult[i] = 1.0f;
}
} else {
_magSizeMult[i] -= MAG_SPEED;
if (_magSizeMult[i] < 0.0f) {
_magSizeMult[i] = 0.0f;
}
}
if (_magSizeMult[i] > 0.0f) {
//Render magnifier, but dont show border for mouse magnifier
glm::vec2 projection = screenToOverlay(glm::vec2(_reticlePosition[MOUSE].x(),
_reticlePosition[MOUSE].y()));
with_each_texture(_overlays.getTexture(), 0, [&] {
renderMagnifier(projection, _magSizeMult[i], i != MOUSE);
});
}
}
glDepthMask(GL_FALSE);
glDisable(GL_ALPHA_TEST);
static float textureFOV = 0.0f, textureAspectRatio = 1.0f;
if (textureFOV != _textureFov ||
textureAspectRatio != _textureAspectRatio) {
textureFOV = _textureFov;
textureAspectRatio = _textureAspectRatio;
_overlays.buildVBO(_textureFov, _textureAspectRatio, 80, 80);
}
with_each_texture(_overlays.getTexture(), _newUiTexture, [&] {
_overlays.render();
});
if (!Application::getInstance()->isMouseHidden()) {
renderPointersOculus();
}
glDepthMask(GL_TRUE);
glDisable(GL_TEXTURE_2D);
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_ALPHA, GL_ONE);
glEnable(GL_LIGHTING);
} glPopMatrix();
}
// Draws the FBO texture for 3DTV.
void ApplicationOverlay::displayOverlayTextureStereo(Camera& whichCamera, float aspectRatio, float fov) {
if (_alpha == 0.0f) {
return;
}
renderArgs->_context->syncCache();
gpu::Batch batch;
Transform model;
//DependencyManager::get<DeferredLightingEffect>()->bindSimpleProgram(batch, true);
batch.setPipeline(getDrawPipeline());
batch.setModelTransform(Transform());
batch.setProjectionTransform(mat4());
batch.setViewTransform(model);
batch._glBindTexture(GL_TEXTURE_2D, _framebufferObject->texture());
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
DependencyManager::get<GeometryCache>()->renderUnitQuad(batch, vec4(vec3(1), _alpha));
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
const glm::vec3& viewMatrixTranslation = qApp->getViewMatrixTranslation();
glEnable(GL_BLEND);
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_ALPHA, GL_ONE);
glEnable(GL_DEPTH_TEST);
glDisable(GL_LIGHTING);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
// Transform to world space
glm::quat rotation = whichCamera.getRotation();
glm::vec3 axis2 = glm::axis(rotation);
glRotatef(-glm::degrees(glm::angle(rotation)), axis2.x, axis2.y, axis2.z);
glTranslatef(viewMatrixTranslation.x, viewMatrixTranslation.y, viewMatrixTranslation.z);
// Translate to the front of the camera
glm::vec3 pos = whichCamera.getPosition();
glm::quat rot = myAvatar->getOrientation();
glm::vec3 axis = glm::axis(rot);
glTranslatef(pos.x, pos.y, pos.z);
glRotatef(glm::degrees(glm::angle(rot)), axis.x, axis.y, axis.z);
glm::vec4 overlayColor = {1.0f, 1.0f, 1.0f, _alpha};
//Render
const GLfloat distance = 1.0f;
const GLfloat halfQuadHeight = distance * tan(fov);
const GLfloat halfQuadWidth = halfQuadHeight * aspectRatio;
const GLfloat quadWidth = halfQuadWidth * 2.0f;
const GLfloat quadHeight = halfQuadHeight * 2.0f;
GLfloat x = -halfQuadWidth;
GLfloat y = -halfQuadHeight;
glDisable(GL_DEPTH_TEST);
with_each_texture(_overlays.getTexture(), _newUiTexture, [&] {
DependencyManager::get<GeometryCache>()->renderQuad(glm::vec3(x, y + quadHeight, -distance),
glm::vec3(x + quadWidth, y + quadHeight, -distance),
glm::vec3(x + quadWidth, y, -distance),
glm::vec3(x, y, -distance),
glm::vec2(0.0f, 1.0f), glm::vec2(1.0f, 1.0f),
glm::vec2(1.0f, 0.0f), glm::vec2(0.0f, 0.0f),
overlayColor);
});
if (!_crosshairTexture) {
_crosshairTexture = TextureCache::getImageTexture(PathUtils::resourcesPath() +
"images/sixense-reticle.png");
}
//draw the mouse pointer
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, gpu::GLBackend::getTextureID(_crosshairTexture));
glm::vec2 canvasSize = qApp->getCanvasSize();
// Get the mouse coordinates and convert to NDC [-1, 1]
vec2 mousePosition = vec2(qApp->getMouseX(), qApp->getMouseY());
mousePosition /= canvasSize;
mousePosition *= 2.0f;
mousePosition -= 1.0f;
mousePosition.y *= -1.0f;
model.setTranslation(vec3(mousePosition, 0));
glm::vec2 mouseSize = CURSOR_PIXEL_SIZE / canvasSize;
model.setScale(vec3(mouseSize, 1.0f));
batch.setModelTransform(model);
bindCursorTexture(batch);
const float reticleSize = 40.0f / canvasSize.x * quadWidth;
x -= reticleSize / 2.0f;
y += reticleSize / 2.0f;
const float mouseX = (qApp->getMouseX() / (float)canvasSize.x) * quadWidth;
const float mouseY = (1.0 - (qApp->getMouseY() / (float)canvasSize.y)) * quadHeight;
glm::vec4 reticleColor = { RETICLE_COLOR[0], RETICLE_COLOR[1], RETICLE_COLOR[2], 1.0f };
DependencyManager::get<GeometryCache>()->renderUnitQuad(batch, vec4(1));
renderArgs->_context->render(batch);
DependencyManager::get<GeometryCache>()->renderQuad(glm::vec3(x + mouseX, y + mouseY, -distance),
glm::vec3(x + mouseX + reticleSize, y + mouseY, -distance),
glm::vec3(x + mouseX + reticleSize, y + mouseY - reticleSize, -distance),
