Merge branch 'master' of https://github.com/highfidelity/hifi into audio-src

This commit is contained in:
Ken Cooke 2015-09-22 15:33:13 -07:00
commit 0ad01ca935
17 changed files with 616 additions and 383 deletions

View file

@ -1744,13 +1744,26 @@ void DomainServer::addStaticAssignmentsToQueue() {
// if the domain-server has just restarted,
// check if there are static assignments that we need to throw into the assignment queue
QHash<QUuid, SharedAssignmentPointer> staticHashCopy = _allAssignments;
QHash<QUuid, SharedAssignmentPointer>::iterator staticAssignment = staticHashCopy.begin();
while (staticAssignment != staticHashCopy.end()) {
auto sharedAssignments = _allAssignments.values();
// sort the assignments to put the server/mixer assignments first
qSort(sharedAssignments.begin(), sharedAssignments.end(), [](SharedAssignmentPointer a, SharedAssignmentPointer b){
if (a->getType() == b->getType()) {
return true;
} else if (a->getType() != Assignment::AgentType && b->getType() != Assignment::AgentType) {
return a->getType() < b->getType();
} else {
return a->getType() != Assignment::AgentType;
}
});
auto staticAssignment = sharedAssignments.begin();
while (staticAssignment != sharedAssignments.end()) {
// add any of the un-matched static assignments to the queue
// enumerate the nodes and check if there is one with an attached assignment with matching UUID
if (!DependencyManager::get<LimitedNodeList>()->nodeWithUUID(staticAssignment->data()->getUUID())) {
if (!DependencyManager::get<LimitedNodeList>()->nodeWithUUID((*staticAssignment)->getUUID())) {
// this assignment has not been fulfilled - reset the UUID and add it to the assignment queue
refreshStaticAssignmentAndAddToQueue(*staticAssignment);
}

View file

@ -0,0 +1,98 @@
//
// faceBlendCoefficients.js
//
// version 2.0
//
// Created by Bob Long, 9/14/2015
// A simple panel that can select and display the blending coefficient of the Avatar's face model.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
Script.include('utilities/tools/cookies.js')
var panel;
var coeff;
var interval;
var item = 0;
var DEVELOPER_MENU = "Developer";
var AVATAR_MENU = DEVELOPER_MENU + " > Avatar";
var SHOW_FACE_BLEND_COEFFICIENTS = "Show face blend coefficients"
function MenuConnect(menuItem) {
if (menuItem == SHOW_FACE_BLEND_COEFFICIENTS) {
if(Menu.isOptionChecked(SHOW_FACE_BLEND_COEFFICIENTS)) {
panel.show();
Overlays.editOverlay(coeff, { visible : true });
} else {
panel.hide();
Overlays.editOverlay(coeff, { visible : false });
}
}
}
// Add a menu item to show/hide the coefficients
function setupMenu() {
if (!Menu.menuExists(DEVELOPER_MENU)) {
Menu.addMenu(DEVELOPER_MENU);
}
if (!Menu.menuExists(AVATAR_MENU)) {
Menu.addMenu(AVATAR_MENU);
}
Menu.addMenuItem({ menuName: AVATAR_MENU, menuItemName: SHOW_FACE_BLEND_COEFFICIENTS, isCheckable: true, isChecked: true });
Menu.menuItemEvent.connect(MenuConnect);
}
function setupPanel() {
panel = new Panel(10, 400);
// Slider to select which coefficient to display
panel.newSlider("Select Coefficient Index",
0,
100,
function(value) { item = value.toFixed(0); },
function() { return item; },
function(value) { return "index = " + item; }
);
// The raw overlay used to show the actual coefficient value
coeff = Overlays.addOverlay("text", {
x: 10,
y: 420,
width: 300,
height: 50,
color: { red: 255, green: 255, blue: 255 },
alpha: 1.0,
backgroundColor: { red: 127, green: 127, blue: 127 },
backgroundAlpha: 0.5,
topMargin: 15,
leftMargin: 20,
text: "Coefficient: 0.0"
});
// Set up the interval (0.5 sec) to update the coefficient.
interval = Script.setInterval(function() {
Overlays.editOverlay(coeff, { text: "Coefficient: " + MyAvatar.getFaceBlendCoef(item).toFixed(4) });
}, 500);
// Mouse event setup
Controller.mouseMoveEvent.connect(function panelMouseMoveEvent(event) { return panel.mouseMoveEvent(event); });
Controller.mousePressEvent.connect( function panelMousePressEvent(event) { return panel.mousePressEvent(event); });
Controller.mouseReleaseEvent.connect(function(event) { return panel.mouseReleaseEvent(event); });
}
// Clean up
function scriptEnding() {
panel.destroy();
Overlays.deleteOverlay(coeff);
Script.clearInterval(interval);
Menu.removeMenuItem(AVATAR_MENU, SHOW_FACE_BLEND_COEFFICIENTS);
}
setupMenu();
setupPanel();
Script.scriptEnding.connect(scriptEnding);

View file

@ -15,30 +15,34 @@
Script.include("https://hifi-public.s3.amazonaws.com/scripts/utilities.js");
var scriptURL = "https://hifi-public.s3.amazonaws.com/scripts/toys/flashlight/flashlight.js?"+randInt(0,1000);
var scriptURL = Script.resolvePath('flashlight.js?123123');
var modelURL = "https://hifi-public.s3.amazonaws.com/models/props/flashlight.fbx";
var center = Vec3.sum(Vec3.sum(MyAvatar.position, {x: 0, y: 0.5, z: 0}), Vec3.multiply(0.5, Quat.getFront(Camera.getOrientation())));
var center = Vec3.sum(Vec3.sum(MyAvatar.position, {
x: 0,
y: 0.5,
z: 0
}), Vec3.multiply(0.5, Quat.getFront(Camera.getOrientation())));
var flashlight = Entities.addEntity({
type: "Model",
modelURL: modelURL,
position: center,
dimensions: {
x: 0.04,
y: 0.15,
z: 0.04
},
collisionsWillMove: true,
shapeType: 'box',
script: scriptURL
type: "Model",
modelURL: modelURL,
position: center,
dimensions: {
x: 0.08,
y: 0.30,
z: 0.08
},
collisionsWillMove: true,
shapeType: 'box',
script: scriptURL
});
function cleanup() {
Entities.deleteEntity(flashlight);
//commenting out the line below makes this persistent. to delete at cleanup, uncomment
//Entities.deleteEntity(flashlight);
}

