overte-HifiExperiments/interface/src/VoxelSystem.cpp
2013-09-26 19:04:19 -07:00

1854 lines
69 KiB
C++

//
// Cube.cpp
// interface
//
// Created by Philip on 12/31/12.
// Copyright (c) 2012 High Fidelity, Inc. All rights reserved.
//
#ifdef _WIN32
#define _timeval_
#define _USE_MATH_DEFINES
#endif
#include <cstring>
#include <cmath>
#include <iostream> // to load voxels from file
#include <fstream> // to load voxels from file
#include <pthread.h>
#include <OctalCode.h>
#include <PacketHeaders.h>
#include <PerfStat.h>
#include <SharedUtil.h>
#include <NodeList.h>
#include <NodeTypes.h>
#include "Application.h"
#include "CoverageMap.h"
#include "CoverageMapV2.h"
#include "InterfaceConfig.h"
#include "Menu.h"
#include "renderer/ProgramObject.h"
#include "VoxelConstants.h"
#include "VoxelSystem.h"
float identityVertices[] = { 0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1,
0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1,
0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1 };
GLbyte identityNormals[] = { 0,0,-1, 0,0,-1, 0,0,-1, 0,0,-1,
0,0,+1, 0,0,+1, 0,0,+1, 0,0,+1,
0,-1,0, 0,-1,0, 0,+1,0, 0,+1,0,
0,-1,0, 0,-1,0, 0,+1,0, 0,+1,0,
-1,0,0, +1,0,0, +1,0,0, -1,0,0,
-1,0,0, +1,0,0, +1,0,0, -1,0,0 };
GLubyte identityIndices[] = { 0,2,1, 0,3,2, // Z-
8,9,13, 8,13,12, // Y-
16,23,19, 16,20,23, // X-
17,18,22, 17,22,21, // X+
10,11,15, 10,15,14, // Y+
4,5,6, 4,6,7 }; // Z+
VoxelSystem::VoxelSystem(float treeScale, int maxVoxels)
: NodeData(NULL),
_treeScale(treeScale),
_maxVoxels(maxVoxels),
_initialized(false) {
_voxelsInReadArrays = _voxelsInWriteArrays = _voxelsUpdated = 0;
_writeRenderFullVBO = true;
_readRenderFullVBO = true;
_tree = new VoxelTree();
pthread_mutex_init(&_bufferWriteLock, NULL);
pthread_mutex_init(&_treeLock, NULL);
VoxelNode::addDeleteHook(this);
_abandonedVBOSlots = 0;
_falseColorizeBySource = false;
_dataSourceID = UNKNOWN_NODE_ID;
_voxelServerCount = 0;
_viewFrustum = Application::getInstance()->getViewFrustum();
connect(_tree, SIGNAL(importSize(float,float,float)), SIGNAL(importSize(float,float,float)));
connect(_tree, SIGNAL(importProgress(int)), SIGNAL(importProgress(int)));
_useVoxelShader = false;
_useByteNormals = false;
_writeVoxelShaderData = NULL;
_readVoxelShaderData = NULL;
_readVerticesArray = NULL;
_writeVerticesArray = NULL;
_readColorsArray = NULL;
_writeColorsArray = NULL;
_writeVoxelDirtyArray = NULL;
_readVoxelDirtyArray = NULL;
}
void VoxelSystem::nodeDeleted(VoxelNode* node) {
if (node->isKnownBufferIndex() && (node->getVoxelSystem() == this)) {
freeBufferIndex(node->getBufferIndex());
}
}
// returns an available index, starts by reusing a previously freed index, but if there isn't one available
// it will use the end of the VBO array and grow our accounting of that array.
// and makes the index available for some other node to use
glBufferIndex VoxelSystem::getNextBufferIndex() {
glBufferIndex output = GLBUFFER_INDEX_UNKNOWN;
// if there's a free index, use it...
if (_freeIndexes.size() > 0) {
output = _freeIndexes.back();
_freeIndexes.pop_back();
} else {
output = _voxelsInWriteArrays;
_voxelsInWriteArrays++;
}
return output;
}
// Doesn't actually clean up the VBOs for the index, but does release responsibility of the index from the VoxelNode,
// and makes the index available for some other node to use
void VoxelSystem::freeBufferIndex(glBufferIndex index) {
_freeIndexes.push_back(index);
}
// This will run through the list of _freeIndexes and reset their VBO array values to be "invisible".
void VoxelSystem::clearFreeBufferIndexes() {
for (int i = 0; i < _freeIndexes.size(); i++) {
glBufferIndex nodeIndex = _freeIndexes[i];
glm::vec3 startVertex(FLT_MAX, FLT_MAX, FLT_MAX);
float voxelScale = 0;
_writeVoxelDirtyArray[nodeIndex] = true;
nodeColor color = {0, 0, 0, 0};
updateNodeInArrays(nodeIndex, startVertex, voxelScale, color);
_abandonedVBOSlots++;
}
_freeIndexes.clear();
}
VoxelSystem::~VoxelSystem() {
cleanupVoxelMemory();
delete _tree;
pthread_mutex_destroy(&_bufferWriteLock);
pthread_mutex_destroy(&_treeLock);
VoxelNode::removeDeleteHook(this);
}
void VoxelSystem::setUseByteNormals(bool useByteNormals) {
pthread_mutex_lock(&_bufferWriteLock);
bool wasInitialized = _initialized;
if (wasInitialized) {
cleanupVoxelMemory();
}
_useByteNormals = useByteNormals;
if (wasInitialized) {
init();
}
pthread_mutex_unlock(&_bufferWriteLock);
}
void VoxelSystem::setMaxVoxels(int maxVoxels) {
pthread_mutex_lock(&_bufferWriteLock);
bool wasInitialized = _initialized;
if (wasInitialized) {
cleanupVoxelMemory();
}
_maxVoxels = maxVoxels;
if (wasInitialized) {
init();
}
pthread_mutex_unlock(&_bufferWriteLock);
}
void VoxelSystem::setUseVoxelShader(bool useVoxelShader) {
pthread_mutex_lock(&_bufferWriteLock);
bool wasInitialized = _initialized;
if (wasInitialized) {
cleanupVoxelMemory();
}
_useVoxelShader = useVoxelShader;
if (wasInitialized) {
init();
}
pthread_mutex_unlock(&_bufferWriteLock);
}
void VoxelSystem::cleanupVoxelMemory() {
if (_initialized) {
if (_useVoxelShader) {
// these are used when in VoxelShader mode.