glm::vec3(x + mouseX, y + mouseY - reticleSize, -distance),
glm::vec2(0.0f, 0.0f), glm::vec2(1.0f, 0.0f),
glm::vec2(1.0f, 1.0f), glm::vec2(0.0f, 1.0f),
reticleColor, _reticleQuad);
glEnable(GL_DEPTH_TEST);
glPopMatrix();
glDepthMask(GL_TRUE);
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_ALPHA, GL_ONE);
glEnable(GL_LIGHTING);
}
static gpu::BufferPointer _hemiVertices;
static gpu::BufferPointer _hemiIndices;
static int _hemiIndexCount{ 0 };
glm::vec2 getPolarCoordinates(const PalmData& palm) {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
auto avatarOrientation = myAvatar->getOrientation();
auto eyePos = myAvatar->getDefaultEyePosition();
glm::vec3 tip = myAvatar->getLaserPointerTipPosition(&palm);
// Direction of the tip relative to the eye
glm::vec3 tipDirection = tip - eyePos;
// orient into avatar space
tipDirection = glm::inverse(avatarOrientation) * tipDirection;
// Normalize for trig functions
tipDirection = glm::normalize(tipDirection);
// Convert to polar coordinates
glm::vec2 polar(glm::atan(tipDirection.x, -tipDirection.z), glm::asin(tipDirection.y));
return polar;
}
// Draws the FBO texture for Oculus rift.
void ApplicationOverlay::displayOverlayTextureHmd(RenderArgs* renderArgs, Camera& whichCamera) {
if (_alpha == 0.0f) {
return;
}
renderArgs->_context->syncCache();
gpu::Batch batch;
batch.setPipeline(getDrawPipeline());
batch._glDisable(GL_DEPTH_TEST);
batch._glDisable(GL_CULL_FACE);
batch._glBindTexture(GL_TEXTURE_2D, _framebufferObject->texture());
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
batch.setProjectionTransform(whichCamera.getProjection());
batch.setViewTransform(Transform());
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
const quat& avatarOrientation = myAvatar->getOrientation();
quat hmdOrientation = qApp->getCamera()->getHmdRotation();
vec3 hmdPosition = glm::inverse(avatarOrientation) * qApp->getCamera()->getHmdPosition();
mat4 overlayXfm = glm::mat4_cast(glm::inverse(hmdOrientation)) * glm::translate(mat4(), -hmdPosition);
batch.setModelTransform(Transform(overlayXfm));
drawSphereSection(batch);
bindCursorTexture(batch);
auto geometryCache = DependencyManager::get<GeometryCache>();
vec3 reticleScale = vec3(Cursor::Manager::instance().getScale() * reticleSize);
//Controller Pointers
for (int i = 0; i < (int)myAvatar->getHand()->getNumPalms(); i++) {
PalmData& palm = myAvatar->getHand()->getPalms()[i];
if (palm.isActive()) {
glm::vec2 polar = getPolarCoordinates(palm);
// Convert to quaternion
mat4 pointerXfm = glm::mat4_cast(quat(vec3(polar.y, -polar.x, 0.0f))) * glm::translate(mat4(), vec3(0, 0, -1));
mat4 reticleXfm = overlayXfm * pointerXfm;
reticleXfm = glm::scale(reticleXfm, reticleScale);
batch.setModelTransform(reticleXfm);
// Render reticle at location
geometryCache->renderUnitQuad(batch, glm::vec4(1), _reticleQuad);
}
}
//Mouse Pointer
if (_reticleActive[MOUSE]) {
glm::vec2 projection = screenToSpherical(glm::vec2(_reticlePosition[MOUSE].x(),
_reticlePosition[MOUSE].y()));
mat4 pointerXfm = glm::mat4_cast(quat(vec3(-projection.y, projection.x, 0.0f))) * glm::translate(mat4(), vec3(0, 0, -1));
mat4 reticleXfm = overlayXfm * pointerXfm;
reticleXfm = glm::scale(reticleXfm, reticleScale);
batch.setModelTransform(reticleXfm);
geometryCache->renderUnitQuad(batch, glm::vec4(1), _reticleQuad);
}
renderArgs->_context->render(batch);
}
void ApplicationOverlay::computeHmdPickRay(glm::vec2 cursorPos, glm::vec3& origin, glm::vec3& direction) const {
cursorPos *= qApp->getCanvasSize();
const glm::vec2 projection = screenToSpherical(cursorPos);
@ -421,6 +516,22 @@ void ApplicationOverlay::computeHmdPickRay(glm::vec2 cursorPos, glm::vec3& origi
direction = glm::normalize(intersectionWithUi - origin);
}
glm::vec2 getPolarCoordinates(const PalmData& palm) {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
auto avatarOrientation = myAvatar->getOrientation();
auto eyePos = myAvatar->getDefaultEyePosition();
glm::vec3 tip = myAvatar->getLaserPointerTipPosition(&palm);
// Direction of the tip relative to the eye
glm::vec3 tipDirection = tip - eyePos;
// orient into avatar space
tipDirection = glm::inverse(avatarOrientation) * tipDirection;
// Normalize for trig functions
tipDirection = glm::normalize(tipDirection);
// Convert to polar coordinates
glm::vec2 polar(glm::atan(tipDirection.x, -tipDirection.z), glm::asin(tipDirection.y));
return polar;
}
//Caculate the click location using one of the sixense controllers. Scale is not applied
QPoint ApplicationOverlay::getPalmClickLocation(const PalmData *palm) const {
QPoint rv;
@ -471,9 +582,13 @@ bool ApplicationOverlay::calculateRayUICollisionPoint(const glm::vec3& position,
//Renders optional pointers
void ApplicationOverlay::renderPointers() {
//glEnable(GL_TEXTURE_2D);
//glEnable(GL_BLEND);
//glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//lazily load crosshair texture