View file

@ -1,8 +1,10 @@
//
// flashligh.js
// examples/entityScripts
// flashlight.js
//
// Script Type: Entity
//
// Created by Sam Gateau on 9/9/15.
// Additions by James B. Pollack @imgntn on 9/21/2015
// Copyright 2015 High Fidelity, Inc.
//
// This is a toy script that can be added to the Flashlight model entity:
@ -14,10 +16,6 @@
//
(function() {
function debugPrint(message) {
//print(message);
}
Script.include("../../libraries/utils.js");
@ -25,150 +23,227 @@
// this is the "constructor" for the entity as a JS object we don't do much here, but we do want to remember
// our this object, so we can access it in cases where we're called without a this (like in the case of various global signals)
Flashlight = function() {
Flashlight = function() {
_this = this;
_this._hasSpotlight = false;
_this._spotlight = null;
};
GRAB_FRAME_USER_DATA_KEY = "grabFrame";
// These constants define the Flashlight model Grab Frame
var MODEL_GRAB_FRAME = {
relativePosition: {x: 0, y: -0.1, z: 0},
relativeRotation: Quat.angleAxis(180, {x: 1, y: 0, z: 0})
};
//if the trigger value goes below this while held, the flashlight will turn off. if it goes above, it will
var DISABLE_LIGHT_THRESHOLD = 0.7;
// These constants define the Spotlight position and orientation relative to the model
var MODEL_LIGHT_POSITION = {x: 0, y: 0, z: 0};
var MODEL_LIGHT_ROTATION = Quat.angleAxis (-90, {x: 1, y: 0, z: 0});
var MODEL_LIGHT_POSITION = {
x: 0,
y: -0.3,
z: 0
};
var MODEL_LIGHT_ROTATION = Quat.angleAxis(-90, {
x: 1,
y: 0,
z: 0
});
// Evaluate the world light entity position and orientation from the model ones
var GLOW_LIGHT_POSITION = {
x: 0,
y: -0.1,
z: 0
}
// Evaluate the world light entity positions and orientations from the model ones
function evalLightWorldTransform(modelPos, modelRot) {
return {p: Vec3.sum(modelPos, Vec3.multiplyQbyV(modelRot, MODEL_LIGHT_POSITION)),
q: Quat.multiply(modelRot, MODEL_LIGHT_ROTATION)};
return {
p: Vec3.sum(modelPos, Vec3.multiplyQbyV(modelRot, MODEL_LIGHT_POSITION)),
q: Quat.multiply(modelRot, MODEL_LIGHT_ROTATION)
};
};
function glowLightWorldTransform(modelPos, modelRot) {
return {
p: Vec3.sum(modelPos, Vec3.multiplyQbyV(modelRot, GLOW_LIGHT_POSITION)),
q: Quat.multiply(modelRot, MODEL_LIGHT_ROTATION)
};
};
Flashlight.prototype = {
lightOn: false,
hand: null,
whichHand: null,
hasSpotlight: false,
spotlight: null,
setRightHand: function() {
this.hand = 'RIGHT';
},
setLeftHand: function() {
this.hand = 'LEFT';
},
startNearGrab: function() {
if (!_this.hasSpotlight) {
//this light casts the beam
this.spotlight = Entities.addEntity({
type: "Light",
isSpotlight: true,
dimensions: {
x: 2,
y: 2,
z: 20
},
color: {
red: 255,
green: 255,
blue: 255
},
intensity: 2,
exponent: 0.3,
cutoff: 20
});
//this light creates the effect of a bulb at the end of the flashlight
this.glowLight = Entities.addEntity({
type: "Light",
dimensions: {
x: 0.25,
y: 0.25,
z: 0.25
},
isSpotlight: false,
color: {
red: 255,
green: 255,
blue: 255
},
exponent: 0,
cutoff: 90, // in degrees
});
// update() will be called regulary, because we've hooked the update signal in our preload() function
// we will check out userData for the grabData. In the case of the hydraGrab script, it will tell us
// if we're currently being grabbed and if the person grabbing us is the current interfaces avatar.
// we will watch this for state changes and print out if we're being grabbed or released when it changes.
update: function() {
var GRAB_USER_DATA_KEY = "grabKey";
this.debugBox = Entities.addEntity({
type: 'Box',
color: {
red: 255,
blue: 0,
green: 0
},
dimensions: {
x: 0.25,
y: 0.25,
z: 0.25
},
ignoreForCollisions:true
})
this.hasSpotlight = true;
// because the update() signal doesn't have a valid this, we need to use our memorized _this to access our entityID
var entityID = _this.entityID;
}
// we want to assume that if there is no grab data, then we are not being grabbed
var defaultGrabData = { activated: false, avatarId: null };
// this handy function getEntityCustomData() is available in utils.js and it will return just the specific section
// of user data we asked for. If it's not available it returns our default data.
var grabData = getEntityCustomData(GRAB_USER_DATA_KEY, entityID, defaultGrabData);
// if the grabData says we're being grabbed, and the owner ID is our session, then we are being grabbed by this interface
if (grabData.activated && grabData.avatarId == MyAvatar.sessionUUID) {
// remember we're being grabbed so we can detect being released
_this.beingGrabbed = true;
var modelProperties = Entities.getEntityProperties(entityID);
var lightTransform = evalLightWorldTransform(modelProperties.position, modelProperties.rotation);
// Create the spot light driven by this model if we don;t have one yet
// Or make sure to keep it's position in sync
if (!_this._hasSpotlight) {
_this._spotlight = Entities.addEntity({
type: "Light",
position: lightTransform.p,
rotation: lightTransform.q,
isSpotlight: true,
dimensions: { x: 2, y: 2, z: 20 },
color: { red: 255, green: 255, blue: 255 },
intensity: 2,
exponent: 0.3,
cutoff: 20
});
_this._hasSpotlight = true;
_this._startModelPosition = modelProperties.position;
_this._startModelRotation = modelProperties.rotation;
debugPrint("Flashlight:: creating a spotlight");
} else {
// Updating the spotlight
Entities.editEntity(_this._spotlight, {position: lightTransform.p, rotation: lightTransform.q});
debugPrint("Flashlight:: updating the spotlight");
}
debugPrint("I'm being grabbed...");
} else if (_this.beingGrabbed) {
if (_this._hasSpotlight) {
Entities.deleteEntity(_this._spotlight);
debugPrint("Destroying flashlight spotlight...");
}
_this._hasSpotlight = false;
_this._spotlight = null;
// Reset model to initial position
Entities.editEntity(_this.entityID, {position: _this._startModelPosition, rotation: _this._startModelRotation,
velocity: {x: 0, y: 0, z: 0}, angularVelocity: {x: 0, y: 0, z: 0}});
// if we are not being grabbed, and we previously were, then we were just released, remember that
// and print out a message
_this.beingGrabbed = false;
debugPrint("I'm was released...");
},
setWhichHand: function() {
this.whichHand = this.hand;
},
continueNearGrab: function() {
if (this.whichHand === null) {
//only set the active hand once -- if we always read the current hand, our 'holding' hand will get overwritten
this.setWhichHand();
} else {
this.updateLightPositions();
this.changeLightWithTriggerPressure(this.whichHand);
}
},
releaseGrab: function() {
//delete the lights and reset state
if (this.hasSpotlight) {
Entities.deleteEntity(this.spotlight);
Entities.deleteEntity(this.glowLight);
this.hasSpotlight = false;
this.glowLight = null;
this.spotlight = null;
this.whichHand = null;
}
},
updateLightPositions: function() {
var modelProperties = Entities.getEntityProperties(this.entityID, ['position', 'rotation']);
//move the two lights along the vectors we set above
var lightTransform = evalLightWorldTransform(modelProperties.position, modelProperties.rotation);
var glowLightTransform = glowLightWorldTransform(modelProperties.position, modelProperties.rotation);
//move them with the entity model
Entities.editEntity(this.spotlight, {
position: lightTransform.p,
rotation: lightTransform.q,
})
Entities.editEntity(this.glowLight, {
position: glowLightTransform.p,
rotation: glowLightTransform.q,
})
// Entities.editEntity(this.debugBox, {
// position: lightTransform.p,
// rotation: lightTransform.q,
// })
},
changeLightWithTriggerPressure: function(flashLightHand) {
var handClickString = flashLightHand + "_HAND_CLICK";
var handClick = Controller.findAction(handClickString);
this.triggerValue = Controller.getActionValue(handClick);
if (this.triggerValue < DISABLE_LIGHT_THRESHOLD && this.lightOn === true) {
this.turnLightOff();
} else if (this.triggerValue >= DISABLE_LIGHT_THRESHOLD && this.lightOn === false) {
this.turnLightOn();
}
return
},
turnLightOff: function() {
Entities.editEntity(this.spotlight, {
intensity: 0
});
Entities.editEntity(this.glowLight, {
intensity: 0
});
this.lightOn = false
},
turnLightOn: function() {
Entities.editEntity(this.glowLight, {
intensity: 2
});
Entities.editEntity(this.spotlight, {
intensity: 2
});
this.lightOn = true
},
// preload() will be called when the entity has become visible (or known) to the interface
// it gives us a chance to set our local JavaScript object up. In this case it means:
// * remembering our entityID, so we can access it in cases where we're called without an entityID
// * connecting to the update signal so we can check our grabbed state
preload: function(entityID) {
_this.entityID = entityID;
var modelProperties = Entities.getEntityProperties(entityID);
_this._startModelPosition = modelProperties.position;
_this._startModelRotation = modelProperties.rotation;
// Make sure the Flashlight entity has a correct grab frame setup
var userData = getEntityUserData(entityID);
debugPrint(JSON.stringify(userData));
if (!userData.grabFrame) {
setEntityCustomData(GRAB_FRAME_USER_DATA_KEY, entityID, MODEL_GRAB_FRAME);
debugPrint(JSON.stringify(MODEL_GRAB_FRAME));
debugPrint("Assigned the grab frmae for the Flashlight entity");
}
Script.update.connect(this.update);
this.entityID = entityID;
},
// unload() will be called when our entity is no longer available. It may be because we were deleted,
// or because we've left the domain or quit the application. In all cases we want to unhook our connection
// to the update signal
// or because we've left the domain or quit the application.
unload: function(entityID) {
if (_this._hasSpotlight) {
Entities.deleteEntity(_this._spotlight);
if (this.hasSpotlight) {
Entities.deleteEntity(this.spotlight);
Entities.deleteEntity(this.glowLight);
this.hasSpotlight = false;
this.glowLight = null;
this.spotlight = null;
this.whichHand = null;
}
_this._hasSpotlight = false;
_this._spotlight = null;
Script.update.disconnect(this.update);
},
};
// entity scripts always need to return a newly constructed object of our type
return new Flashlight();
})
})

