overte-HifiExperiments/libraries/render-utils/src/MeshPartPayload.cpp

467 lines
15 KiB
C++

//
// MeshPartPayload.cpp
// interface/src/renderer
//
// Created by Sam Gateau on 10/3/15.
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "MeshPartPayload.h"
#include <PerfStat.h>
#include <DualQuaternion.h>
#include <graphics/ShaderConstants.h>
#include "render-utils/ShaderConstants.h"
#include "DeferredLightingEffect.h"
#include "RenderPipelines.h"
using namespace render;
namespace render {
template <> const ItemKey payloadGetKey(const MeshPartPayload::Pointer& payload) {
if (payload) {
return payload->getKey();
}
return ItemKey::Builder::opaqueShape(); // for lack of a better idea
}
template <> const Item::Bound payloadGetBound(const MeshPartPayload::Pointer& payload) {
if (payload) {
return payload->getBound();
}
return Item::Bound();
}
template <> const ShapeKey shapeGetShapeKey(const MeshPartPayload::Pointer& payload) {
if (payload) {
return payload->getShapeKey();
}
return ShapeKey::Builder::invalid();
}
template <> void payloadRender(const MeshPartPayload::Pointer& payload, RenderArgs* args) {
return payload->render(args);
}
}
const graphics::MaterialPointer MeshPartPayload::DEFAULT_MATERIAL = std::make_shared<graphics::Material>();
MeshPartPayload::MeshPartPayload(const std::shared_ptr<const graphics::Mesh>& mesh, int partIndex, graphics::MaterialPointer material) {
updateMeshPart(mesh, partIndex);
addMaterial(graphics::MaterialLayer(material, 0));
}
void MeshPartPayload::updateMeshPart(const std::shared_ptr<const graphics::Mesh>& drawMesh, int partIndex) {
_drawMesh = drawMesh;
if (_drawMesh) {
auto vertexFormat = _drawMesh->getVertexFormat();
_hasColorAttrib = vertexFormat->hasAttribute(gpu::Stream::COLOR);
_drawPart = _drawMesh->getPartBuffer().get<graphics::Mesh::Part>(partIndex);
_localBound = _drawMesh->evalPartBound(partIndex);
}
}
void MeshPartPayload::updateTransform(const Transform& transform, const Transform& offsetTransform) {
_transform = transform;
Transform::mult(_drawTransform, _transform, offsetTransform);
_worldBound = _localBound;
_worldBound.transform(_drawTransform);
}
void MeshPartPayload::addMaterial(graphics::MaterialLayer material) {
_drawMaterials.push(material);
}
void MeshPartPayload::removeMaterial(graphics::MaterialPointer material) {
_drawMaterials.remove(material);
}
void MeshPartPayload::updateKey(const render::ItemKey& key) {
ItemKey::Builder builder(key);
builder.withTypeShape();
if (topMaterialExists()) {
auto matKey = _drawMaterials.top().material->getKey();
if (matKey.isTranslucent()) {
builder.withTransparent();
}
}
_itemKey = builder.build();
}
ItemKey MeshPartPayload::getKey() const {
return _itemKey;
}
Item::Bound MeshPartPayload::getBound() const {
return _worldBound;
}
ShapeKey MeshPartPayload::getShapeKey() const {
graphics::MaterialKey drawMaterialKey;
if (topMaterialExists()) {
drawMaterialKey = _drawMaterials.top().material->getKey();
}
ShapeKey::Builder builder;
builder.withMaterial();
if (drawMaterialKey.isTranslucent()) {
builder.withTranslucent();
}
if (drawMaterialKey.isNormalMap()) {
builder.withTangents();
}
if (drawMaterialKey.isLightmapMap()) {
builder.withLightmap();
}
return builder.build();
}
void MeshPartPayload::drawCall(gpu::Batch& batch) const {