if (_crosshairTexture == 0) {
_crosshairTexture = TextureCache::getImageTexture(PathUtils::resourcesPath() + "images/sixense-reticle.png");
}
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//glActiveTexture(GL_TEXTURE0);
//bindCursorTexture();
@ -635,6 +750,43 @@ void ApplicationOverlay::renderControllerPointers() {
}
}
void ApplicationOverlay::renderPointersOculus() {
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, gpu::GLBackend::getTextureID(_crosshairTexture));
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_MODELVIEW);
//Controller Pointers
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
for (int i = 0; i < (int)myAvatar->getHand()->getNumPalms(); i++) {
PalmData& palm = myAvatar->getHand()->getPalms()[i];
if (palm.isActive()) {
glm::vec2 polar = getPolarCoordinates(palm);
// Convert to quaternion
glm::quat orientation = glm::quat(glm::vec3(polar.y, -polar.x, 0.0f));
// Render reticle at location
renderReticle(orientation, _alpha);
}
}
//Mouse Pointer
if (_reticleActive[MOUSE]) {
glm::vec2 projection = screenToSpherical(glm::vec2(_reticlePosition[MOUSE].x(),
_reticlePosition[MOUSE].y()));
glm::quat orientation(glm::vec3(-projection.y, projection.x, 0.0f));
renderReticle(orientation, _alpha);
}
glEnable(GL_DEPTH_TEST);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
}
//Renders a small magnification of the currently bound texture at the coordinates
void ApplicationOverlay::renderMagnifier(glm::vec2 magPos, float sizeMult, bool showBorder) {
if (!_magnifier) {
@ -915,109 +1067,119 @@ void ApplicationOverlay::renderDomainConnectionStatusBorder() {
}
}
ApplicationOverlay::TexturedHemisphere::TexturedHemisphere() :
_vertices(0),
_indices(0),
_framebufferObject(NULL),
_vbo(0, 0) {
}
void ApplicationOverlay::buildHemiVertices(
const float fov, const float aspectRatio, const int slices, const int stacks) {
static float textureFOV = 0.0f, textureAspectRatio = 1.0f;
if (textureFOV == fov && textureAspectRatio == aspectRatio) {
return;
ApplicationOverlay::TexturedHemisphere::~TexturedHemisphere() {
cleanupVBO();
if (_framebufferObject != NULL) {
delete _framebufferObject;
}
}
textureFOV = fov;
textureAspectRatio = aspectRatio;
auto geometryCache = DependencyManager::get<GeometryCache>();
_hemiVertices = gpu::BufferPointer(new gpu::Buffer());
_hemiIndices = gpu::BufferPointer(new gpu::Buffer());
void ApplicationOverlay::TexturedHemisphere::bind() {
_framebufferObject->bind();
}
void ApplicationOverlay::TexturedHemisphere::release() {
_framebufferObject->release();
}
void ApplicationOverlay::TexturedHemisphere::buildVBO(const float fov,
const float aspectRatio,
const int slices,
const int stacks) {
if (fov >= PI) {
qDebug() << "TexturedHemisphere::buildVBO(): FOV greater or equal than Pi will create issues";
}
// Cleanup old VBO if necessary
cleanupVBO();
//UV mapping source: http://www.mvps.org/directx/articles/spheremap.htm
vec3 pos;
vec2 uv;
// Compute number of vertices needed
_vertices = slices * stacks;
// Compute vertices positions and texture UV coordinate
// Create and write to buffer
TextureVertex* vertexData = new TextureVertex[_vertices];
TextureVertex* vertexPtr = &vertexData[0];
for (int i = 0; i < stacks; i++) {
uv.y = (float)i / (float)(stacks - 1); // First stack is 0.0f, last stack is 1.0f
float stacksRatio = (float)i / (float)(stacks - 1); // First stack is 0.0f, last stack is 1.0f
// abs(theta) <= fov / 2.0f
float pitch = -fov * (uv.y - 0.5f);
float pitch = -fov * (stacksRatio - 0.5f);
for (int j = 0; j < slices; j++) {
uv.x = (float)j / (float)(slices - 1); // First slice is 0.0f, last slice is 1.0f
float slicesRatio = (float)j / (float)(slices - 1); // First slice is 0.0f, last slice is 1.0f
// abs(phi) <= fov * aspectRatio / 2.0f
float yaw = -fov * aspectRatio * (uv.x - 0.5f);
pos = getPoint(yaw, pitch);
static const vec4 color(1);
_hemiVertices->append(sizeof(pos), (gpu::Byte*)&pos);
_hemiVertices->append(sizeof(vec2), (gpu::Byte*)&uv);
_hemiVertices->append(sizeof(vec4), (gpu::Byte*)&color);
float yaw = -fov * aspectRatio * (slicesRatio - 0.5f);
vertexPtr->position = getPoint(yaw, pitch);
vertexPtr->uv.x = slicesRatio;
vertexPtr->uv.y = stacksRatio;
vertexPtr++;
}
}
// Create and write to buffer
glGenBuffers(1, &_vbo.first);
glBindBuffer(GL_ARRAY_BUFFER, _vbo.first);
static const int BYTES_PER_VERTEX = sizeof(TextureVertex);
glBufferData(GL_ARRAY_BUFFER, _vertices * BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW);
delete[] vertexData;
// Compute number of indices needed
static const int VERTEX_PER_TRANGLE = 3;
static const int TRIANGLE_PER_RECTANGLE = 2;
int numberOfRectangles = (slices - 1) * (stacks - 1);
_hemiIndexCount = numberOfRectangles * TRIANGLE_PER_RECTANGLE * VERTEX_PER_TRANGLE;
_indices = numberOfRectangles * TRIANGLE_PER_RECTANGLE * VERTEX_PER_TRANGLE;
// Compute indices order
std::vector<GLushort> indices;