View file

@ -605,7 +605,6 @@ Application::Application(int& argc, char** argv, QElapsedTimer &startup_time) :
_overlays.init(); // do this before scripts load
_runningScriptsWidget->setRunningScripts(getRunningScripts());
connect(_runningScriptsWidget, &RunningScriptsWidget::stopScriptName, this, &Application::stopScript);
connect(this, SIGNAL(aboutToQuit()), this, SLOT(saveScripts()));
connect(this, SIGNAL(aboutToQuit()), this, SLOT(aboutToQuit()));
@ -4332,17 +4331,18 @@ void Application::stopAllScripts(bool restart) {
_myAvatar->clearScriptableSettings();
}
void Application::stopScript(const QString &scriptName, bool restart) {
const QString& scriptURLString = QUrl(scriptName).toString();
if (_scriptEnginesHash.contains(scriptURLString)) {
ScriptEngine* scriptEngine = _scriptEnginesHash[scriptURLString];
bool Application::stopScript(const QString& scriptHash, bool restart) {
bool stoppedScript = false;
if (_scriptEnginesHash.contains(scriptHash)) {
ScriptEngine* scriptEngine = _scriptEnginesHash[scriptHash];
if (restart) {
auto scriptCache = DependencyManager::get<ScriptCache>();
scriptCache->deleteScript(scriptName);
scriptCache->deleteScript(QUrl(scriptHash));
connect(scriptEngine, SIGNAL(finished(const QString&)), SLOT(reloadScript(const QString&)));
}
scriptEngine->stop();
qCDebug(interfaceapp) << "stopping script..." << scriptName;
stoppedScript = true;
qCDebug(interfaceapp) << "stopping script..." << scriptHash;
// HACK: ATM scripts cannot set/get their animation priorities, so we clear priorities
// whenever a script stops in case it happened to have been setting joint rotations.
// TODO: expose animation priorities and provide a layered animation control system.
@ -4351,6 +4351,7 @@ void Application::stopScript(const QString &scriptName, bool restart) {
if (_scriptEnginesHash.empty()) {
_myAvatar->clearScriptableSettings();
}
return stoppedScript;
}
void Application::reloadAllScripts() {