glDeleteBuffers(1, &_vboVoxelsID);
glDeleteBuffers(1, &_vboVoxelsIndicesID);
delete[] _writeVoxelShaderData;
delete[] _readVoxelShaderData;
} else {
// Destroy glBuffers
glDeleteBuffers(1, &_vboVerticesID);
glDeleteBuffers(1, &_vboNormalsID);
glDeleteBuffers(1, &_vboColorsID);
glDeleteBuffers(1, &_vboIndicesID);
delete[] _readVerticesArray;
delete[] _writeVerticesArray;
delete[] _readColorsArray;
delete[] _writeColorsArray;
delete[] _writeVoxelDirtyArray;
delete[] _readVoxelDirtyArray;
}
}
_initialized = false; // no longer initialized
}
void VoxelSystem::initVoxelMemory() {
if (_useVoxelShader) {
qDebug("Using Voxel Shader...\n");
GLuint* indicesArray = new GLuint[_maxVoxels];
// populate the indicesArray
// this will not change given new voxels, so we can set it all up now
for (int n = 0; n < _maxVoxels; n++) {
indicesArray[n] = n;
}
// bind the indices VBO to the actual indices array
glGenBuffers(1, &_vboVoxelsIndicesID);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vboVoxelsIndicesID);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, _maxVoxels, indicesArray, GL_STATIC_DRAW);
glGenBuffers(1, &_vboVoxelsID);
glBindBuffer(GL_ARRAY_BUFFER, _vboVoxelsID);
glBufferData(GL_ARRAY_BUFFER, _maxVoxels * sizeof(VoxelShaderVBOData), NULL, GL_DYNAMIC_DRAW);
// delete the indices and normals arrays that are no longer needed
delete[] indicesArray;
// we will track individual dirty sections with these arrays of bools
_writeVoxelDirtyArray = new bool[_maxVoxels];
memset(_writeVoxelDirtyArray, false, _maxVoxels * sizeof(bool));
_readVoxelDirtyArray = new bool[_maxVoxels];
memset(_readVoxelDirtyArray, false, _maxVoxels * sizeof(bool));
// prep the data structures for incoming voxel data
_writeVoxelShaderData = new VoxelShaderVBOData[_maxVoxels];
_readVoxelShaderData = new VoxelShaderVBOData[_maxVoxels];
} else {
GLuint* indicesArray = new GLuint[INDICES_PER_VOXEL * _maxVoxels];
// populate the indicesArray
// this will not change given new voxels, so we can set it all up now
for (int n = 0; n < _maxVoxels; n++) {
// fill the indices array
int voxelIndexOffset = n * INDICES_PER_VOXEL;
GLuint* currentIndicesPos = indicesArray + voxelIndexOffset;
int startIndex = (n * VERTICES_PER_VOXEL);
for (int i = 0; i < INDICES_PER_VOXEL; i++) {
// add indices for this side of the cube
currentIndicesPos[i] = startIndex + identityIndices[i];
}
}
if (_useByteNormals) {
qDebug("Using Byte Normals...\n");
GLbyte* normalsArray = new GLbyte[VERTEX_POINTS_PER_VOXEL * _maxVoxels];
GLbyte* normalsArrayEndPointer = normalsArray;
// populate the normalsArray
for (int n = 0; n < _maxVoxels; n++) {
for (int i = 0; i < VERTEX_POINTS_PER_VOXEL; i++) {
*(normalsArrayEndPointer++) = identityNormals[i];
}
}
// VBO for the normalsArray
glGenBuffers(1, &_vboNormalsID);
glBindBuffer(GL_ARRAY_BUFFER, _vboNormalsID);
glBufferData(GL_ARRAY_BUFFER,
VERTEX_POINTS_PER_VOXEL * sizeof(GLbyte) * _maxVoxels,
normalsArray, GL_STATIC_DRAW);
// delete the indices and normals arrays that are no longer needed
delete[] normalsArray;
} else {
qDebug("Using Float Normals...\n");
GLfloat* normalsArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * _maxVoxels];
GLfloat* normalsArrayEndPointer = normalsArray;
// populate the normalsArray
for (int n = 0; n < _maxVoxels; n++) {
for (int i = 0; i < VERTEX_POINTS_PER_VOXEL; i++) {
*(normalsArrayEndPointer++) = identityNormals[i];
}
}
// VBO for the normalsArray
glGenBuffers(1, &_vboNormalsID);
glBindBuffer(GL_ARRAY_BUFFER, _vboNormalsID);
glBufferData(GL_ARRAY_BUFFER,
VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * _maxVoxels,
normalsArray, GL_STATIC_DRAW);
// delete the indices and normals arrays that are no longer needed
delete[] normalsArray;
}
glGenBuffers(1, &_vboVerticesID);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * _maxVoxels, NULL, GL_DYNAMIC_DRAW);
// VBO for colorsArray
glGenBuffers(1, &_vboColorsID);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * _maxVoxels, NULL, GL_DYNAMIC_DRAW);
// VBO for the indicesArray
glGenBuffers(1, &_vboIndicesID);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vboIndicesID);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
INDICES_PER_VOXEL * sizeof(GLuint) * _maxVoxels,
indicesArray, GL_STATIC_DRAW);
// delete the indices and normals arrays that are no longer needed
delete[] indicesArray;
// we will track individual dirty sections with these arrays of bools
_writeVoxelDirtyArray = new bool[_maxVoxels];
memset(_writeVoxelDirtyArray, false, _maxVoxels * sizeof(bool));
_readVoxelDirtyArray = new bool[_maxVoxels];
memset(_readVoxelDirtyArray, false, _maxVoxels * sizeof(bool));
// prep the data structures for incoming voxel data
_writeVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * _maxVoxels];
_readVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * _maxVoxels];
_writeColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * _maxVoxels];
_readColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * _maxVoxels];
// create our simple fragment shader if we're the first system to init
if (!_perlinModulateProgram.isLinked()) {
switchToResourcesParentIfRequired();
_perlinModulateProgram.addShaderFromSourceFile(QGLShader::Vertex, "resources/shaders/perlin_modulate.vert");
_perlinModulateProgram.addShaderFromSourceFile(QGLShader::Fragment, "resources/shaders/perlin_modulate.frag");
_perlinModulateProgram.link();
_perlinModulateProgram.bind();
_perlinModulateProgram.setUniformValue("permutationNormalTexture", 0);
_perlinModulateProgram.release();
}
}
}
void VoxelSystem::loadVoxelsFile(const char* fileName, bool wantColorRandomizer) {
_tree->loadVoxelsFile(fileName, wantColorRandomizer);
setupNewVoxelsForDrawing();
}
void VoxelSystem::writeToSVOFile(const char* filename, VoxelNode* node) const {
_tree->writeToSVOFile(filename, node);
}
bool VoxelSystem::readFromSVOFile(const char* filename) {
bool result = _tree->readFromSVOFile(filename);
if (result) {
setupNewVoxelsForDrawing();
}
return result;
}
bool VoxelSystem::readFromSquareARGB32Pixels(const char *filename) {
bool result = _tree->readFromSquareARGB32Pixels(filename);
if (result) {
setupNewVoxelsForDrawing();
}
return result;
}
bool VoxelSystem::readFromSchematicFile(const char* filename) {
bool result = _tree->readFromSchematicFile(filename);
if (result) {
setupNewVoxelsForDrawing();
}
return result;
}
long int VoxelSystem::getVoxelsCreated() {
return _tree->voxelsCreated;
}
float VoxelSystem::getVoxelsCreatedPerSecondAverage() {
return (1 / _tree->voxelsCreatedStats.getEventDeltaAverage());
}
long int VoxelSystem::getVoxelsColored() {
return _tree->voxelsColored;
}
float VoxelSystem::getVoxelsColoredPerSecondAverage() {
return (1 / _tree->voxelsColoredStats.getEventDeltaAverage());
}
long int VoxelSystem::getVoxelsBytesRead() {
return _tree->voxelsBytesRead;
}
float VoxelSystem::getVoxelsBytesReadPerSecondAverage() {
return _tree->voxelsBytesReadStats.getAverageSampleValuePerSecond();
}
int VoxelSystem::parseData(unsigned char* sourceBuffer, int numBytes) {
unsigned char command = *sourceBuffer;
int numBytesPacketHeader = numBytesForPacketHeader(sourceBuffer);
unsigned char* voxelData = sourceBuffer + numBytesPacketHeader;
pthread_mutex_lock(&_treeLock);
switch(command) {
case PACKET_TYPE_VOXEL_DATA: {
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings),
"readBitstreamToTree()");
// ask the VoxelTree to read the bitstream into the tree
ReadBitstreamToTreeParams args(WANT_COLOR, WANT_EXISTS_BITS, NULL, getDataSourceID());
_tree->readBitstreamToTree(voxelData, numBytes - numBytesPacketHeader, args);
}
break;
case PACKET_TYPE_VOXEL_DATA_MONOCHROME: {
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings),
"readBitstreamToTree()");
// ask the VoxelTree to read the MONOCHROME bitstream into the tree
ReadBitstreamToTreeParams args(NO_COLOR, WANT_EXISTS_BITS, NULL, getDataSourceID());
_tree->readBitstreamToTree(voxelData, numBytes - numBytesPacketHeader, args);
}
break;
case PACKET_TYPE_Z_COMMAND:
// the Z command is a special command that allows the sender to send high level semantic
// requests, like erase all, or add sphere scene, different receivers may handle these
// messages differently
char* packetData = (char *)sourceBuffer;
char* command = &packetData[numBytesPacketHeader]; // start of the command
int commandLength = strlen(command); // commands are null terminated strings
int totalLength = 1+commandLength+1;
qDebug("got Z message len(%d)= %s\n", numBytes, command);
while (totalLength <= numBytes) {
if (0==strcmp(command,(char*)"erase all")) {
qDebug("got Z message == erase all\n");
_tree->eraseAllVoxels();
_voxelsInReadArrays = _voxelsInWriteArrays = 0; // better way to do this??