GLushort* indexData = new GLushort[_indices];
GLushort* indexPtr = indexData;
for (int i = 0; i < stacks - 1; i++) {
for (int j = 0; j < slices - 1; j++) {
GLushort bottomLeftIndex = i * slices + j;
GLushort bottomRightIndex = bottomLeftIndex + 1;
GLushort topLeftIndex = bottomLeftIndex + slices;
GLushort topRightIndex = topLeftIndex + 1;
// FIXME make a z-order curve for better vertex cache locality
indices.push_back(topLeftIndex);
indices.push_back(bottomLeftIndex);
indices.push_back(topRightIndex);
indices.push_back(topRightIndex);
indices.push_back(bottomLeftIndex);
indices.push_back(bottomRightIndex);
*(indexPtr++) = topLeftIndex;
*(indexPtr++) = bottomLeftIndex;
*(indexPtr++) = topRightIndex;
*(indexPtr++) = topRightIndex;
*(indexPtr++) = bottomLeftIndex;
*(indexPtr++) = bottomRightIndex;
}
}
_hemiIndices->append(sizeof(GLushort) * indices.size(), (gpu::Byte*)&indices[0]);
// Create and write to buffer
glGenBuffers(1, &_vbo.second);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vbo.second);
static const int BYTES_PER_INDEX = sizeof(GLushort);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, _indices * BYTES_PER_INDEX, indexData, GL_STATIC_DRAW);
delete[] indexData;
}
void ApplicationOverlay::drawSphereSection(gpu::Batch& batch) {
buildHemiVertices(_textureFov, _textureAspectRatio, 80, 80);
static const int VERTEX_DATA_SLOT = 0;
static const int TEXTURE_DATA_SLOT = 1;
static const int COLOR_DATA_SLOT = 2;
gpu::Stream::FormatPointer streamFormat(new gpu::Stream::Format()); // 1 for everyone
streamFormat->setAttribute(gpu::Stream::POSITION, VERTEX_DATA_SLOT, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
streamFormat->setAttribute(gpu::Stream::TEXCOORD, TEXTURE_DATA_SLOT, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV));
streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_DATA_SLOT, gpu::Element(gpu::VEC4, gpu::FLOAT, gpu::RGBA));
batch.setInputFormat(streamFormat);
static const int VERTEX_STRIDE = sizeof(vec3) + sizeof(vec2) + sizeof(vec4);
gpu::BufferView posView(_hemiVertices, 0, _hemiVertices->getSize(), VERTEX_STRIDE, streamFormat->getAttributes().at(gpu::Stream::POSITION)._element);
gpu::BufferView uvView(_hemiVertices, sizeof(vec3), _hemiVertices->getSize(), VERTEX_STRIDE, streamFormat->getAttributes().at(gpu::Stream::TEXCOORD)._element);
gpu::BufferView colView(_hemiVertices, sizeof(vec3) + sizeof(vec2), _hemiVertices->getSize(), VERTEX_STRIDE, streamFormat->getAttributes().at(gpu::Stream::COLOR)._element);
batch.setInputBuffer(VERTEX_DATA_SLOT, posView);
batch.setInputBuffer(TEXTURE_DATA_SLOT, uvView);
batch.setInputBuffer(COLOR_DATA_SLOT, colView);
batch.setIndexBuffer(gpu::UINT16, _hemiIndices, 0);
batch.drawIndexed(gpu::TRIANGLES, _hemiIndexCount);
void ApplicationOverlay::TexturedHemisphere::cleanupVBO() {
if (_vbo.first != 0) {
glDeleteBuffers(1, &_vbo.first);
_vbo.first = 0;
}
if (_vbo.second != 0) {
glDeleteBuffers(1, &_vbo.second);
_vbo.second = 0;
}
}
GLuint ApplicationOverlay::getOverlayTexture() {
return _framebufferObject->texture();
}
void ApplicationOverlay::buildFramebufferObject() {
void ApplicationOverlay::TexturedHemisphere::buildFramebufferObject() {
auto canvasSize = qApp->getCanvasSize();
QSize fboSize = QSize(canvasSize.x, canvasSize.y);
if (_framebufferObject != NULL && fboSize == _framebufferObject->size()) {
// Already built
// Already build
return;
}
@ -1026,7 +1188,7 @@ void ApplicationOverlay::buildFramebufferObject() {
}
_framebufferObject = new QOpenGLFramebufferObject(fboSize, QOpenGLFramebufferObject::Depth);
glBindTexture(GL_TEXTURE_2D, getOverlayTexture());
glBindTexture(GL_TEXTURE_2D, getTexture());
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
@ -1036,6 +1198,38 @@ void ApplicationOverlay::buildFramebufferObject() {
glBindTexture(GL_TEXTURE_2D, 0);
}
//Renders a hemisphere with texture coordinates.
void ApplicationOverlay::TexturedHemisphere::render() {
if (_framebufferObject == NULL || _vbo.first == 0 || _vbo.second == 0) {
qDebug() << "TexturedHemisphere::render(): Incorrect initialisation";
return;
}
glBindBuffer(GL_ARRAY_BUFFER, _vbo.first);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vbo.second);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
static const int STRIDE = sizeof(TextureVertex);
static const void* VERTEX_POINTER = 0;
static const void* TEX_COORD_POINTER = (void*)sizeof(glm::vec3);
glVertexPointer(3, GL_FLOAT, STRIDE, VERTEX_POINTER);
glTexCoordPointer(2, GL_FLOAT, STRIDE, TEX_COORD_POINTER);
glDrawRangeElements(GL_TRIANGLES, 0, _vertices - 1, _indices, GL_UNSIGNED_SHORT, 0);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
GLuint ApplicationOverlay::TexturedHemisphere::getTexture() {
return _framebufferObject->texture();
}
glm::vec2 ApplicationOverlay::directionToSpherical(const glm::vec3& direction) {
glm::vec2 result;
// Compute yaw