View file

@ -292,7 +292,7 @@ public:
NodeToJurisdictionMap& getEntityServerJurisdictions() { return _entityServerJurisdictions; }
QStringList getRunningScripts() { return _scriptEnginesHash.keys(); }
ScriptEngine* getScriptEngine(QString scriptHash) { return _scriptEnginesHash.contains(scriptHash) ? _scriptEnginesHash[scriptHash] : NULL; }
ScriptEngine* getScriptEngine(const QString& scriptHash) { return _scriptEnginesHash.value(scriptHash, NULL); }
bool isLookingAtMyAvatar(AvatarSharedPointer avatar);
@ -392,7 +392,7 @@ public slots:
void reloadScript(const QString& scriptName, bool isUserLoaded = true);
void scriptFinished(const QString& scriptName);
void stopAllScripts(bool restart = false);
void stopScript(const QString& scriptName, bool restart = false);
bool stopScript(const QString& scriptHash, bool restart = false);
void reloadAllScripts();
void reloadOneScript(const QString& scriptName);
void loadDefaultScripts();

View file

@ -110,6 +110,8 @@ public:
Q_INVOKABLE float getHeadFinalRoll() const { return getHead()->getFinalRoll(); }
Q_INVOKABLE float getHeadFinalPitch() const { return getHead()->getFinalPitch(); }
Q_INVOKABLE float getHeadDeltaPitch() const { return getHead()->getDeltaPitch(); }
Q_INVOKABLE int getFaceBlendCoefNum() const { return getHead()->getFaceModel().getBlendshapeCoefficientsNum(); }
Q_INVOKABLE float getFaceBlendCoef(int index) const { return getHead()->getFaceModel().getBlendshapeCoefficient(index); }
Q_INVOKABLE glm::vec3 getEyePosition() const { return getHead()->getEyePosition(); }

View file

@ -57,16 +57,15 @@ RunningScriptsWidget::RunningScriptsWidget(QWidget* parent) :
connect(ui->filterLineEdit, &QLineEdit::textChanged, this, &RunningScriptsWidget::updateFileFilter);
connect(ui->scriptTreeView, &QTreeView::doubleClicked, this, &RunningScriptsWidget::loadScriptFromList);
connect(ui->reloadAllButton, &QPushButton::clicked,
Application::getInstance(), &Application::reloadAllScripts);
connect(ui->stopAllButton, &QPushButton::clicked,
this, &RunningScriptsWidget::allScriptsStopped);
connect(ui->loadScriptFromDiskButton, &QPushButton::clicked,
Application::getInstance(), &Application::loadDialog);
connect(ui->loadScriptFromURLButton, &QPushButton::clicked,
Application::getInstance(), &Application::loadScriptURLDialog);
connect(&_reloadSignalMapper, SIGNAL(mapped(QString)), Application::getInstance(), SLOT(reloadOneScript(const QString&)));
connect(&_stopSignalMapper, SIGNAL(mapped(QString)), Application::getInstance(), SLOT(stopScript(const QString&)));
connect(ui->reloadAllButton, &QPushButton::clicked, Application::getInstance(), &Application::reloadAllScripts);
connect(ui->stopAllButton, &QPushButton::clicked, this, &RunningScriptsWidget::allScriptsStopped);
connect(ui->loadScriptFromDiskButton, &QPushButton::clicked, Application::getInstance(), &Application::loadDialog);
connect(ui->loadScriptFromURLButton, &QPushButton::clicked, Application::getInstance(), &Application::loadScriptURLDialog);
connect(&_reloadSignalMapper, static_cast<void(QSignalMapper::*)(const QString&)>(&QSignalMapper::mapped),
Application::getInstance(), &Application::reloadOneScript);
connect(&_stopSignalMapper, static_cast<void(QSignalMapper::*)(const QString&)>(&QSignalMapper::mapped),
[](const QString& script) { Application::getInstance()->stopScript(script); });
UIUtil::scaleWidgetFontSizes(this);
}
@ -217,9 +216,6 @@ void RunningScriptsWidget::keyPressEvent(QKeyEvent *keyEvent) {
}
}
void RunningScriptsWidget::scriptStopped(const QString& scriptName) {
}
void RunningScriptsWidget::allScriptsStopped() {
Application::getInstance()->stopAllScripts();
}
@ -227,15 +223,16 @@ void RunningScriptsWidget::allScriptsStopped() {
QVariantList RunningScriptsWidget::getRunning() {
const int WINDOWS_DRIVE_LETTER_SIZE = 1;
QVariantList result;
QStringList runningScripts = Application::getInstance()->getRunningScripts();
for (int i = 0; i < runningScripts.size(); i++) {
QUrl runningScriptURL = QUrl(runningScripts.at(i));
foreach(const QString& runningScript, Application::getInstance()->getRunningScripts()) {
QUrl runningScriptURL = QUrl(runningScript);
if (runningScriptURL.scheme().size() <= WINDOWS_DRIVE_LETTER_SIZE) {
runningScriptURL = QUrl::fromLocalFile(runningScriptURL.toDisplayString(QUrl::FormattingOptions(QUrl::FullyEncoded)));
}
QVariantMap resultNode;
resultNode.insert("name", runningScriptURL.fileName());
resultNode.insert("url", runningScriptURL.toDisplayString(QUrl::FormattingOptions(QUrl::FullyEncoded)));
// The path contains the exact path/URL of the script, which also is used in the stopScript function.
resultNode.insert("path", runningScript);
resultNode.insert("local", runningScriptURL.isLocalFile());
result.append(resultNode);
}
@ -294,3 +291,16 @@ QVariantList RunningScriptsWidget::getLocal() {
}
return result;
}
bool RunningScriptsWidget::stopScriptByName(const QString& name) {
foreach (const QString& runningScript, Application::getInstance()->getRunningScripts()) {
if (QUrl(runningScript).fileName().toLower() == name.trimmed().toLower()) {
return Application::getInstance()->stopScript(runningScript, false);
}
}
return false;
}
bool RunningScriptsWidget::stopScript(const QString& name, bool restart) {
return Application::getInstance()->stopScript(name, restart);
}