batch.drawIndexed(gpu::TRIANGLES, _drawPart._numIndices, _drawPart._startIndex);
}
void MeshPartPayload::bindMesh(gpu::Batch& batch) {
batch.setIndexBuffer(gpu::UINT32, (_drawMesh->getIndexBuffer()._buffer), 0);
batch.setInputFormat((_drawMesh->getVertexFormat()));
batch.setInputStream(0, _drawMesh->getVertexStream());
}
void MeshPartPayload::bindTransform(gpu::Batch& batch, RenderArgs::RenderMode renderMode) const {
batch.setModelTransform(_drawTransform);
}
void MeshPartPayload::render(RenderArgs* args) {
PerformanceTimer perfTimer("MeshPartPayload::render");
if (!args) {
return;
}
gpu::Batch& batch = *(args->_batch);
// Bind the model transform and the skinCLusterMatrices if needed
bindTransform(batch, args->_renderMode);
//Bind the index buffer and vertex buffer and Blend shapes if needed
bindMesh(batch);
// apply material properties
if (args->_renderMode != render::Args::RenderMode::SHADOW_RENDER_MODE) {
RenderPipelines::bindMaterial(!_drawMaterials.empty() ? _drawMaterials.top().material : DEFAULT_MATERIAL, batch, args->_enableTexturing);
args->_details._materialSwitches++;
}
// Draw!
{
PerformanceTimer perfTimer("batch.drawIndexed()");
drawCall(batch);
}
const int INDICES_PER_TRIANGLE = 3;
args->_details._trianglesRendered += _drawPart._numIndices / INDICES_PER_TRIANGLE;
}
namespace render {
template <> const ItemKey payloadGetKey(const ModelMeshPartPayload::Pointer& payload) {
if (payload) {
return payload->getKey();
}
return ItemKey::Builder::opaqueShape(); // for lack of a better idea
}
template <> const Item::Bound payloadGetBound(const ModelMeshPartPayload::Pointer& payload) {
if (payload) {
return payload->getBound();
}
return Item::Bound();
}
template <> const ShapeKey shapeGetShapeKey(const ModelMeshPartPayload::Pointer& payload) {
if (payload) {
return payload->getShapeKey();
}
return ShapeKey::Builder::invalid();
}
template <> void payloadRender(const ModelMeshPartPayload::Pointer& payload, RenderArgs* args) {
return payload->render(args);
}
}
ModelMeshPartPayload::ModelMeshPartPayload(ModelPointer model, int meshIndex, int partIndex, int shapeIndex, const Transform& transform, const Transform& offsetTransform) :
_meshIndex(meshIndex),
_shapeID(shapeIndex) {
assert(model && model->isLoaded());
bool useDualQuaternionSkinning = model->getUseDualQuaternionSkinning();
auto buffer = model->_blendshapeBuffers.find(meshIndex);
if (buffer != model->_blendshapeBuffers.end()) {
_blendshapeBuffer = buffer->second;
}
auto& modelMesh = model->getGeometry()->getMeshes().at(_meshIndex);
const Model::MeshState& state = model->getMeshState(_meshIndex);
updateMeshPart(modelMesh, partIndex);
if (useDualQuaternionSkinning) {
computeAdjustedLocalBound(state.clusterDualQuaternions);
} else {
computeAdjustedLocalBound(state.clusterMatrices);
}
updateTransform(transform, offsetTransform);
Transform renderTransform = transform;
if (useDualQuaternionSkinning) {
if (state.clusterDualQuaternions.size() == 1) {
const auto& dq = state.clusterDualQuaternions[0];
Transform transform(dq.getRotation(),
dq.getScale(),
dq.getTranslation());
renderTransform = transform.worldTransform(Transform(transform));
}
} else {
if (state.clusterMatrices.size() == 1) {
renderTransform = transform.worldTransform(Transform(state.clusterMatrices[0]));
}
}