View file

@ -33,9 +33,9 @@ public:
~ApplicationOverlay();
void renderOverlay(RenderArgs* renderArgs);
void displayOverlayTexture(RenderArgs* renderArgs);
void displayOverlayTextureStereo(RenderArgs* renderArgs, Camera& whichCamera, float aspectRatio, float fov);
void displayOverlayTextureHmd(RenderArgs* renderArgs, Camera& whichCamera);
void displayOverlayTexture();
void displayOverlayTextureStereo(Camera& whichCamera, float aspectRatio, float fov);
void displayOverlayTextureHmd(Camera& whichCamera);
QPoint getPalmClickLocation(const PalmData *palm) const;
bool calculateRayUICollisionPoint(const glm::vec3& position, const glm::vec3& direction, glm::vec3& result) const;
@ -59,7 +59,6 @@ public:
glm::vec2 screenToOverlay(const glm::vec2 & screenPos) const;
glm::vec2 overlayToScreen(const glm::vec2 & overlayPos) const;
void computeHmdPickRay(glm::vec2 cursorPos, glm::vec3& origin, glm::vec3& direction) const;
GLuint getOverlayTexture();
static glm::vec2 directionToSpherical(const glm::vec3 & direction);
static glm::vec3 sphericalToDirection(const glm::vec2 & sphericalPos);
@ -67,12 +66,38 @@ public:
static glm::vec2 sphericalToScreen(const glm::vec2 & sphericalPos);
private:
void buildHemiVertices(const float fov, const float aspectRatio, const int slices, const int stacks);
void drawSphereSection(gpu::Batch& batch);
float _hmdUIAngularSize = DEFAULT_HMD_UI_ANGULAR_SIZE;
QOpenGLFramebufferObject* _framebufferObject;
// Interleaved vertex data
struct TextureVertex {
glm::vec3 position;
glm::vec2 uv;
};
void renderPointers();
typedef QPair<GLuint, GLuint> VerticesIndices;
class TexturedHemisphere {
public:
TexturedHemisphere();
~TexturedHemisphere();
void bind();
void release();
GLuint getTexture();
void buildFramebufferObject();
void buildVBO(const float fov, const float aspectRatio, const int slices, const int stacks);
void render();
private:
void cleanupVBO();
GLuint _vertices;
GLuint _indices;
QOpenGLFramebufferObject* _framebufferObject;
VerticesIndices _vbo;
};
float _hmdUIAngularSize = DEFAULT_HMD_UI_ANGULAR_SIZE;
void renderReticle(glm::quat orientation, float alpha);
void renderPointers();;
void renderMagnifier(glm::vec2 magPos, float sizeMult, bool showBorder);
void renderControllerPointers();
@ -84,12 +109,10 @@ private:
void renderDomainConnectionStatusBorder();
void bindCursorTexture(gpu::Batch& batch, uint8_t cursorId = 0);
void buildFramebufferObject();
TexturedHemisphere _overlays;
float _textureFov;
float _textureAspectRatio;
int _hemiVerticesID{ GeometryCache::UNKNOWN_ID };
enum Reticles { MOUSE, LEFT_CONTROLLER, RIGHT_CONTROLLER, NUMBER_OF_RETICLES };
bool _reticleActive[NUMBER_OF_RETICLES];
@ -102,6 +125,8 @@ private:
float _alpha = 1.0f;
float _oculusUIRadius;
float _trailingAudioLoudness;
gpu::TexturePointer _crosshairTexture;
QMap<uint16_t, gpu::TexturePointer> _cursors;
@ -124,10 +149,6 @@ private:
glm::vec3 _previousMagnifierTopLeft;
glm::vec3 _previousMagnifierTopRight;
gpu::PipelinePointer _standardDrawPipeline;
gpu::PipelinePointer getDrawPipeline();
};
#endif // hifi_ApplicationOverlay_h

View file

@ -161,6 +161,10 @@ void Stats::drawBackground(unsigned int rgba, int x, int y, int width, int heigh
((rgba >> 8) & 0xff) / 255.0f,
(rgba & 0xff) / 255.0f);
// FIX ME: is this correct? It seems to work to fix textures bleeding into us...
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
DependencyManager::get<GeometryCache>()->renderQuad(x, y, width, height, color);
}
@ -460,7 +464,7 @@ void Stats::display(
verticalOffset = STATS_PELS_INITIALOFFSET;
horizontalOffset = _lastHorizontalOffset + _generalStatsWidth + _pingStatsWidth + _geoStatsWidth + 3;
lines = _expanded ? 10 : 2;
lines = _expanded ? 10 : 3;
drawBackground(backgroundColor, horizontalOffset, 0, canvasSize.x - horizontalOffset,
(lines + 1) * STATS_PELS_PER_LINE);
@ -608,12 +612,10 @@ void Stats::display(
}
// LOD Details
if (_expanded) {
octreeStats.str("");
QString displayLODDetails = DependencyManager::get<LODManager>()->getLODFeedbackText();
octreeStats << "LOD: You can see " << qPrintable(displayLODDetails.trimmed());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, (char*)octreeStats.str().c_str(), color);
}
octreeStats.str("");
QString displayLODDetails = DependencyManager::get<LODManager>()->getLODFeedbackText();
octreeStats << "LOD: You can see " << qPrintable(displayLODDetails.trimmed());
verticalOffset += STATS_PELS_PER_LINE;
drawText(horizontalOffset, verticalOffset, scale, rotation, font, (char*)octreeStats.str().c_str(), color);
}

View file

@ -49,6 +49,7 @@ void RenderableLineEntityItem::render(RenderArgs* args) {
batch._glLineWidth(getLineWidth());
if (getLinePoints().size() > 1) {
DependencyManager::get<DeferredLightingEffect>()->bindSimpleProgram(batch);
DependencyManager::get<GeometryCache>()->renderVertices(batch, gpu::LINE_STRIP, _lineVerticesID);
}
batch._glLineWidth(1.0f);