View file

@ -36,7 +36,7 @@ public:
const ScriptsModel* getScriptsModel() { return &_scriptsModel; }
signals:
void stopScriptName(const QString& name, bool restart = false);
void scriptStopped(const QString& scriptName);
protected:
virtual bool eventFilter(QObject* sender, QEvent* event);
@ -45,10 +45,11 @@ protected:
virtual void showEvent(QShowEvent* event);
public slots:
void scriptStopped(const QString& scriptName);
QVariantList getRunning();
QVariantList getPublic();
QVariantList getLocal();
bool stopScript(const QString& name, bool restart = false);
bool stopScriptByName(const QString& name);
private slots:
void allScriptsStopped();
@ -63,9 +64,6 @@ private:
QSignalMapper _stopSignalMapper;
ScriptsModelFilter _scriptsModelFilter;
ScriptsModel _scriptsModel;
ScriptsTableWidget* _recentlyLoadedScriptsTable;
QStringList _recentlyLoadedScripts;
QString _lastStoppedScript;
QVariantList getPublicChildNodes(TreeNodeFolder* parent);
};

View file

@ -82,22 +82,8 @@ static int findRootJointInSkeleton(AnimSkeleton::ConstPointer skeleton, int inde
return rootIndex;
}
struct IKTarget {
AnimPose pose;
int index;
int rootIndex;
};
//virtual
const AnimPoseVec& AnimInverseKinematics::evaluate(const AnimVariantMap& animVars, float dt, AnimNode::Triggers& triggersOut) {
// NOTE: we assume that _relativePoses are up to date (e.g. loadPoses() was just called)
if (_relativePoses.empty()) {
return _relativePoses;
}
// build a list of targets from _targetVarVec
std::vector<IKTarget> targets;
void AnimInverseKinematics::computeTargets(const AnimVariantMap& animVars, std::vector<IKTarget>& targets) {
// build a list of valid targets from _targetVarVec and animVars
bool removeUnfoundJoints = false;
for (auto& targetVar : _targetVarVec) {
if (targetVar.jointIndex == -1) {
@ -113,15 +99,13 @@ const AnimPoseVec& AnimInverseKinematics::evaluate(const AnimVariantMap& animVar
}
} else {
// TODO: get this done without a double-lookup of each var in animVars
if (animVars.hasKey(targetVar.positionVar) || animVars.hasKey(targetVar.rotationVar)) {
IKTarget target;
AnimPose defaultPose = _skeleton->getAbsolutePose(targetVar.jointIndex, _relativePoses);
target.pose.trans = animVars.lookup(targetVar.positionVar, defaultPose.trans);
target.pose.rot = animVars.lookup(targetVar.rotationVar, defaultPose.rot);
target.rootIndex = targetVar.rootIndex;
target.index = targetVar.jointIndex;
targets.push_back(target);
}
IKTarget target;
AnimPose defaultPose = _skeleton->getAbsolutePose(targetVar.jointIndex, _relativePoses);
target.pose.trans = animVars.lookup(targetVar.positionVar, defaultPose.trans);
target.pose.rot = animVars.lookup(targetVar.rotationVar, defaultPose.rot);
target.rootIndex = targetVar.rootIndex;
target.index = targetVar.jointIndex;
targets.push_back(target);
}
}
@ -141,154 +125,160 @@ const AnimPoseVec& AnimInverseKinematics::evaluate(const AnimVariantMap& animVar
}
}
}
}
if (targets.empty()) {
// no IK targets but still need to enforce constraints
std::map<int, RotationConstraint*>::iterator constraintItr = _constraints.begin();
while (constraintItr != _constraints.end()) {
int index = constraintItr->first;
glm::quat rotation = _relativePoses[index].rot;
constraintItr->second->apply(rotation);
_relativePoses[index].rot = rotation;
++constraintItr;
}
} else {
// clear the accumulators before we start the IK solver
for (auto& accumulatorPair: _accumulators) {
accumulatorPair.second.clear();
}
void AnimInverseKinematics::solveWithCyclicCoordinateDescent(std::vector<IKTarget>& targets) {
// compute absolute poses that correspond to relative target poses
AnimPoseVec absolutePoses;
computeAbsolutePoses(absolutePoses);
// compute absolute poses that correspond to relative target poses
AnimPoseVec absolutePoses;
computeAbsolutePoses(absolutePoses);
// clear the accumulators before we start the IK solver
for (auto& accumulatorPair: _accumulators) {
accumulatorPair.second.clear();
}
float largestError = 0.0f;
const float ACCEPTABLE_RELATIVE_ERROR = 1.0e-3f;
int numLoops = 0;
const int MAX_IK_LOOPS = 16;
const quint64 MAX_IK_TIME = 10 * USECS_PER_MSEC;
quint64 expiry = usecTimestampNow() + MAX_IK_TIME;
do {
largestError = 0.0f;
int lowestMovedIndex = _relativePoses.size();
for (auto& target: targets) {
int tipIndex = target.index;
AnimPose targetPose = target.pose;
int rootIndex = target.rootIndex;
if (rootIndex != -1) {
// transform targetPose into skeleton's absolute frame
AnimPose& rootPose = _relativePoses[rootIndex];
targetPose.trans = rootPose.trans + rootPose.rot * targetPose.trans;
targetPose.rot = rootPose.rot * targetPose.rot;
}
glm::vec3 tip = absolutePoses[tipIndex].trans;
float error = glm::length(targetPose.trans - tip);
// descend toward root, pivoting each joint to get tip closer to target
int pivotIndex = _skeleton->getParentIndex(tipIndex);
while (pivotIndex != -1 && error > ACCEPTABLE_RELATIVE_ERROR) {
// compute the two lines that should be aligned
glm::vec3 jointPosition = absolutePoses[pivotIndex].trans;
glm::vec3 leverArm = tip - jointPosition;
glm::vec3 targetLine = targetPose.trans - jointPosition;
// compute the axis of the rotation that would align them
glm::vec3 axis = glm::cross(leverArm, targetLine);
float axisLength = glm::length(axis);
if (axisLength > EPSILON) {
// compute deltaRotation for alignment (brings tip closer to target)
axis /= axisLength;
float angle = acosf(glm::dot(leverArm, targetLine) / (glm::length(leverArm) * glm::length(targetLine)));
// NOTE: even when axisLength is not zero (e.g. lever-arm and pivot-arm are not quite aligned) it is
// still possible for the angle to be zero so we also check that to avoid unnecessary calculations.
if (angle > EPSILON) {
// reduce angle by half: slows convergence but adds stability to IK solution
angle = 0.5f * angle;
glm::quat deltaRotation = glm::angleAxis(angle, axis);
int parentIndex = _skeleton->getParentIndex(pivotIndex);
if (parentIndex == -1) {
// TODO? apply constraints to root?
// TODO? harvest the root's transform as movement of entire skeleton?
} else {
// compute joint's new parent-relative rotation
// Q' = dQ * Q and Q = Qp * q --> q' = Qp^ * dQ * Q
glm::quat newRot = glm::normalize(glm::inverse(
absolutePoses[parentIndex].rot) *
deltaRotation *
absolutePoses[pivotIndex].rot);
RotationConstraint* constraint = getConstraint(pivotIndex);
if (constraint) {
bool constrained = constraint->apply(newRot);
if (constrained) {
// the constraint will modify the movement of the tip so we have to compute the modified
// model-frame deltaRotation
// Q' = Qp^ * dQ * Q --> dQ = Qp * Q' * Q^
deltaRotation = absolutePoses[parentIndex].rot *
newRot *
glm::inverse(absolutePoses[pivotIndex].rot);
}
}
// store the rotation change in the accumulator
_accumulators[pivotIndex].add(newRot);
}
// this joint has been changed so we check to see if it has the lowest index
if (pivotIndex < lowestMovedIndex) {
lowestMovedIndex = pivotIndex;
}
// keep track of tip's new position as we descend towards root