}
if (0==strcmp(command,(char*)"add scene")) {
qDebug("got Z message == add scene - NOT SUPPORTED ON INTERFACE\n");
}
totalLength += commandLength+1;
}
break;
}
setupNewVoxelsForDrawing();
pthread_mutex_unlock(&_treeLock);
Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::VOXELS).updateValue(numBytes);
return numBytes;
}
void VoxelSystem::setupNewVoxelsForDrawing() {
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings),
"setupNewVoxelsForDrawing()"); // would like to include _voxelsInArrays, _voxelsUpdated
uint64_t start = usecTimestampNow();
uint64_t sinceLastTime = (start - _setupNewVoxelsForDrawingLastFinished) / 1000;
// clear up the VBOs for any nodes that have been recently deleted.
clearFreeBufferIndexes();
bool iAmDebugging = false; // if you're debugging set this to true, so you won't get skipped for slow debugging
if (!iAmDebugging && sinceLastTime <= std::max((float) _setupNewVoxelsForDrawingLastElapsed, SIXTY_FPS_IN_MILLISECONDS)) {
return; // bail early, it hasn't been long enough since the last time we ran
}
uint64_t sinceLastViewCulling = (start - _lastViewCulling) / 1000;
// If the view frustum is no longer changing, but has changed, since last time, then remove nodes that are out of view
if ((sinceLastViewCulling >= std::max((float) _lastViewCullingElapsed, VIEW_CULLING_RATE_IN_MILLISECONDS))
&& !isViewChanging()) {
_lastViewCulling = start;
// When we call removeOutOfView() voxels, we don't actually remove the voxels from the VBOs, but we do remove
// them from tree, this makes our tree caclulations faster, but doesn't require us to fully rebuild the VBOs (which
// can be expensive).
removeOutOfView();
// Once we call cleanupRemovedVoxels() we do need to rebuild our VBOs (if anything was actually removed). So,
// we should consider putting this someplace else... as this might be able to occur less frequently, and save us on
// VBO reubuilding. Possibly we should do this only if our actual VBO usage crosses some lower boundary.
cleanupRemovedVoxels();
uint64_t endViewCulling = usecTimestampNow();
_lastViewCullingElapsed = (endViewCulling - start) / 1000;
}
bool didWriteFullVBO = _writeRenderFullVBO;
if (_tree->isDirty()) {
static char buffer[64] = { 0 };
if (Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings)) {
sprintf(buffer, "newTreeToArrays() _writeRenderFullVBO=%s", debug::valueOf(_writeRenderFullVBO));
};
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings), buffer);
_callsToTreesToArrays++;
if (_writeRenderFullVBO) {
_voxelsInWriteArrays = 0; // reset our VBO
_freeIndexes.clear(); // reset our free indexes
}
_voxelsUpdated = newTreeToArrays(_tree->rootNode);
_tree->clearDirtyBit(); // after we pull the trees into the array, we can consider the tree clean
if (_writeRenderFullVBO) {
_abandonedVBOSlots = 0; // reset the count of our abandoned slots, why is this here and not earlier????
}
// since we called treeToArrays, we can assume that our VBO is in sync, and so partial updates to the VBOs are
// ok again, until/unless we call removeOutOfView()
_writeRenderFullVBO = false;
} else {
_voxelsUpdated = 0;
}
// lock on the buffer write lock so we can't modify the data when the GPU is reading it
pthread_mutex_lock(&_bufferWriteLock);
if (_voxelsUpdated) {
_voxelsDirty=true;
}
// copy the newly written data to the arrays designated for reading, only does something if _voxelsDirty && _voxelsUpdated
copyWrittenDataToReadArrays(didWriteFullVBO);
pthread_mutex_unlock(&_bufferWriteLock);
uint64_t end = usecTimestampNow();
int elapsedmsec = (end - start) / 1000;
_setupNewVoxelsForDrawingLastFinished = end;
_setupNewVoxelsForDrawingLastElapsed = elapsedmsec;
}
void VoxelSystem::cleanupRemovedVoxels() {
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings), "cleanupRemovedVoxels()");
// This handles cleanup of voxels that were culled as part of our regular out of view culling operation
if (!_removedVoxels.isEmpty()) {
while (!_removedVoxels.isEmpty()) {
delete _removedVoxels.extract();
}
_writeRenderFullVBO = true; // if we remove voxels, we must update our full VBOs
}
// we also might have VBO slots that have been abandoned, if too many of our VBO slots
// are abandonded we want to rerender our full VBOs
const float TOO_MANY_ABANDONED_RATIO = 0.25f;
if (!_writeRenderFullVBO && (_abandonedVBOSlots > (_voxelsInWriteArrays * TOO_MANY_ABANDONED_RATIO))) {
_writeRenderFullVBO = true;
}
}
void VoxelSystem::copyWrittenDataToReadArraysFullVBOs() {
copyWrittenDataSegmentToReadArrays(0, _voxelsInWriteArrays - 1);
_voxelsInReadArrays = _voxelsInWriteArrays;
// clear our dirty flags
memset(_writeVoxelDirtyArray, false, _voxelsInWriteArrays * sizeof(bool));
// let the reader know to get the full array
_readRenderFullVBO = true;
}
void VoxelSystem::copyWrittenDataToReadArraysPartialVBOs() {
glBufferIndex segmentStart = 0;
bool inSegment = false;
for (glBufferIndex i = 0; i < _voxelsInWriteArrays; i++) {
bool thisVoxelDirty = _writeVoxelDirtyArray[i];
_readVoxelDirtyArray[i] |= thisVoxelDirty;
_writeVoxelDirtyArray[i] = false;
if (!inSegment) {
if (thisVoxelDirty) {
segmentStart = i;
inSegment = true;
}
} else {
if (!thisVoxelDirty) {
// If we got here because because this voxel is NOT dirty, so the last dirty voxel was the one before
// this one and so that's where the "segment" ends
copyWrittenDataSegmentToReadArrays(segmentStart, i - 1);
inSegment = false;
}
}
}
// if we got to the end of the array, and we're in an active dirty segment...
if (inSegment) {
copyWrittenDataSegmentToReadArrays(segmentStart, _voxelsInWriteArrays - 1);
}
// update our length
_voxelsInReadArrays = _voxelsInWriteArrays;
}
void VoxelSystem::copyWrittenDataSegmentToReadArrays(glBufferIndex segmentStart, glBufferIndex segmentEnd) {
int segmentLength = (segmentEnd - segmentStart) + 1;
if (_useVoxelShader) {
GLsizeiptr segmentSizeBytes = segmentLength * sizeof(VoxelShaderVBOData);
void* readDataAt = &_readVoxelShaderData[segmentStart];
void* writeDataAt = &_writeVoxelShaderData[segmentStart];
memcpy(readDataAt, writeDataAt, segmentSizeBytes);
} else {
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesAt = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
GLfloat* writeVerticesAt = _writeVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
memcpy(readVerticesAt, writeVerticesAt, segmentSizeBytes);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsAt = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
GLubyte* writeColorsAt = _writeColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
memcpy(readColorsAt, writeColorsAt, segmentSizeBytes);
}
}
void VoxelSystem::copyWrittenDataToReadArrays(bool fullVBOs) {
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings),
"copyWrittenDataToReadArrays()");
if (_voxelsDirty && _voxelsUpdated) {
if (fullVBOs) {
copyWrittenDataToReadArraysFullVBOs();
} else {
copyWrittenDataToReadArraysPartialVBOs();
}
}
}
int VoxelSystem::newTreeToArrays(VoxelNode* node) {
int voxelsUpdated = 0;
bool shouldRender = false; // assume we don't need to render it
// if it's colored, we might need to render it!
shouldRender = node->calculateShouldRender(_viewFrustum);
node->setShouldRender(shouldRender);
// let children figure out their renderness
if (!node->isLeaf()) {
// As we check our children, see if any of them went from shouldRender to NOT shouldRender
// then we probably dropped LOD and if we don't have color, we want to average our children
// for a new color.
int childrenGotHiddenCount = 0;
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
VoxelNode* childNode = node->getChildAtIndex(i);
if (childNode) {
bool wasShouldRender = childNode->getShouldRender();
voxelsUpdated += newTreeToArrays(childNode);
bool isShouldRender = childNode->getShouldRender();
if (wasShouldRender && !isShouldRender) {
childrenGotHiddenCount++;
}
}
}
if (childrenGotHiddenCount > 0) {
node->setColorFromAverageOfChildren();
}
}
if (_writeRenderFullVBO) {
voxelsUpdated += updateNodeInArraysAsFullVBO(node);
} else {
voxelsUpdated += updateNodeInArraysAsPartialVBO(node);
}
node->clearDirtyBit(); // clear the dirty bit, do this before we potentially delete things.
return voxelsUpdated;
}
int VoxelSystem::updateNodeInArraysAsFullVBO(VoxelNode* node) {
// If we've run out of room, then just bail...