View file

@ -53,6 +53,7 @@ void RenderableParticleEffectEntityItem::render(RenderArgs* args) {
batch.setUniformTexture(0, _texture->getGPUTexture());
}
batch.setModelTransform(getTransformToCenter());
DependencyManager::get<DeferredLightingEffect>()->bindSimpleProgram(batch);
DependencyManager::get<GeometryCache>()->renderVertices(batch, gpu::QUADS, _cacheID);
};

View file

@ -47,12 +47,13 @@ void RenderableTextEntityItem::render(RenderArgs* args) {
glm::vec3 maxCorner = glm::vec3(dimensions.x, 0.0f, SLIGHTLY_BEHIND);
DependencyManager::get<DeferredLightingEffect>()->renderQuad(batch, minCorner, maxCorner, backgroundColor);
float scale = _lineHeight / _textRenderer->getRowHeight();
float scale = _lineHeight / _textRenderer->getFontSize();
transformToTopLeft.setScale(scale); // Scale to have the correct line height
batch.setModelTransform(transformToTopLeft);
float leftMargin = 0.5f * _lineHeight, topMargin = 0.5f * _lineHeight;
glm::vec2 bounds = glm::vec2(dimensions.x - 2.0f * leftMargin, dimensions.y - 2.0f * topMargin);
float leftMargin = 0.1f * _lineHeight, topMargin = 0.1f * _lineHeight;
glm::vec2 bounds = glm::vec2(dimensions.x - 2.0f * leftMargin,
dimensions.y - 2.0f * topMargin);
_textRenderer->draw(batch, leftMargin / scale, -topMargin / scale, _text, textColor, bounds / scale);
}

View file

@ -1179,21 +1179,6 @@ void GeometryCache::renderQuad(gpu::Batch& batch, const glm::vec2& minCorner, co
batch.draw(gpu::QUADS, 4, 0);
}
void GeometryCache::renderUnitQuad(const glm::vec4& color, int id) {
gpu::Batch batch;
renderUnitQuad(batch, color, id);
gpu::GLBackend::renderBatch(batch);
}
void GeometryCache::renderUnitQuad(gpu::Batch& batch, const glm::vec4& color, int id) {
static const glm::vec2 topLeft(-1, 1);
static const glm::vec2 bottomRight(1, -1);
static const glm::vec2 texCoordTopLeft(0.0f, 1.0f);
static const glm::vec2 texCoordBottomRight(1.0f, 0.0f);
renderQuad(batch, topLeft, bottomRight, texCoordTopLeft, texCoordBottomRight, color, id);
}
void GeometryCache::renderQuad(const glm::vec2& minCorner, const glm::vec2& maxCorner,
const glm::vec2& texCoordMinCorner, const glm::vec2& texCoordMaxCorner,
const glm::vec4& color, int id) {

View file

@ -155,9 +155,6 @@ public:
void renderBevelCornersRect(int x, int y, int width, int height, int bevelDistance, const glm::vec4& color, int id = UNKNOWN_ID);
void renderBevelCornersRect(gpu::Batch& batch, int x, int y, int width, int height, int bevelDistance, const glm::vec4& color, int id = UNKNOWN_ID);
void renderUnitQuad(const glm::vec4& color = glm::vec4(1), int id = UNKNOWN_ID);
void renderUnitQuad(gpu::Batch& batch, const glm::vec4& color = glm::vec4(1), int id = UNKNOWN_ID);
void renderQuad(int x, int y, int width, int height, const glm::vec4& color, int id = UNKNOWN_ID)
{ renderQuad(glm::vec2(x,y), glm::vec2(x + width, y + height), color, id); }
void renderQuad(gpu::Batch& batch, int x, int y, int width, int height, const glm::vec4& color, int id = UNKNOWN_ID)