tip = jointPosition + deltaRotation * leverArm;
error = glm::length(targetPose.trans - tip);
}
}
pivotIndex = _skeleton->getParentIndex(pivotIndex);
}
if (largestError < error) {
largestError = error;
}
}
++numLoops;
// harvest accumulated rotations and apply the average
for (auto& accumulatorPair: _accumulators) {
RotationAccumulator& accumulator = accumulatorPair.second;
if (accumulator.size() > 0) {
_relativePoses[accumulatorPair.first].rot = accumulator.getAverage();
accumulator.clear();
}
}
// only update the absolutePoses that need it: those between lowestMovedIndex and _maxTargetIndex
for (int i = lowestMovedIndex; i <= _maxTargetIndex; ++i) {
int parentIndex = _skeleton->getParentIndex(i);
if (parentIndex != -1) {
absolutePoses[i] = absolutePoses[parentIndex] * _relativePoses[i];
}
}
} while (largestError > ACCEPTABLE_RELATIVE_ERROR && numLoops < MAX_IK_LOOPS && usecTimestampNow() < expiry);
// finally set the relative rotation of each tip to agree with absolute target rotation
float largestError = 0.0f;
const float ACCEPTABLE_RELATIVE_ERROR = 1.0e-3f;
int numLoops = 0;
const int MAX_IK_LOOPS = 16;
const quint64 MAX_IK_TIME = 10 * USECS_PER_MSEC;
quint64 expiry = usecTimestampNow() + MAX_IK_TIME;
do {
largestError = 0.0f;
int lowestMovedIndex = _relativePoses.size();
for (auto& target: targets) {
int tipIndex = target.index;
int parentIndex = _skeleton->getParentIndex(tipIndex);
if (parentIndex != -1) {
AnimPose targetPose = target.pose;
// compute tip's new parent-relative rotation
// Q = Qp * q --> q' = Qp^ * Q
glm::quat newRelativeRotation = glm::inverse(absolutePoses[parentIndex].rot) * targetPose.rot;
RotationConstraint* constraint = getConstraint(tipIndex);
if (constraint) {
constraint->apply(newRelativeRotation);
// TODO: ATM the final rotation target just fails but we need to provide
// feedback to the IK system so that it can adjust the bones up the skeleton
// to help this rotation target get met.
AnimPose targetPose = target.pose;
glm::vec3 tip = absolutePoses[tipIndex].trans;
float error = glm::length(targetPose.trans - tip);
// descend toward root, pivoting each joint to get tip closer to target
int pivotIndex = _skeleton->getParentIndex(tipIndex);
while (pivotIndex != -1 && error > ACCEPTABLE_RELATIVE_ERROR) {
// compute the two lines that should be aligned
glm::vec3 jointPosition = absolutePoses[pivotIndex].trans;
glm::vec3 leverArm = tip - jointPosition;
glm::vec3 targetLine = targetPose.trans - jointPosition;
// compute the axis of the rotation that would align them
glm::vec3 axis = glm::cross(leverArm, targetLine);
float axisLength = glm::length(axis);
if (axisLength > EPSILON) {
// compute deltaRotation for alignment (brings tip closer to target)
axis /= axisLength;
float angle = acosf(glm::dot(leverArm, targetLine) / (glm::length(leverArm) * glm::length(targetLine)));
// NOTE: even when axisLength is not zero (e.g. lever-arm and pivot-arm are not quite aligned) it is
// still possible for the angle to be zero so we also check that to avoid unnecessary calculations.
if (angle > EPSILON) {
// reduce angle by half: slows convergence but adds stability to IK solution
angle = 0.5f * angle;
glm::quat deltaRotation = glm::angleAxis(angle, axis);
int parentIndex = _skeleton->getParentIndex(pivotIndex);
if (parentIndex == -1) {
// TODO? apply constraints to root?
// TODO? harvest the root's transform as movement of entire skeleton?
} else {
// compute joint's new parent-relative rotation
// Q' = dQ * Q and Q = Qp * q --> q' = Qp^ * dQ * Q
glm::quat newRot = glm::normalize(glm::inverse(
absolutePoses[parentIndex].rot) *
deltaRotation *
absolutePoses[pivotIndex].rot);
RotationConstraint* constraint = getConstraint(pivotIndex);
if (constraint) {
bool constrained = constraint->apply(newRot);
if (constrained) {
// the constraint will modify the movement of the tip so we have to compute the modified
// model-frame deltaRotation
// Q' = Qp^ * dQ * Q --> dQ = Qp * Q' * Q^
deltaRotation = absolutePoses[parentIndex].rot *
newRot *
glm::inverse(absolutePoses[pivotIndex].rot);
}
}
// store the rotation change in the accumulator
_accumulators[pivotIndex].add(newRot);
}
// this joint has been changed so we check to see if it has the lowest index
if (pivotIndex < lowestMovedIndex) {
lowestMovedIndex = pivotIndex;
}
// keep track of tip's new position as we descend towards root
tip = jointPosition + deltaRotation * leverArm;
error = glm::length(targetPose.trans - tip);
}
}
_relativePoses[tipIndex].rot = newRelativeRotation;
absolutePoses[tipIndex].rot = targetPose.rot;
pivotIndex = _skeleton->getParentIndex(pivotIndex);
}
if (largestError < error) {
largestError = error;
}
}
++numLoops;
// harvest accumulated rotations and apply the average
for (auto& accumulatorPair: _accumulators) {
RotationAccumulator& accumulator = accumulatorPair.second;
if (accumulator.size() > 0) {
_relativePoses[accumulatorPair.first].rot = accumulator.getAverage();
accumulator.clear();
}
}
// only update the absolutePoses that need it: those between lowestMovedIndex and _maxTargetIndex
for (int i = lowestMovedIndex; i <= _maxTargetIndex; ++i) {
int parentIndex = _skeleton->getParentIndex(i);
if (parentIndex != -1) {
absolutePoses[i] = absolutePoses[parentIndex] * _relativePoses[i];
}
}
} while (largestError > ACCEPTABLE_RELATIVE_ERROR && numLoops < MAX_IK_LOOPS && usecTimestampNow() < expiry);
// finally set the relative rotation of each tip to agree with absolute target rotation
for (auto& target: targets) {
int tipIndex = target.index;
int parentIndex = _skeleton->getParentIndex(tipIndex);
if (parentIndex != -1) {
AnimPose targetPose = target.pose;
// compute tip's new parent-relative rotation
// Q = Qp * q --> q' = Qp^ * Q
glm::quat newRelativeRotation = glm::inverse(absolutePoses[parentIndex].rot) * targetPose.rot;
RotationConstraint* constraint = getConstraint(tipIndex);
if (constraint) {
constraint->apply(newRelativeRotation);
// TODO: ATM the final rotation target just fails but we need to provide
// feedback to the IK system so that it can adjust the bones up the skeleton
// to help this rotation target get met.
}
_relativePoses[tipIndex].rot = newRelativeRotation;
absolutePoses[tipIndex].rot = targetPose.rot;
}
}
}
//virtual
const AnimPoseVec& AnimInverseKinematics::evaluate(const AnimVariantMap& animVars, float dt, AnimNode::Triggers& triggersOut) {
if (!_relativePoses.empty()) {
// build a list of targets from _targetVarVec
std::vector<IKTarget> targets;
computeTargets(animVars, targets);
if (targets.empty()) {
// no IK targets but still need to enforce constraints
std::map<int, RotationConstraint*>::iterator constraintItr = _constraints.begin();
while (constraintItr != _constraints.end()) {
int index = constraintItr->first;
glm::quat rotation = _relativePoses[index].rot;
constraintItr->second->apply(rotation);
_relativePoses[index].rot = rotation;
++constraintItr;
}
} else {
solveWithCyclicCoordinateDescent(targets);
}
}
return _relativePoses;