if (_voxelsInWriteArrays >= _maxVoxels) {
return 0;
}
if (node->getShouldRender()) {
glm::vec3 startVertex = node->getCorner();
float voxelScale = node->getScale();
glBufferIndex nodeIndex = getNextBufferIndex();
// populate the array with points for the 8 vertices
// and RGB color for each added vertex
updateNodeInArrays(nodeIndex, startVertex, voxelScale, node->getColor());
node->setBufferIndex(nodeIndex);
node->setVoxelSystem(this);
return 1; // rendered
} else {
node->setBufferIndex(GLBUFFER_INDEX_UNKNOWN);
node->setVoxelSystem(NULL);
}
return 0; // not-rendered
}
int VoxelSystem::updateNodeInArraysAsPartialVBO(VoxelNode* node) {
// If we've run out of room, then just bail...
if (_voxelsInWriteArrays >= _maxVoxels) {
return 0;
}
// Now, if we've changed any attributes (our renderness, our color, etc) then update the Arrays...
if (node->isDirty()) {
glm::vec3 startVertex;
float voxelScale = 0;
// If we're should render, use our legit location and scale,
if (node->getShouldRender()) {
startVertex = node->getCorner();
voxelScale = node->getScale();
} else {
// if we shouldn't render then set out location to some infinitely distant location,
// and our scale as infinitely small
startVertex[0] = startVertex[1] = startVertex[2] = FLT_MAX;
voxelScale = 0;
_abandonedVBOSlots++;
}
// If this node has not yet been written to the array, then add it to the end of the array.
glBufferIndex nodeIndex;
if (node->isKnownBufferIndex()) {
nodeIndex = node->getBufferIndex();
} else {
nodeIndex = getNextBufferIndex();
node->setBufferIndex(nodeIndex);
node->setVoxelSystem(this);
}
_writeVoxelDirtyArray[nodeIndex] = true;
// populate the array with points for the 8 vertices
// and RGB color for each added vertex
updateNodeInArrays(nodeIndex, startVertex, voxelScale, node->getColor());
return 1; // updated!
}
return 0; // not-updated
}
void VoxelSystem::updateNodeInArrays(glBufferIndex nodeIndex, const glm::vec3& startVertex,
float voxelScale, const nodeColor& color) {
if (_useVoxelShader) {
VoxelShaderVBOData* writeVerticesAt = &_writeVoxelShaderData[nodeIndex];
writeVerticesAt->x = startVertex.x * TREE_SCALE;
writeVerticesAt->y = startVertex.y * TREE_SCALE;
writeVerticesAt->z = startVertex.z * TREE_SCALE;
writeVerticesAt->s = voxelScale * TREE_SCALE;
writeVerticesAt->r = color[RED_INDEX];
writeVerticesAt->g = color[GREEN_INDEX];
writeVerticesAt->b = color[BLUE_INDEX];
} else {
for (int j = 0; j < VERTEX_POINTS_PER_VOXEL; j++ ) {
GLfloat* writeVerticesAt = _writeVerticesArray + (nodeIndex * VERTEX_POINTS_PER_VOXEL);
GLubyte* writeColorsAt = _writeColorsArray + (nodeIndex * VERTEX_POINTS_PER_VOXEL);
*(writeVerticesAt+j) = startVertex[j % 3] + (identityVertices[j] * voxelScale);
*(writeColorsAt +j) = color[j % 3];
}
}
}
glm::vec3 VoxelSystem::computeVoxelVertex(const glm::vec3& startVertex, float voxelScale, int index) const {
const float* identityVertex = identityVertices + index * 3;
return startVertex + glm::vec3(identityVertex[0], identityVertex[1], identityVertex[2]) * voxelScale;
}
ProgramObject VoxelSystem::_perlinModulateProgram;
void VoxelSystem::init() {
if (_initialized) {
qDebug("[ERROR] VoxelSystem is already initialized.\n");
return;
}
_callsToTreesToArrays = 0;
_setupNewVoxelsForDrawingLastFinished = 0;
_setupNewVoxelsForDrawingLastElapsed = 0;
_lastViewCullingElapsed = _lastViewCulling = 0;
// When we change voxels representations in the arrays, we'll update this
_voxelsDirty = false;
_voxelsInWriteArrays = 0;
_voxelsInReadArrays = 0;
// VBO for the verticesArray
initVoxelMemory();
_initialized = true;
}
void VoxelSystem::changeTree(VoxelTree* newTree) {
disconnect(_tree, 0, this, 0);
_tree = newTree;
_tree->setDirtyBit();
connect(_tree, SIGNAL(importSize(float,float,float)), SIGNAL(importSize(float,float,float)));
connect(_tree, SIGNAL(importProgress(int)), SIGNAL(importProgress(int)));
setupNewVoxelsForDrawing();
}
void VoxelSystem::updateFullVBOs() {
updateVBOSegment(0, _voxelsInReadArrays);
// consider the _readVoxelDirtyArray[] clean!
memset(_readVoxelDirtyArray, false, _voxelsInReadArrays * sizeof(bool));
}
void VoxelSystem::updatePartialVBOs() {
glBufferIndex segmentStart = 0;
bool inSegment = false;
for (glBufferIndex i = 0; i < _voxelsInReadArrays; i++) {
bool thisVoxelDirty = _readVoxelDirtyArray[i];
if (!inSegment) {
if (thisVoxelDirty) {
segmentStart = i;
inSegment = true;
_readVoxelDirtyArray[i] = false; // consider us clean!
}
} else {
if (!thisVoxelDirty) {
// If we got here because because this voxel is NOT dirty, so the last dirty voxel was the one before
// this one and so that's where the "segment" ends
updateVBOSegment(segmentStart, i - 1);
inSegment = false;
}
_readVoxelDirtyArray[i] = false; // consider us clean!
}
}
// if we got to the end of the array, and we're in an active dirty segment...
if (inSegment) {
updateVBOSegment(segmentStart, _voxelsInReadArrays - 1);
inSegment = false;
}
}
void VoxelSystem::updateVBOs() {
static char buffer[40] = { 0 };
if (Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings)) {
sprintf(buffer, "updateVBOs() _readRenderFullVBO=%s", debug::valueOf(_readRenderFullVBO));
};
// would like to include _callsToTreesToArrays
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings), buffer);
if (_voxelsDirty) {
if (_readRenderFullVBO) {
updateFullVBOs();
} else {
updatePartialVBOs();
}
_voxelsDirty = false;
_readRenderFullVBO = false;
}
_callsToTreesToArrays = 0; // clear it
}
void VoxelSystem::updateVBOSegment(glBufferIndex segmentStart, glBufferIndex segmentEnd) {
if (_useVoxelShader) {
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * sizeof(VoxelShaderVBOData);
GLsizeiptr segmentSizeBytes = segmentLength * sizeof(VoxelShaderVBOData);
void* readVerticesFrom = &_readVoxelShaderData[segmentStart];
glBindBuffer(GL_ARRAY_BUFFER, _vboVoxelsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
} else {
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
}
}
void VoxelSystem::render(bool texture) {
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings), "render()");
// get the lock so that the update thread won't change anything
pthread_mutex_lock(&_bufferWriteLock);
updateVBOs();
if (_useVoxelShader) {
Application::getInstance()->getVoxelShader().begin();
//Define this somewhere in your header file
#define BUFFER_OFFSET(i) ((void*)(i))
glBindBuffer(GL_ARRAY_BUFFER, _vboVoxelsID);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(VoxelShaderVBOData), BUFFER_OFFSET(0)); //The starting point of the VBO, for the vertices
int loc = Application::getInstance()->getVoxelShader().attributeLocation("voxelSizeIn");
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 1, GL_FLOAT, false, sizeof(VoxelShaderVBOData), BUFFER_OFFSET(3*sizeof(float)));
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(3, GL_UNSIGNED_BYTE, sizeof(VoxelShaderVBOData), BUFFER_OFFSET(4*sizeof(float)));//The starting point of colors
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vboVoxelsIndicesID);
glDrawElements(GL_POINTS, _voxelsInReadArrays, GL_UNSIGNED_INT, BUFFER_OFFSET(0)); //The starting point of the IBO
// deactivate vertex and color arrays after drawing
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
// bind with 0 to switch back to normal operation
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
Application::getInstance()->getVoxelShader().end();
} else {
// tell OpenGL where to find vertex and color information
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glVertexPointer(3, GL_FLOAT, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, _vboNormalsID);
glNormalPointer((_useByteNormals ? GL_BYTE : GL_FLOAT), 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glColorPointer(3, GL_UNSIGNED_BYTE, 0, 0);
applyScaleAndBindProgram(texture);
// for performance, enable backface culling
glEnable(GL_CULL_FACE);
// draw the number of voxels we have
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vboIndicesID);
glDrawRangeElementsEXT(GL_TRIANGLES, 0, VERTICES_PER_VOXEL * _voxelsInReadArrays - 1,
36 * _voxelsInReadArrays, GL_UNSIGNED_INT, 0);
glDisable(GL_CULL_FACE);
removeScaleAndReleaseProgram(texture);
// deactivate vertex and color arrays after drawing
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
// bind with 0 to switch back to normal operation
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
pthread_mutex_unlock(&_bufferWriteLock);
}
void VoxelSystem::applyScaleAndBindProgram(bool texture) {
glPushMatrix();
glScalef(_treeScale, _treeScale, _treeScale);
if (texture) {
_perlinModulateProgram.bind();
glBindTexture(GL_TEXTURE_2D, Application::getInstance()->getTextureCache()->getPermutationNormalTextureID());
}
}
void VoxelSystem::removeScaleAndReleaseProgram(bool texture) {
// scale back down to 1 so heads aren't massive
glPopMatrix();
if (texture) {
_perlinModulateProgram.release();
glBindTexture(GL_TEXTURE_2D, 0);
}
}
int VoxelSystem::_nodeCount = 0;
void VoxelSystem::killLocalVoxels() {
_tree->eraseAllVoxels();
_voxelsInWriteArrays = _voxelsInReadArrays = 0; // better way to do this??