View file

@ -1764,13 +1764,38 @@ AABox Model::getPartBounds(int meshIndex, int partIndex) {
if (!_calculatedMeshPartBoxesValid) {
recalculateMeshBoxes(true);
}
if (meshIndex < _meshStates.size()) {
const MeshState& state = _meshStates.at(meshIndex);
bool isSkinned = state.clusterMatrices.size() > 1;
if (isSkinned) {
// if we're skinned return the entire mesh extents because we can't know for sure our clusters don't move us
return calculateScaledOffsetAABox(_geometry->getFBXGeometry().meshExtents);
}
}
if (_calculatedMeshPartBoxesValid && _calculatedMeshPartBoxes.contains(QPair<int,int>(meshIndex, partIndex))) {
return calculateScaledOffsetAABox(_calculatedMeshPartBoxes[QPair<int,int>(meshIndex, partIndex)]);
// FIX ME! - This is currently a hack because for some mesh parts our efforts to calculate the bounding
// box of the mesh part fails. It seems to create boxes that are not consistent with where the
// geometry actually renders. If instead we make all the parts share the bounds of the entire subMesh
// things will render properly.
//
// return calculateScaledOffsetAABox(_calculatedMeshPartBoxes[QPair<int,int>(meshIndex, partIndex)]);
//
// NOTE: we also don't want to use the _calculatedMeshBoxes[] because they don't handle avatar moving correctly
// without recalculating them...
// return _calculatedMeshBoxes[meshIndex];
//
// If we not skinned use the bounds of the subMesh for all it's parts
const FBXMesh& mesh = _geometry->getFBXGeometry().meshes.at(meshIndex);
return calculateScaledOffsetExtents(mesh.meshExtents);
}
return AABox();
}
void Model::renderPart(RenderArgs* args, int meshIndex, int partIndex, bool translucent) {
if (!_readyWhenAdded) {
return; // bail asap
}
@ -1785,19 +1810,6 @@ void Model::renderPart(RenderArgs* args, int meshIndex, int partIndex, bool tran
gpu::Batch& batch = *(args->_batch);
auto mode = args->_renderMode;
// render the part bounding box
#ifdef DEBUG_BOUNDING_PARTS
{
glm::vec4 cubeColor(1.0f,0.0f,0.0f,1.0f);
AABox partBounds = getPartBounds(meshIndex, partIndex);
glm::mat4 translation = glm::translate(partBounds.calcCenter());
glm::mat4 scale = glm::scale(partBounds.getDimensions());
glm::mat4 modelToWorldMatrix = translation * scale;
batch.setModelTransform(modelToWorldMatrix);
DependencyManager::get<DeferredLightingEffect>()->renderWireCube(batch, 1.0f, cubeColor);
}
#endif //def DEBUG_BOUNDING_PARTS
// Capture the view matrix once for the rendering of this model
if (_transforms.empty()) {
@ -1824,6 +1836,29 @@ void Model::renderPart(RenderArgs* args, int meshIndex, int partIndex, bool tran
bool hasLightmap = mesh.hasEmissiveTexture();
bool isSkinned = state.clusterMatrices.size() > 1;
bool wireframe = isWireframe();
// render the part bounding box
#ifdef DEBUG_BOUNDING_PARTS
{
AABox partBounds = getPartBounds(meshIndex, partIndex);
bool inView = args->_viewFrustum->boxInFrustum(partBounds) != ViewFrustum::OUTSIDE;
glm::vec4 cubeColor;
if (isSkinned) {
cubeColor = glm::vec4(0.0f, 1.0f, 1.0f, 1.0f);
} else if (inView) {
cubeColor = glm::vec4(1.0f, 0.0f, 1.0f, 1.0f);
} else {
cubeColor = glm::vec4(1.0f, 1.0f, 0.0f, 1.0f);
}
Transform transform;
transform.setTranslation(partBounds.calcCenter());
transform.setScale(partBounds.getDimensions());
batch.setModelTransform(transform);
DependencyManager::get<DeferredLightingEffect>()->renderWireCube(batch, 1.0f, cubeColor);
}
#endif //def DEBUG_BOUNDING_PARTS
if (wireframe) {
translucentMesh = hasTangents = hasSpecular = hasLightmap = isSkinned = false;
@ -1977,7 +2012,7 @@ void Model::renderPart(RenderArgs* args, int meshIndex, int partIndex, bool tran
}
qint64 offset = _calculatedMeshPartOffet[QPair<int,int>(meshIndex, partIndex)];
if (part.quadIndices.size() > 0) {
batch.drawIndexed(gpu::QUADS, part.quadIndices.size(), offset);
offset += part.quadIndices.size() * sizeof(int);
@ -2047,6 +2082,9 @@ void Model::pickPrograms(gpu::Batch& batch, RenderMode mode, bool translucent, f
Locations*& locations) {
RenderKey key(mode, translucent, alphaThreshold, hasLightmap, hasTangents, hasSpecular, isSkinned, isWireframe);
if (mode == RenderArgs::MIRROR_RENDER_MODE) {
key = RenderKey(key.getRaw() | RenderKey::IS_MIRROR);
}
auto pipeline = _renderPipelineLib.find(key.getRaw());
if (pipeline == _renderPipelineLib.end()) {
qDebug() << "No good, couldn't find a pipeline from the key ?" << key.getRaw();

View file

@ -136,10 +136,12 @@ template <> void render::jobRun(const DrawOpaqueDeferred& job, const SceneContex
Transform viewMat;
args->_viewFrustum->evalProjectionMatrix(projMat);
args->_viewFrustum->evalViewTransform(viewMat);
if (args->_renderMode == RenderArgs::MIRROR_RENDER_MODE) {
viewMat.postScale(glm::vec3(-1.0f, 1.0f, 1.0f));
}
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);
renderContext->args->_renderMode = RenderArgs::NORMAL_RENDER_MODE;
{
GLenum buffers[3];
int bufferCount = 0;
@ -204,11 +206,12 @@ template <> void render::jobRun(const DrawTransparentDeferred& job, const SceneC
Transform viewMat;
args->_viewFrustum->evalProjectionMatrix(projMat);
args->_viewFrustum->evalViewTransform(viewMat);
if (args->_renderMode == RenderArgs::MIRROR_RENDER_MODE) {
viewMat.postScale(glm::vec3(-1.0f, 1.0f, 1.0f));
}
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);
args->_renderMode = RenderArgs::NORMAL_RENDER_MODE;
const float TRANSPARENT_ALPHA_THRESHOLD = 0.0f;
{

View file

@ -101,7 +101,7 @@ struct QuadBuilder {
texMin);
}
QuadBuilder(const Glyph3D& glyph, const glm::vec2& offset) :
QuadBuilder(offset + glyph.offset - glm::vec2(0.0f, glyph.size.y), glyph.size,
QuadBuilder(offset + glm::vec2(glyph.offset.x, glyph.offset.y - glyph.size.y), glyph.size,
glyph.texOffset, glyph.texSize) {}
};
@ -113,7 +113,7 @@ public:
void read(QIODevice& path);
glm::vec2 computeExtent(const QString& str) const;
float getRowHeight() const { return _rowHeight; }
float getFontSize() const { return _fontSize; }
// Render string to batch
void drawString(gpu::Batch& batch, float x, float y, const QString& str,
@ -139,7 +139,6 @@ private:
// Font characteristics
QString _family;
float _fontSize = 0.0f;
float _rowHeight = 0.0f;
float _leading = 0.0f;
float _ascent = 0.0f;
float _descent = 0.0f;
@ -251,13 +250,14 @@ glm::vec2 Font3D::computeTokenExtent(const QString& token) const {
glm::vec2 Font3D::computeExtent(const QString& str) const {
glm::vec2 extent = glm::vec2(0.0f, 0.0f);
QStringList tokens = splitLines(str);
foreach(const QString& token, tokens) {
glm::vec2 tokenExtent = computeTokenExtent(token);
extent.x = std::max(tokenExtent.x, extent.x);
QStringList lines{ splitLines(str) };
if (!lines.empty()) {
for(const auto& line : lines) {
glm::vec2 tokenExtent = computeTokenExtent(line);
extent.x = std::max(tokenExtent.x, extent.x);
}
extent.y = lines.count() * _fontSize;
}
extent.y = tokens.count() * _rowHeight;
return extent;
}
@ -288,8 +288,7 @@ void Font3D::read(QIODevice& in) {
readStream(in, _descent);
readStream(in, _spaceWidth);
_fontSize = _ascent + _descent;
_rowHeight = _fontSize + _leading;
// Read character count
uint16_t count;
readStream(in, count);
@ -393,7 +392,7 @@ void Font3D::drawString(gpu::Batch& batch, float x, float y, const QString& str,
}
if (isNewLine || forceNewLine) {
// Character return, move the advance to a new line
advance = glm::vec2(x, advance.y - _rowHeight);
advance = glm::vec2(x, advance.y - _leading);
if (isNewLine) {
// No need to draw anything, go directly to next token
@ -413,7 +412,7 @@ void Font3D::drawString(gpu::Batch& batch, float x, float y, const QString& str,
for (auto c : token) {
auto glyph = _glyphs[c];
QuadBuilder qd(glyph, advance - glm::vec2(0.0f, _fontSize));
QuadBuilder qd(glyph, advance - glm::vec2(0.0f, _ascent));
_verticesBuffer->append(sizeof(QuadBuilder), (const gpu::Byte*)&qd);
_numVertices += 4;
@ -477,9 +476,9 @@ glm::vec2 TextRenderer3D::computeExtent(const QString& str) const {
return glm::vec2(0.0f, 0.0f);
}
float TextRenderer3D::getRowHeight() const {
float TextRenderer3D::getFontSize() const {
if (_font) {
return _font->getRowHeight();
return _font->getFontSize();
}
return 0.0f;
}