View file

@ -37,6 +37,14 @@ public:
virtual const AnimPoseVec& overlay(const AnimVariantMap& animVars, float dt, Triggers& triggersOut, const AnimPoseVec& underPoses) override;
protected:
struct IKTarget {
AnimPose pose;
int index;
int rootIndex;
};
void computeTargets(const AnimVariantMap& animVars, std::vector<IKTarget>& targets);
void solveWithCyclicCoordinateDescent(std::vector<IKTarget>& targets);
virtual void setSkeletonInternal(AnimSkeleton::ConstPointer skeleton);
// for AnimDebugDraw rendering
@ -64,7 +72,7 @@ protected:
};
std::map<int, RotationConstraint*> _constraints;
std::map<int, RotationAccumulator> _accumulators;
std::map<int, RotationAccumulator> _accumulators; // class-member to exploit temporal coherency
std::vector<IKTargetVar> _targetVarVec;
AnimPoseVec _defaultRelativePoses; // poses of the relaxed state
AnimPoseVec _relativePoses; // current relative poses

View file

@ -0,0 +1,54 @@
//
// AnimNode.cpp
//
// Created by Anthony J. Thibault on 9/2/15.
// Copyright (c) 2015 High Fidelity, Inc. All rights reserved.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "AnimNode.h"
void AnimNode::removeChild(AnimNode::Pointer child) {
auto iter = std::find(_children.begin(), _children.end(), child);
if (iter != _children.end()) {
_children.erase(iter);
}
}
AnimNode::Pointer AnimNode::getChild(int i) const {
assert(i >= 0 && i < (int)_children.size());
return _children[i];
}
void AnimNode::setSkeleton(const AnimSkeleton::Pointer skeleton) {
setSkeletonInternal(skeleton);
for (auto&& child : _children) {
child->setSkeleton(skeleton);
}
}
const AnimPose AnimNode::getRootPose(int jointIndex) const {
AnimPose pose = AnimPose::identity;
if (_skeleton && jointIndex != -1) {
const AnimPoseVec& poses = getPosesInternal();
int numJoints = (int)(poses.size());
if (jointIndex < numJoints) {
int parentIndex = _skeleton->getParentIndex(jointIndex);
while (parentIndex != -1 && parentIndex < numJoints) {
jointIndex = parentIndex;
parentIndex = _skeleton->getParentIndex(jointIndex);
}
pose = poses[jointIndex];
}
}
return pose;
}
void AnimNode::setCurrentFrame(float frame) {
setCurrentFrameInternal(frame);
for (auto&& child : _children) {
child->setCurrentFrameInternal(frame);
}
}

View file

@ -60,25 +60,13 @@ public:
// hierarchy accessors
void addChild(Pointer child) { _children.push_back(child); }
void removeChild(Pointer child) {
auto iter = std::find(_children.begin(), _children.end(), child);
if (iter != _children.end()) {
_children.erase(iter);
}
}
Pointer getChild(int i) const {
assert(i >= 0 && i < (int)_children.size());
return _children[i];
}
void removeChild(Pointer child);
Pointer getChild(int i) const;
int getChildCount() const { return (int)_children.size(); }
// pair this AnimNode graph with a skeleton.
void setSkeleton(const AnimSkeleton::Pointer skeleton) {
setSkeletonInternal(skeleton);
for (auto&& child : _children) {
child->setSkeleton(skeleton);
}
}
void setSkeleton(const AnimSkeleton::Pointer skeleton);
AnimSkeleton::ConstPointer getSkeleton() const { return _skeleton; }
@ -87,19 +75,14 @@ public:
return evaluate(animVars, dt, triggersOut);
}
const AnimPose getRootPose(int jointIndex) const;
protected:
void setCurrentFrame(float frame) {
setCurrentFrameInternal(frame);
for (auto&& child : _children) {
child->setCurrentFrameInternal(frame);
}
}
void setCurrentFrame(float frame);
virtual void setCurrentFrameInternal(float frame) {}
virtual void setSkeletonInternal(AnimSkeleton::ConstPointer skeleton) {
_skeleton = skeleton;
}
virtual void setSkeletonInternal(AnimSkeleton::ConstPointer skeleton) { _skeleton = skeleton; }
// for AnimDebugDraw rendering
virtual const AnimPoseVec& getPosesInternal() const = 0;

View file

@ -986,16 +986,20 @@ void Rig::updateLeanJoint(int index, float leanSideways, float leanForward, floa
void Rig::updateNeckJoint(int index, const HeadParameters& params) {
if (index >= 0 && _jointStates[index].getParentIndex() >= 0) {
if (_enableAnimGraph && _animSkeleton) {
if (_enableAnimGraph && _animSkeleton && _animNode) {
// the params.localHeadOrientation is composed incorrectly, so re-compose it correctly from pitch, yaw and roll.
glm::quat realLocalHeadOrientation = (glm::angleAxis(glm::radians(-params.localHeadRoll), Z_AXIS) *
glm::angleAxis(glm::radians(params.localHeadYaw), Y_AXIS) *
glm::angleAxis(glm::radians(-params.localHeadPitch), X_AXIS));
_animVars.set("headRotation", realLocalHeadOrientation);
// There's a theory that when not in hmd, we should _animVars.unset("headPosition").
// However, until that works well, let's always request head be positioned where requested by hmd, camera, or default.
_animVars.set("headPosition", params.localHeadPosition);
if (params.isInHMD) {
int headIndex = _animSkeleton->nameToJointIndex("Head");
AnimPose rootPose = _animNode->getRootPose(headIndex);
_animVars.set("headPosition", rootPose.trans + params.localHeadPosition); // rootPose.rot is handled in params?d
} else {
_animVars.unset("headPosition");
}
} else if (!_enableAnimGraph) {
auto& state = _jointStates[index];
@ -1044,20 +1048,22 @@ void Rig::updateEyeJoint(int index, const glm::vec3& modelTranslation, const glm
void Rig::updateFromHandParameters(const HandParameters& params, float dt) {
if (_enableAnimGraph && _animSkeleton) {
if (_enableAnimGraph && _animSkeleton && _animNode) {
// TODO: figure out how to obtain the yFlip from where it is actually stored
glm::quat yFlipHACK = glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f));
int leftHandIndex = _animSkeleton->nameToJointIndex("LeftHand");
AnimPose rootPose = _animNode->getRootPose(leftHandIndex);
if (params.isLeftEnabled) {
_animVars.set("leftHandPosition", yFlipHACK * params.leftPosition);
_animVars.set("leftHandRotation", yFlipHACK * params.leftOrientation);
_animVars.set("leftHandPosition", rootPose.trans + rootPose.rot * yFlipHACK * params.leftPosition);
_animVars.set("leftHandRotation", rootPose.rot * yFlipHACK * params.leftOrientation);
} else {
_animVars.unset("leftHandPosition");
_animVars.unset("leftHandRotation");
}
if (params.isRightEnabled) {
_animVars.set("rightHandPosition", yFlipHACK * params.rightPosition);
_animVars.set("rightHandRotation", yFlipHACK * params.rightOrientation);
_animVars.set("rightHandPosition", rootPose.trans + rootPose.rot * yFlipHACK * params.rightPosition);
_animVars.set("rightHandRotation", rootPose.rot * yFlipHACK * params.rightOrientation);
} else {
_animVars.unset("rightHandPosition");
_animVars.unset("rightHandRotation");

View file

@ -15,18 +15,6 @@
using namespace model;
using namespace gpu;
float componentSRGBToLinear(float cs) {
if (cs > 0.04045) {
return pow(((cs + 0.055)/1.055), 2.4);
} else {
return cs / 12.92;
}
}
glm::vec3 convertSRGBToLinear(const glm::vec3& srgb) {
return glm::vec3(componentSRGBToLinear(srgb.x), componentSRGBToLinear(srgb.y), componentSRGBToLinear(srgb.z));
}
Material::Material() :
_key(0),
_schemaBuffer(),

View file

@ -20,8 +20,6 @@
namespace model {
static glm::vec3 convertSRGBToLinear(const glm::vec3& srgb);
class TextureMap;
typedef std::shared_ptr< TextureMap > TextureMapPointer;

View file

@ -191,6 +191,11 @@ public:
const std::unordered_set<int>& getCauterizeBoneSet() const { return _cauterizeBoneSet; }
void setCauterizeBoneSet(const std::unordered_set<int>& boneSet) { _cauterizeBoneSet = boneSet; }
int getBlendshapeCoefficientsNum() const { return _blendshapeCoefficients.size(); }
float getBlendshapeCoefficient(unsigned int index) const {
return index >= _blendshapeCoefficients.size() ? 0.0f : _blendshapeCoefficients.at(index);
}
protected:
void setPupilDilation(float dilation) { _pupilDilation = dilation; }