//setupNewVoxelsForDrawing();
}
bool VoxelSystem::randomColorOperation(VoxelNode* node, void* extraData) {
_nodeCount++;
if (node->isColored()) {
nodeColor newColor = { 255, randomColorValue(150), randomColorValue(150), 1 };
node->setColor(newColor);
}
return true;
}
void VoxelSystem::randomizeVoxelColors() {
_nodeCount = 0;
_tree->recurseTreeWithOperation(randomColorOperation);
qDebug("setting randomized true color for %d nodes\n", _nodeCount);
_tree->setDirtyBit();
setupNewVoxelsForDrawing();
}
bool VoxelSystem::falseColorizeRandomOperation(VoxelNode* node, void* extraData) {
_nodeCount++;
// always false colorize
node->setFalseColor(255, randomColorValue(150), randomColorValue(150));
return true; // keep going!
}
void VoxelSystem::falseColorizeRandom() {
_nodeCount = 0;
_tree->recurseTreeWithOperation(falseColorizeRandomOperation);
qDebug("setting randomized false color for %d nodes\n", _nodeCount);
_tree->setDirtyBit();
setupNewVoxelsForDrawing();
}
bool VoxelSystem::trueColorizeOperation(VoxelNode* node, void* extraData) {
_nodeCount++;
node->setFalseColored(false);
return true;
}
void VoxelSystem::trueColorize() {
PerformanceWarning warn(true, "trueColorize()",true);
_nodeCount = 0;
_tree->recurseTreeWithOperation(trueColorizeOperation);
qDebug("setting true color for %d nodes\n", _nodeCount);
_tree->setDirtyBit();
setupNewVoxelsForDrawing();
}
// Will false colorize voxels that are not in view
bool VoxelSystem::falseColorizeInViewOperation(VoxelNode* node, void* extraData) {
const ViewFrustum* viewFrustum = (const ViewFrustum*) extraData;
_nodeCount++;
if (node->isColored()) {
if (!node->isInView(*viewFrustum)) {
// Out of view voxels are colored RED
node->setFalseColor(255, 0, 0);
}
}
return true; // keep going!
}
void VoxelSystem::falseColorizeInView() {
_nodeCount = 0;
_tree->recurseTreeWithOperation(falseColorizeInViewOperation,(void*)_viewFrustum);
qDebug("setting in view false color for %d nodes\n", _nodeCount);
_tree->setDirtyBit();
setupNewVoxelsForDrawing();
}
// helper classes and args for falseColorizeBySource
class groupColor {
public:
unsigned char red, green, blue;
groupColor(unsigned char red, unsigned char green, unsigned char blue) :
red(red), green(green), blue(blue) { }
groupColor() :
red(0), green(0), blue(0) { }
};
class colorizeBySourceArgs {
public:
std::map<uint16_t, groupColor> colors;
};
// Will false colorize voxels that are not in view
bool VoxelSystem::falseColorizeBySourceOperation(VoxelNode* node, void* extraData) {
colorizeBySourceArgs* args = (colorizeBySourceArgs*)extraData;
_nodeCount++;
if (node->isColored()) {
// pick a color based on the source - we want each source to be obviously different
uint16_t nodeID = node->getSourceID();
//printf("false colorizing from source %d, color: %d, %d, %d\n", nodeID,
// args->colors[nodeID].red, args->colors[nodeID].green, args->colors[nodeID].blue);
node->setFalseColor(args->colors[nodeID].red, args->colors[nodeID].green, args->colors[nodeID].blue);
}
return true; // keep going!
}
void VoxelSystem::falseColorizeBySource() {
_nodeCount = 0;
colorizeBySourceArgs args;
const int NUMBER_OF_COLOR_GROUPS = 6;
const unsigned char MIN_COLOR = 128;
int voxelServerCount = 0;
groupColor groupColors[NUMBER_OF_COLOR_GROUPS] = {
groupColor(255, 0, 0),
groupColor( 0, 255, 0),
groupColor( 0, 0, 255),
groupColor(255, 0, 255),
groupColor( 0, 255, 255),
groupColor(255, 255, 255)
};
// create a bunch of colors we'll use during colorization
NodeList* nodeList = NodeList::getInstance();
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
if (node->getType() == NODE_TYPE_VOXEL_SERVER) {
uint16_t nodeID = node->getNodeID();
int groupColor = voxelServerCount % NUMBER_OF_COLOR_GROUPS;
args.colors[nodeID] = groupColors[groupColor];
//printf("assigning color for source %d, color: %d, %d, %d\n", nodeID,
// args.colors[nodeID].red, args.colors[nodeID].green, args.colors[nodeID].blue);
if (groupColors[groupColor].red > 0) {
groupColors[groupColor].red = ((groupColors[groupColor].red - MIN_COLOR)/2) + MIN_COLOR;
}
if (groupColors[groupColor].green > 0) {
groupColors[groupColor].green = ((groupColors[groupColor].green - MIN_COLOR)/2) + MIN_COLOR;
}
if (groupColors[groupColor].blue > 0) {
groupColors[groupColor].blue = ((groupColors[groupColor].blue - MIN_COLOR)/2) + MIN_COLOR;
}
voxelServerCount++;
}
}
_tree->recurseTreeWithOperation(falseColorizeBySourceOperation, &args);
qDebug("setting false color by source for %d nodes\n", _nodeCount);
_tree->setDirtyBit();
setupNewVoxelsForDrawing();
}
// Will false colorize voxels based on distance from view
bool VoxelSystem::falseColorizeDistanceFromViewOperation(VoxelNode* node, void* extraData) {
ViewFrustum* viewFrustum = (ViewFrustum*) extraData;
if (node->isColored()) {
float distance = node->distanceToCamera(*viewFrustum);
_nodeCount++;
float distanceRatio = (_minDistance == _maxDistance) ? 1 : (distance - _minDistance) / (_maxDistance - _minDistance);
// We want to colorize this in 16 bug chunks of color
const unsigned char maxColor = 255;
const unsigned char colorBands = 16;
const unsigned char gradientOver = 128;
unsigned char colorBand = (colorBands * distanceRatio);
node->setFalseColor((colorBand * (gradientOver / colorBands)) + (maxColor - gradientOver), 0, 0);
}
return true; // keep going!
}
float VoxelSystem::_maxDistance = 0.0;
float VoxelSystem::_minDistance = FLT_MAX;
// Helper function will get the distance from view range, would be nice if you could just keep track
// of this as voxels are created and/or colored... seems like some transform math could do that so
// we wouldn't need to do two passes of the tree
bool VoxelSystem::getDistanceFromViewRangeOperation(VoxelNode* node, void* extraData) {
ViewFrustum* viewFrustum = (ViewFrustum*) extraData;
// only do this for truly colored voxels...
if (node->isColored()) {
float distance = node->distanceToCamera(*viewFrustum);
// calculate the range of distances
if (distance > _maxDistance) {
_maxDistance = distance;
}
if (distance < _minDistance) {
_minDistance = distance;
}
_nodeCount++;
}
return true; // keep going!
}
void VoxelSystem::falseColorizeDistanceFromView() {
_nodeCount = 0;
_maxDistance = 0.0;
_minDistance = FLT_MAX;
_tree->recurseTreeWithOperation(getDistanceFromViewRangeOperation, (void*) _viewFrustum);
qDebug("determining distance range for %d nodes\n", _nodeCount);
_nodeCount = 0;
_tree->recurseTreeWithOperation(falseColorizeDistanceFromViewOperation, (void*) _viewFrustum);
qDebug("setting in distance false color for %d nodes\n", _nodeCount);
_tree->setDirtyBit();
setupNewVoxelsForDrawing();
}
// combines the removeOutOfView args into a single class
class removeOutOfViewArgs {
public:
VoxelSystem* thisVoxelSystem;
ViewFrustum* thisViewFrustum;
VoxelNodeBag dontRecurseBag;
unsigned long nodesScanned;
unsigned long nodesRemoved;
unsigned long nodesInside;
unsigned long nodesIntersect;
unsigned long nodesOutside;
removeOutOfViewArgs(VoxelSystem* voxelSystem) :
thisVoxelSystem(voxelSystem),
thisViewFrustum(voxelSystem->getViewFrustum()),
dontRecurseBag(),
nodesScanned(0),
nodesRemoved(0),
nodesInside(0),
nodesIntersect(0),
nodesOutside(0)
{ }
};
void VoxelSystem::cancelImport() {
_tree->cancelImport();
}
// "Remove" voxels from the tree that are not in view. We don't actually delete them,
// we remove them from the tree and place them into a holding area for later deletion
bool VoxelSystem::removeOutOfViewOperation(VoxelNode* node, void* extraData) {
removeOutOfViewArgs* args = (removeOutOfViewArgs*)extraData;
// If our node was previously added to the don't recurse bag, then return false to
// stop the further recursion. This means that the whole node and it's children are
// known to be in view, so don't recurse them
if (args->dontRecurseBag.contains(node)) {
args->dontRecurseBag.remove(node);
return false; // stop recursion
}
VoxelSystem* thisVoxelSystem = args->thisVoxelSystem;
args->nodesScanned++;
// Need to operate on our child nodes, so we can remove them
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
VoxelNode* childNode = node->getChildAtIndex(i);
if (childNode) {
ViewFrustum::location inFrustum = childNode->inFrustum(*args->thisViewFrustum);
switch (inFrustum) {
case ViewFrustum::OUTSIDE: {
args->nodesOutside++;
args->nodesRemoved++;
node->removeChildAtIndex(i);
thisVoxelSystem->_removedVoxels.insert(childNode);
// by removing the child, it will not get recursed!
} break;
case ViewFrustum::INSIDE: {
// if the child node is fully INSIDE the view, then there's no need to recurse it
// because we know all it's children will also be in the view, so we want to
// tell the caller to NOT recurse this child
args->nodesInside++;
args->dontRecurseBag.insert(childNode);
} break;
case ViewFrustum::INTERSECT: {
// if the child node INTERSECTs the view, then we don't want to remove it because
// it is at least partially in view. But we DO want to recurse the children because
// some of them may not be in view... nothing specifically to do, just keep iterating
// the children
args->nodesIntersect++;
} break;
}
}
}
return true; // keep going!
}
bool VoxelSystem::isViewChanging() {
bool result = false; // assume the best
// If our viewFrustum has changed since our _lastKnowViewFrustum
if (!_lastKnowViewFrustum.matches(_viewFrustum)) {
result = true;
_lastKnowViewFrustum = *_viewFrustum; // save last known
}
return result;
}
bool VoxelSystem::hasViewChanged() {
bool result = false; // assume the best
// If we're still changing, report no change yet.
if (isViewChanging()) {
return false;
}
// If our viewFrustum has changed since our _lastKnowViewFrustum
if (!_lastStableViewFrustum.matches(_viewFrustum)) {
result = true;
_lastStableViewFrustum = *_viewFrustum; // save last stable
}
return result;
}
void VoxelSystem::removeOutOfView() {
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings), "removeOutOfView()");
removeOutOfViewArgs args(this);
_tree->recurseTreeWithOperation(removeOutOfViewOperation,(void*)&args);
if (args.nodesRemoved) {
_tree->setDirtyBit();
}
bool showRemoveDebugDetails = false;
if (showRemoveDebugDetails) {
qDebug("removeOutOfView() scanned=%ld removed=%ld inside=%ld intersect=%ld outside=%ld _removedVoxels.count()=%d \n",
args.nodesScanned, args.nodesRemoved, args.nodesInside,
args.nodesIntersect, args.nodesOutside, _removedVoxels.count()
);
}
}
bool VoxelSystem::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
VoxelDetail& detail, float& distance, BoxFace& face) {
pthread_mutex_lock(&_treeLock);
VoxelNode* node;
if (!_tree->findRayIntersection(origin, direction, node, distance, face)) {
pthread_mutex_unlock(&_treeLock);
return false;
}
detail.x = node->getCorner().x;
detail.y = node->getCorner().y;
detail.z = node->getCorner().z;
detail.s = node->getScale();
detail.red = node->getColor()[0];
detail.green = node->getColor()[1];
detail.blue = node->getColor()[2];
pthread_mutex_unlock(&_treeLock);
return true;
}
bool VoxelSystem::findSpherePenetration(const glm::vec3& center, float radius, glm::vec3& penetration) {
pthread_mutex_lock(&_treeLock);
bool result = _tree->findSpherePenetration(center, radius, penetration);
pthread_mutex_unlock(&_treeLock);
return result;
}
bool VoxelSystem::findCapsulePenetration(const glm::vec3& start, const glm::vec3& end, float radius, glm::vec3& penetration) {
pthread_mutex_lock(&_treeLock);
bool result = _tree->findCapsulePenetration(start, end, radius, penetration);
pthread_mutex_unlock(&_treeLock);
return result;
}
class falseColorizeRandomEveryOtherArgs {
public:
falseColorizeRandomEveryOtherArgs() : totalNodes(0), colorableNodes(0), coloredNodes(0), colorThis(true) {};
unsigned long totalNodes;
unsigned long colorableNodes;
unsigned long coloredNodes;
bool colorThis;
};
bool VoxelSystem::falseColorizeRandomEveryOtherOperation(VoxelNode* node, void* extraData) {
falseColorizeRandomEveryOtherArgs* args = (falseColorizeRandomEveryOtherArgs*)extraData;
args->totalNodes++;
if (node->isColored()) {
args->colorableNodes++;
if (args->colorThis) {
args->coloredNodes++;
node->setFalseColor(255, randomColorValue(150), randomColorValue(150));
}
args->colorThis = !args->colorThis;
}
return true; // keep going!
}
void VoxelSystem::falseColorizeRandomEveryOther() {
falseColorizeRandomEveryOtherArgs args;
_tree->recurseTreeWithOperation(falseColorizeRandomEveryOtherOperation,&args);
qDebug("randomized false color for every other node: total %ld, colorable %ld, colored %ld\n",
args.totalNodes, args.colorableNodes, args.coloredNodes);
_tree->setDirtyBit();
setupNewVoxelsForDrawing();
}
class collectStatsForTreesAndVBOsArgs {
public:
collectStatsForTreesAndVBOsArgs() :
totalNodes(0),
dirtyNodes(0),
shouldRenderNodes(0),
coloredNodes(0),
nodesInVBO(0),
nodesInVBONotShouldRender(0),
nodesInVBOOverExpectedMax(0),
duplicateVBOIndex(0),
leafNodes(0)
{
memset(hasIndexFound, false, DEFAULT_MAX_VOXELS_PER_SYSTEM * sizeof(bool));
};
unsigned long totalNodes;
unsigned long dirtyNodes;
unsigned long shouldRenderNodes;
unsigned long coloredNodes;
unsigned long nodesInVBO;
unsigned long nodesInVBONotShouldRender;
unsigned long nodesInVBOOverExpectedMax;
unsigned long duplicateVBOIndex;
unsigned long leafNodes;
unsigned long expectedMax;
bool hasIndexFound[DEFAULT_MAX_VOXELS_PER_SYSTEM];
};
bool VoxelSystem::collectStatsForTreesAndVBOsOperation(VoxelNode* node, void* extraData) {
collectStatsForTreesAndVBOsArgs* args = (collectStatsForTreesAndVBOsArgs*)extraData;
args->totalNodes++;
if (node->isLeaf()) {
args->leafNodes++;
}
if (node->isColored()) {
args->coloredNodes++;
}
if (node->getShouldRender()) {
args->shouldRenderNodes++;
}
if (node->isDirty()) {
args->dirtyNodes++;
}
if (node->isKnownBufferIndex()) {
args->nodesInVBO++;
unsigned long nodeIndex = node->getBufferIndex();
if (args->hasIndexFound[nodeIndex]) {
args->duplicateVBOIndex++;
qDebug("duplicateVBO found... index=%ld, isDirty=%s, shouldRender=%s \n", nodeIndex,
debug::valueOf(node->isDirty()), debug::valueOf(node->getShouldRender()));
} else {
args->hasIndexFound[nodeIndex] = true;
}
if (nodeIndex > args->expectedMax) {
args->nodesInVBOOverExpectedMax++;
}
// if it's in VBO but not-shouldRender, track that also...
if (!node->getShouldRender()) {
args->nodesInVBONotShouldRender++;
}
}
return true; // keep going!
}
void VoxelSystem::collectStatsForTreesAndVBOs() {
PerformanceWarning warn(true, "collectStatsForTreesAndVBOs()", true);
glBufferIndex minDirty = GLBUFFER_INDEX_UNKNOWN;
glBufferIndex maxDirty = 0;
for (glBufferIndex i = 0; i < _voxelsInWriteArrays; i++) {
if (_writeVoxelDirtyArray[i]) {
minDirty = std::min(minDirty,i);
maxDirty = std::max(maxDirty,i);
}
}
collectStatsForTreesAndVBOsArgs args;
args.expectedMax = _voxelsInWriteArrays;
_tree->recurseTreeWithOperation(collectStatsForTreesAndVBOsOperation,&args);
qDebug("Local Voxel Tree Statistics:\n total nodes %ld \n leaves %ld \n dirty %ld \n colored %ld \n shouldRender %ld \n",
args.totalNodes, args.leafNodes, args.dirtyNodes, args.coloredNodes, args.shouldRenderNodes);
qDebug(" _voxelsDirty=%s \n _voxelsInWriteArrays=%ld \n minDirty=%ld \n maxDirty=%ld \n", debug::valueOf(_voxelsDirty),
_voxelsInWriteArrays, minDirty, maxDirty);
qDebug(" inVBO %ld \n nodesInVBOOverExpectedMax %ld \n duplicateVBOIndex %ld \n nodesInVBONotShouldRender %ld \n",
args.nodesInVBO, args.nodesInVBOOverExpectedMax, args.duplicateVBOIndex, args.nodesInVBONotShouldRender);
glBufferIndex minInVBO = GLBUFFER_INDEX_UNKNOWN;
glBufferIndex maxInVBO = 0;
for (glBufferIndex i = 0; i < DEFAULT_MAX_VOXELS_PER_SYSTEM; i++) {
if (args.hasIndexFound[i]) {
minInVBO = std::min(minInVBO,i);
maxInVBO = std::max(maxInVBO,i);
}
}
qDebug(" minInVBO=%ld \n maxInVBO=%ld \n _voxelsInWriteArrays=%ld \n _voxelsInReadArrays=%ld \n",
minInVBO, maxInVBO, _voxelsInWriteArrays, _voxelsInReadArrays);
}
void VoxelSystem::deleteVoxelAt(float x, float y, float z, float s) {
pthread_mutex_lock(&_treeLock);
_tree->deleteVoxelAt(x, y, z, s);
// redraw!
setupNewVoxelsForDrawing(); // do we even need to do this? Or will the next network receive kick in?
pthread_mutex_unlock(&_treeLock);
};
VoxelNode* VoxelSystem::getVoxelAt(float x, float y, float z, float s) const {
return _tree->getVoxelAt(x, y, z, s);
};
void VoxelSystem::createVoxel(float x, float y, float z, float s,
unsigned char red, unsigned char green, unsigned char blue, bool destructive) {
pthread_mutex_lock(&_treeLock);
//qDebug("VoxelSystem::createVoxel(%f,%f,%f,%f)\n",x,y,z,s);
_tree->createVoxel(x, y, z, s, red, green, blue, destructive);
setupNewVoxelsForDrawing();
pthread_mutex_unlock(&_treeLock);
};
void VoxelSystem::createLine(glm::vec3 point1, glm::vec3 point2, float unitSize, rgbColor color, bool destructive) {
_tree->createLine(point1, point2, unitSize, color, destructive);
setupNewVoxelsForDrawing();
};
void VoxelSystem::createSphere(float r,float xc, float yc, float zc, float s, bool solid,
creationMode mode, bool destructive, bool debug) {
_tree->createSphere(r, xc, yc, zc, s, solid, mode, destructive, debug);
setupNewVoxelsForDrawing();
};
void VoxelSystem::copySubTreeIntoNewTree(VoxelNode* startNode, VoxelSystem* destination, bool rebaseToRoot) {
_tree->copySubTreeIntoNewTree(startNode, destination->_tree, rebaseToRoot);
destination->setupNewVoxelsForDrawing();
}
void VoxelSystem::copySubTreeIntoNewTree(VoxelNode* startNode, VoxelTree* destination, bool rebaseToRoot) {
_tree->copySubTreeIntoNewTree(startNode, destination, rebaseToRoot);
}
void VoxelSystem::copyFromTreeIntoSubTree(VoxelTree* sourceTree, VoxelNode* destinationNode) {
_tree->copyFromTreeIntoSubTree(sourceTree, destinationNode);
}
void VoxelSystem::recurseTreeWithOperation(RecurseVoxelTreeOperation operation, void* extraData) {
_tree->recurseTreeWithOperation(operation, extraData);
}
struct FalseColorizeOccludedArgs {
ViewFrustum* viewFrustum;
CoverageMap* map;
CoverageMapV2* mapV2;
VoxelTree* tree;
long totalVoxels;
long coloredVoxels;
long occludedVoxels;
long notOccludedVoxels;
long outOfView;
long subtreeVoxelsSkipped;
long nonLeaves;
long nonLeavesOutOfView;
long nonLeavesOccluded;
};
struct FalseColorizeSubTreeOperationArgs {
unsigned char color[NUMBER_OF_COLORS];
long voxelsTouched;
};
bool VoxelSystem::falseColorizeSubTreeOperation(VoxelNode* node, void* extraData) {
if (node->getShouldRender()) {
FalseColorizeSubTreeOperationArgs* args = (FalseColorizeSubTreeOperationArgs*) extraData;
node->setFalseColor(args->color[0], args->color[1], args->color[2]);
args->voxelsTouched++;
}
return true;
}
bool VoxelSystem::falseColorizeOccludedOperation(VoxelNode* node, void* extraData) {
FalseColorizeOccludedArgs* args = (FalseColorizeOccludedArgs*) extraData;
args->totalVoxels++;
// If we are a parent, let's see if we're completely occluded.
if (!node->isLeaf()) {
args->nonLeaves++;
AABox voxelBox = node->getAABox();
voxelBox.scale(TREE_SCALE);
VoxelProjectedPolygon* voxelPolygon = new VoxelProjectedPolygon(args->viewFrustum->getProjectedPolygon(voxelBox));
// If we're not all in view, then ignore it, and just return. But keep searching...
if (!voxelPolygon->getAllInView()) {
args->nonLeavesOutOfView++;
delete voxelPolygon;
return true;
}
CoverageMapStorageResult result = args->map->checkMap(voxelPolygon, false);
if (result == OCCLUDED) {
args->nonLeavesOccluded++;
delete voxelPolygon;
FalseColorizeSubTreeOperationArgs subArgs;
subArgs.color[0] = 0;
subArgs.color[1] = 255;
subArgs.color[2] = 0;
subArgs.voxelsTouched = 0;
args->tree->recurseNodeWithOperation(node, falseColorizeSubTreeOperation, &subArgs );
args->subtreeVoxelsSkipped += (subArgs.voxelsTouched - 1);
args->totalVoxels += (subArgs.voxelsTouched - 1);
return false;
}
delete voxelPolygon;
return true; // keep looking...
}
if (node->isLeaf() && node->isColored() && node->getShouldRender()) {
args->coloredVoxels++;
AABox voxelBox = node->getAABox();
voxelBox.scale(TREE_SCALE);
VoxelProjectedPolygon* voxelPolygon = new VoxelProjectedPolygon(args->viewFrustum->getProjectedPolygon(voxelBox));
// If we're not all in view, then ignore it, and just return. But keep searching...
if (!voxelPolygon->getAllInView()) {
args->outOfView++;
delete voxelPolygon;
return true;
}
CoverageMapStorageResult result = args->map->checkMap(voxelPolygon, true);
if (result == OCCLUDED) {
node->setFalseColor(255, 0, 0);
args->occludedVoxels++;
} else if (result == STORED) {
args->notOccludedVoxels++;
//qDebug("***** falseColorizeOccludedOperation() NODE is STORED *****\n");
} else if (result == DOESNT_FIT) {
//qDebug("***** falseColorizeOccludedOperation() NODE DOESNT_FIT???? *****\n");
}
}
return true; // keep going!
}
void VoxelSystem::falseColorizeOccluded() {
PerformanceWarning warn(true, "falseColorizeOccluded()",true);
myCoverageMap.erase();
FalseColorizeOccludedArgs args;
args.viewFrustum = _viewFrustum;
args.map = &myCoverageMap;
args.totalVoxels = 0;
args.coloredVoxels = 0;
args.occludedVoxels = 0;
args.notOccludedVoxels = 0;
args.outOfView = 0;
args.subtreeVoxelsSkipped = 0;
args.nonLeaves = 0;
args.nonLeavesOutOfView = 0;
args.nonLeavesOccluded = 0;
args.tree = _tree;
VoxelProjectedPolygon::pointInside_calls = 0;
VoxelProjectedPolygon::occludes_calls = 0;
VoxelProjectedPolygon::intersects_calls = 0;
glm::vec3 position = args.viewFrustum->getPosition() * (1.0f/TREE_SCALE);
_tree->recurseTreeWithOperationDistanceSorted(falseColorizeOccludedOperation, position, (void*)&args);
qDebug("falseColorizeOccluded()\n position=(%f,%f)\n total=%ld\n colored=%ld\n occluded=%ld\n notOccluded=%ld\n outOfView=%ld\n subtreeVoxelsSkipped=%ld\n nonLeaves=%ld\n nonLeavesOutOfView=%ld\n nonLeavesOccluded=%ld\n pointInside_calls=%ld\n occludes_calls=%ld\n intersects_calls=%ld\n",
position.x, position.y,
args.totalVoxels, args.coloredVoxels, args.occludedVoxels,
args.notOccludedVoxels, args.outOfView, args.subtreeVoxelsSkipped,
args.nonLeaves, args.nonLeavesOutOfView, args.nonLeavesOccluded,
VoxelProjectedPolygon::pointInside_calls,
VoxelProjectedPolygon::occludes_calls,
VoxelProjectedPolygon::intersects_calls
);
//myCoverageMap.erase();
_tree->setDirtyBit();
setupNewVoxelsForDrawing();
}
bool VoxelSystem::falseColorizeOccludedV2Operation(VoxelNode* node, void* extraData) {
FalseColorizeOccludedArgs* args = (FalseColorizeOccludedArgs*) extraData;
args->totalVoxels++;
// If we are a parent, let's see if we're completely occluded.
if (!node->isLeaf()) {
args->nonLeaves++;
AABox voxelBox = node->getAABox();
voxelBox.scale(TREE_SCALE);
VoxelProjectedPolygon* voxelPolygon = new VoxelProjectedPolygon(args->viewFrustum->getProjectedPolygon(voxelBox));
// If we're not all in view, then ignore it, and just return. But keep searching...
if (!voxelPolygon->getAllInView()) {
args->nonLeavesOutOfView++;
delete voxelPolygon;
return true;
}
CoverageMapV2StorageResult result = args->mapV2->checkMap(voxelPolygon, false);
if (result == V2_OCCLUDED) {
args->nonLeavesOccluded++;
delete voxelPolygon;
FalseColorizeSubTreeOperationArgs subArgs;
subArgs.color[0] = 0;
subArgs.color[1] = 255;
subArgs.color[2] = 0;
subArgs.voxelsTouched = 0;
args->tree->recurseNodeWithOperation(node, falseColorizeSubTreeOperation, &subArgs );
args->subtreeVoxelsSkipped += (subArgs.voxelsTouched - 1);
args->totalVoxels += (subArgs.voxelsTouched - 1);
return false;
}
delete voxelPolygon;
return true; // keep looking...
}
if (node->isLeaf() && node->isColored() && node->getShouldRender()) {
args->coloredVoxels++;
AABox voxelBox = node->getAABox();
voxelBox.scale(TREE_SCALE);
VoxelProjectedPolygon* voxelPolygon = new VoxelProjectedPolygon(args->viewFrustum->getProjectedPolygon(voxelBox));
// If we're not all in view, then ignore it, and just return. But keep searching...
if (!voxelPolygon->getAllInView()) {
args->outOfView++;
delete voxelPolygon;
return true;
}
CoverageMapV2StorageResult result = args->mapV2->checkMap(voxelPolygon, true);
if (result == V2_OCCLUDED) {
node->setFalseColor(255, 0, 0);
args->occludedVoxels++;
} else if (result == V2_STORED) {
args->notOccludedVoxels++;
//qDebug("***** falseColorizeOccludedOperation() NODE is STORED *****\n");
} else if (result == V2_DOESNT_FIT) {
//qDebug("***** falseColorizeOccludedOperation() NODE DOESNT_FIT???? *****\n");
}
delete voxelPolygon; // V2 maps don't store polygons, so we're always in charge of freeing
}
return true; // keep going!
}
void VoxelSystem::falseColorizeOccludedV2() {
PerformanceWarning warn(true, "falseColorizeOccludedV2()",true);
myCoverageMapV2.erase();
CoverageMapV2::wantDebugging = true;
VoxelProjectedPolygon::pointInside_calls = 0;
VoxelProjectedPolygon::occludes_calls = 0;
VoxelProjectedPolygon::intersects_calls = 0;
FalseColorizeOccludedArgs args;
args.viewFrustum = _viewFrustum;
args.mapV2 = &myCoverageMapV2;
args.totalVoxels = 0;
args.coloredVoxels = 0;
args.occludedVoxels = 0;
args.notOccludedVoxels = 0;
args.outOfView = 0;
args.subtreeVoxelsSkipped = 0;
args.nonLeaves = 0;
args.nonLeavesOutOfView = 0;
args.nonLeavesOccluded = 0;
args.tree = _tree;
glm::vec3 position = args.viewFrustum->getPosition() * (1.0f/TREE_SCALE);
_tree->recurseTreeWithOperationDistanceSorted(falseColorizeOccludedV2Operation, position, (void*)&args);
qDebug("falseColorizeOccludedV2()\n position=(%f,%f)\n total=%ld\n colored=%ld\n occluded=%ld\n notOccluded=%ld\n outOfView=%ld\n subtreeVoxelsSkipped=%ld\n nonLeaves=%ld\n nonLeavesOutOfView=%ld\n nonLeavesOccluded=%ld\n pointInside_calls=%ld\n occludes_calls=%ld\n intersects_calls=%ld\n",
position.x, position.y,
args.totalVoxels, args.coloredVoxels, args.occludedVoxels,
args.notOccludedVoxels, args.outOfView, args.subtreeVoxelsSkipped,
args.nonLeaves, args.nonLeavesOutOfView, args.nonLeavesOccluded,
VoxelProjectedPolygon::pointInside_calls,
VoxelProjectedPolygon::occludes_calls,
VoxelProjectedPolygon::intersects_calls
);
//myCoverageMapV2.erase();
_tree->setDirtyBit();
setupNewVoxelsForDrawing();
}
void VoxelSystem::nodeAdded(Node* node) {
if (node->getType() == NODE_TYPE_VOXEL_SERVER) {
uint16_t nodeID = node->getNodeID();
qDebug("VoxelSystem... voxel server %u added...\n", nodeID);
_voxelServerCount++;
}
}
bool VoxelSystem::killSourceVoxelsOperation(VoxelNode* node, void* extraData) {
uint16_t killedNodeID = *(uint16_t*)extraData;
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
VoxelNode* childNode = node->getChildAtIndex(i);
if (childNode) {
uint16_t childNodeID = childNode->getSourceID();
if (childNodeID == killedNodeID) {
node->safeDeepDeleteChildAtIndex(i);
}
}
}
return true;
}
void VoxelSystem::nodeKilled(Node* node) {
if (node->getType() == NODE_TYPE_VOXEL_SERVER) {
_voxelServerCount--;
uint16_t nodeID = node->getNodeID();
qDebug("VoxelSystem... voxel server %u removed...\n", nodeID);
if (_voxelServerCount > 0) {
// Kill any voxels from the local tree that match this nodeID
_tree->recurseTreeWithOperation(killSourceVoxelsOperation, &nodeID);
_tree->setDirtyBit();
} else {
// Last server, take the easy way and kill all the local voxels!
_tree->eraseAllVoxels();
_voxelsInWriteArrays = _voxelsInReadArrays = 0; // better way to do this??
}
setupNewVoxelsForDrawing();
}
}