updateTransformForSkinnedMesh(renderTransform, transform);
initCache(model);
}
void ModelMeshPartPayload::initCache(const ModelPointer& model) {
if (_drawMesh) {
auto vertexFormat = _drawMesh->getVertexFormat();
_hasColorAttrib = vertexFormat->hasAttribute(gpu::Stream::COLOR);
_isSkinned = vertexFormat->hasAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT) && vertexFormat->hasAttribute(gpu::Stream::SKIN_CLUSTER_INDEX);
const FBXGeometry& geometry = model->getFBXGeometry();
const FBXMesh& mesh = geometry.meshes.at(_meshIndex);
_isBlendShaped = !mesh.blendshapes.isEmpty();
_hasTangents = !mesh.tangents.isEmpty();
}
auto networkMaterial = model->getGeometry()->getShapeMaterial(_shapeID);
if (networkMaterial) {
addMaterial(graphics::MaterialLayer(networkMaterial, 0));
}
}
void ModelMeshPartPayload::notifyLocationChanged() {
}
void ModelMeshPartPayload::updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices) {
// reset cluster buffer if we change the cluster buffer type
if (_clusterBufferType != ClusterBufferType::Matrices) {
_clusterBuffer.reset();
}
_clusterBufferType = ClusterBufferType::Matrices;
// Once computed the cluster matrices, update the buffer(s)
if (clusterMatrices.size() > 1) {
if (!_clusterBuffer) {
_clusterBuffer = std::make_shared<gpu::Buffer>(clusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) clusterMatrices.data());
}
else {
_clusterBuffer->setSubData(0, clusterMatrices.size() * sizeof(glm::mat4),
(const gpu::Byte*) clusterMatrices.data());
}
}
}
void ModelMeshPartPayload::updateClusterBuffer(const std::vector<Model::TransformDualQuaternion>& clusterDualQuaternions) {
// reset cluster buffer if we change the cluster buffer type
if (_clusterBufferType != ClusterBufferType::DualQuaternions) {
_clusterBuffer.reset();
}
_clusterBufferType = ClusterBufferType::DualQuaternions;
// Once computed the cluster matrices, update the buffer(s)
if (clusterDualQuaternions.size() > 1) {
if (!_clusterBuffer) {
_clusterBuffer = std::make_shared<gpu::Buffer>(clusterDualQuaternions.size() * sizeof(Model::TransformDualQuaternion),
(const gpu::Byte*) clusterDualQuaternions.data());
}
else {
_clusterBuffer->setSubData(0, clusterDualQuaternions.size() * sizeof(Model::TransformDualQuaternion),
(const gpu::Byte*) clusterDualQuaternions.data());
}
}
}
void ModelMeshPartPayload::updateTransformForSkinnedMesh(const Transform& renderTransform, const Transform& boundTransform) {
_transform = renderTransform;
_worldBound = _adjustedLocalBound;
_worldBound.transform(boundTransform);
}
// Note that this method is called for models but not for shapes
void ModelMeshPartPayload::updateKey(const render::ItemKey& key) {
ItemKey::Builder builder(key);
builder.withTypeShape();
if (_isBlendShaped || _isSkinned) {
builder.withDeformed();
}
if (topMaterialExists()) {
auto matKey = _drawMaterials.top().material->getKey();
if (matKey.isTranslucent()) {
builder.withTransparent();
}
}
_itemKey = builder.build();
}
void ModelMeshPartPayload::setShapeKey(bool invalidateShapeKey, bool isWireframe, bool useDualQuaternionSkinning) {
if (invalidateShapeKey) {
_shapeKey = ShapeKey::Builder::invalid();
return;
}
graphics::MaterialKey drawMaterialKey;
if (topMaterialExists()) {
drawMaterialKey = _drawMaterials.top().material->getKey();
}
bool isTranslucent = drawMaterialKey.isTranslucent();
bool hasTangents = drawMaterialKey.isNormalMap() && _hasTangents;
bool hasLightmap = drawMaterialKey.isLightmapMap();
bool isUnlit = drawMaterialKey.isUnlit();
bool isSkinned = _isSkinned;
if (isWireframe) {
isTranslucent = hasTangents = hasLightmap = isSkinned = false;
}
ShapeKey::Builder builder;
builder.withMaterial();
if (isTranslucent) {
builder.withTranslucent();
}
if (hasTangents) {
builder.withTangents();
}
if (hasLightmap) {
builder.withLightmap();
}
if (isUnlit) {
builder.withUnlit();
}
if (isSkinned) {
builder.withSkinned();
}
if (isWireframe) {
builder.withWireframe();
}
if (isSkinned && useDualQuaternionSkinning) {
builder.withDualQuatSkinned();
}
_shapeKey = builder.build();
}
ShapeKey ModelMeshPartPayload::getShapeKey() const {
return _shapeKey;
}
void ModelMeshPartPayload::bindMesh(gpu::Batch& batch) {
batch.setIndexBuffer(gpu::UINT32, (_drawMesh->getIndexBuffer()._buffer), 0);
batch.setInputFormat((_drawMesh->getVertexFormat()));
if (_blendshapeBuffer) {
batch.setResourceBuffer(0, _blendshapeBuffer);
}
batch.setInputStream(0, _drawMesh->getVertexStream());
}
void ModelMeshPartPayload::bindTransform(gpu::Batch& batch, RenderArgs::RenderMode renderMode) const {
if (_clusterBuffer) {
batch.setUniformBuffer(graphics::slot::buffer::Skinning, _clusterBuffer);
}
batch.setModelTransform(_transform);
}
void ModelMeshPartPayload::render(RenderArgs* args) {
PerformanceTimer perfTimer("ModelMeshPartPayload::render");
if (!args) {
return;
}
gpu::Batch& batch = *(args->_batch);
bindTransform(batch, args->_renderMode);
//Bind the index buffer and vertex buffer and Blend shapes if needed
bindMesh(batch);
// apply material properties
if (args->_renderMode != render::Args::RenderMode::SHADOW_RENDER_MODE) {
RenderPipelines::bindMaterial(!_drawMaterials.empty() ? _drawMaterials.top().material : DEFAULT_MATERIAL, batch, args->_enableTexturing);
args->_details._materialSwitches++;
}
// Draw!
{
PerformanceTimer perfTimer("batch.drawIndexed()");
drawCall(batch);
}
const int INDICES_PER_TRIANGLE = 3;
args->_details._trianglesRendered += _drawPart._numIndices / INDICES_PER_TRIANGLE;
}
void ModelMeshPartPayload::computeAdjustedLocalBound(const std::vector<glm::mat4>& clusterMatrices) {
_adjustedLocalBound = _localBound;
if (clusterMatrices.size() > 0) {
_adjustedLocalBound.transform(clusterMatrices[0]);
for (int i = 1; i < (int)clusterMatrices.size(); ++i) {
AABox clusterBound = _localBound;
clusterBound.transform(clusterMatrices[i]);
_adjustedLocalBound += clusterBound;
}
}
}
void ModelMeshPartPayload::computeAdjustedLocalBound(const std::vector<Model::TransformDualQuaternion>& clusterDualQuaternions) {
_adjustedLocalBound = _localBound;
if (clusterDualQuaternions.size() > 0) {
Transform rootTransform(clusterDualQuaternions[0].getRotation(),
clusterDualQuaternions[0].getScale(),
clusterDualQuaternions[0].getTranslation());
_adjustedLocalBound.transform(rootTransform);
for (int i = 1; i < (int)clusterDualQuaternions.size(); ++i) {
AABox clusterBound = _localBound;
Transform transform(clusterDualQuaternions[i].getRotation(),
clusterDualQuaternions[i].getScale(),
clusterDualQuaternions[i].getTranslation());
clusterBound.transform(transform);
_adjustedLocalBound += clusterBound;
}
}
}