View file

@ -50,7 +50,7 @@ public:
~TextRenderer3D();
glm::vec2 computeExtent(const QString& str) const;
float getRowHeight() const;
float getFontSize() const;
void draw(gpu::Batch& batch, float x, float y, const QString& str, const glm::vec4& color = glm::vec4(-1.0f),
const glm::vec2& bounds = glm::vec2(-1.0f));

View file

@ -1,24 +0,0 @@
<@include gpu/Config.slh@>
<$VERSION_HEADER$>
// Generated on <$_SCRIBE_DATE$>
// standardDrawTexture.frag
// fragment shader
//
// Created by Sam Gateau on 6/10/15.
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
// the texture
uniform sampler2D colorMap;
varying vec2 varTexcoord;
varying vec4 varColor;
void main(void) {
vec4 color = texture2D(colorMap, varTexcoord);
gl_FragColor = color * varColor;
}

View file

@ -1,33 +0,0 @@
<@include gpu/Config.slh@>
<$VERSION_HEADER$>
// Generated on <$_SCRIBE_DATE$>
//
// standardTransformPNTC.slv
// vertex shader
//
// Created by Sam Gateau on 6/10/2015.
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
<@include gpu/Transform.slh@>
<$declareStandardTransform()$>
varying vec3 varNormal;
varying vec2 varTexcoord;
varying vec4 varColor;
void main(void) {
varTexcoord = gl_MultiTexCoord0.xy;
varColor = gl_Color;
// standard transform
TransformCamera cam = getTransformCamera();
TransformObject obj = getTransformObject();
<$transformModelToClipPos(cam, obj, gl_Vertex, gl_Position)$>
<$transformModelToEyeDir(cam, obj, gl_Normal, varNormal)$>
varNormal = normalize(varNormal);
}

View file

@ -285,7 +285,6 @@ template <> void render::jobRun(const DrawOpaque& job, const SceneContextPointer
renderContext->_numDrawnOpaqueItems = renderedItems.size();
ItemIDsBounds sortedItems;
sortedItems.reserve(culledItems.size());
if (renderContext->_sortOpaque) {
@ -302,10 +301,12 @@ template <> void render::jobRun(const DrawOpaque& job, const SceneContextPointer
Transform viewMat;
args->_viewFrustum->evalProjectionMatrix(projMat);
args->_viewFrustum->evalViewTransform(viewMat);
if (args->_renderMode == RenderArgs::MIRROR_RENDER_MODE) {
viewMat.postScale(glm::vec3(-1.0f, 1.0f, 1.0f));
}
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);
renderContext->args->_renderMode = RenderArgs::NORMAL_RENDER_MODE;
{
GLenum buffers[3];
int bufferCount = 0;
@ -369,11 +370,12 @@ template <> void render::jobRun(const DrawTransparent& job, const SceneContextPo
Transform viewMat;
args->_viewFrustum->evalProjectionMatrix(projMat);
args->_viewFrustum->evalViewTransform(viewMat);
if (args->_renderMode == RenderArgs::MIRROR_RENDER_MODE) {
viewMat.postScale(glm::vec3(-1.0f, 1.0f, 1.0f));
}
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);
args->_renderMode = RenderArgs::NORMAL_RENDER_MODE;
const float MOSTLY_OPAQUE_THRESHOLD = 0.75f;
const float TRANSPARENT_ALPHA_THRESHOLD = 0.0f;
@ -456,6 +458,9 @@ template <> void render::jobRun(const DrawBackground& job, const SceneContextPoi
Transform viewMat;
args->_viewFrustum->evalProjectionMatrix(projMat);
args->_viewFrustum->evalViewTransform(viewMat);
if (args->_renderMode == RenderArgs::MIRROR_RENDER_MODE) {
viewMat.postScale(glm::vec3(-1.0f, 1.0f, 1.0f));
}
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);
@ -497,6 +502,9 @@ template <> void render::jobRun(const DrawPostLayered& job, const SceneContextPo
Transform viewMat;
args->_viewFrustum->evalProjectionMatrix(projMat);
args->_viewFrustum->evalViewTransform(viewMat);
if (args->_renderMode == RenderArgs::MIRROR_RENDER_MODE) {
viewMat.postScale(glm::vec3(-1.0f, 1.0f, 1.0f));
}
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat);