overte-HifiExperiments/libraries/octree/src/OctreeElement.cpp
2018-05-04 16:26:41 -07:00

691 lines
23 KiB
C++

//
// OctreeElement.cpp
// libraries/octree/src
//
// Created by Stephen Birarda on 3/13/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "OctreeElement.h"
#include <assert.h>
#include <cmath>
#include <cstring>
#include <stdio.h>
#include <QtCore/QDebug>
#include <Profile.h>
#include <LogHandler.h>
#include <NodeList.h>
#include <PerfStat.h>
#include <Trace.h>
#include "AACube.h"
#include "Logging.h"
#include "OctalCode.h"
#include "Octree.h"
#include "OctreeConstants.h"
#include "OctreeLogging.h"
#include "OctreeUtils.h"
#include "SharedUtil.h"
AtomicUIntStat OctreeElement::_octreeMemoryUsage { 0 };
AtomicUIntStat OctreeElement::_octcodeMemoryUsage { 0 };
AtomicUIntStat OctreeElement::_externalChildrenMemoryUsage { 0 };
AtomicUIntStat OctreeElement::_voxelNodeCount { 0 };
AtomicUIntStat OctreeElement::_voxelNodeLeafCount { 0 };
void OctreeElement::resetPopulationStatistics() {
_voxelNodeCount = 0;
_voxelNodeLeafCount = 0;
}
OctreeElement::OctreeElement() {
// Note: you must call init() from your subclass, otherwise the OctreeElement will not be properly
// initialized. You will see DEADBEEF in your memory debugger if you have not properly called init()
// debug::setDeadBeef(this, sizeof(*this));
}
void OctreeElement::init(unsigned char * octalCode) {
if (!octalCode) {
octalCode = new unsigned char[1];
*octalCode = 0;
}
_voxelNodeCount++;
_voxelNodeLeafCount++; // all nodes start as leaf nodes
size_t octalCodeLength = bytesRequiredForCodeLength(numberOfThreeBitSectionsInCode(octalCode));
if (octalCodeLength > sizeof(_octalCode)) {
_octalCode.pointer = octalCode;
_octcodePointer = true;
_octcodeMemoryUsage += octalCodeLength;
} else {
_octcodePointer = false;
memcpy(_octalCode.buffer, octalCode, octalCodeLength);
delete[] octalCode;
}
// set up the _children union
_childBitmask = 0;
_childrenExternal = false;
_childrenCount[0]++;
// default pointers to child nodes to NULL
#ifdef SIMPLE_CHILD_ARRAY
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
_simpleChildArray[i] = NULL;
}
#endif
#ifdef SIMPLE_EXTERNAL_CHILDREN
_childrenSingle.reset();
#endif
for (int i = 0; i < NUMBER_OF_CHILDREN; i ++) {
_externalChildren[i].reset();
}
_isDirty = true;
_shouldRender = false;
_sourceUUIDKey = 0;
calculateAACube();
markWithChangedTime();
}
OctreeElement::~OctreeElement() {
_voxelNodeCount--;
if (isLeaf()) {
_voxelNodeLeafCount--;
}
if (_octcodePointer) {
_octcodeMemoryUsage -= bytesRequiredForCodeLength(numberOfThreeBitSectionsInCode(getOctalCode()));
delete[] _octalCode.pointer;
}
// delete all of this node's children, this also takes care of all population tracking data
deleteAllChildren();
}
void OctreeElement::markWithChangedTime() {
_lastChanged = usecTimestampNow();
}
// This method is called by Octree when the subtree below this node
// is known to have changed. It's intended to be used as a place to do
// bookkeeping that a node may need to do when the subtree below it has
// changed. However, you should hopefully make your bookkeeping relatively
// localized, because this method will get called for every node in an
// recursive unwinding case like delete or add voxel
void OctreeElement::handleSubtreeChanged(OctreePointer myTree) {
// here's a good place to do color re-averaging...
if (myTree->getShouldReaverage()) {
calculateAverageFromChildren();
}
markWithChangedTime();
}
const uint16_t KEY_FOR_NULL = 0;
uint16_t OctreeElement::_nextUUIDKey = KEY_FOR_NULL + 1; // start at 1, 0 is reserved for NULL
std::map<QString, uint16_t> OctreeElement::_mapSourceUUIDsToKeys;
std::map<uint16_t, QString> OctreeElement::_mapKeysToSourceUUIDs;
void OctreeElement::setSourceUUID(const QUuid& sourceUUID) {
uint16_t key;
QString sourceUUIDString = sourceUUID.toString();
if (_mapSourceUUIDsToKeys.end() != _mapSourceUUIDsToKeys.find(sourceUUIDString)) {
key = _mapSourceUUIDsToKeys[sourceUUIDString];
} else {
key = _nextUUIDKey;
_nextUUIDKey++;
_mapSourceUUIDsToKeys[sourceUUIDString] = key;
_mapKeysToSourceUUIDs[key] = sourceUUIDString;
}
_sourceUUIDKey = key;
}
QUuid OctreeElement::getSourceUUID() const {
if (_sourceUUIDKey > KEY_FOR_NULL) {
if (_mapKeysToSourceUUIDs.end() != _mapKeysToSourceUUIDs.find(_sourceUUIDKey)) {
return QUuid(_mapKeysToSourceUUIDs[_sourceUUIDKey]);
}
}
return QUuid();
}
bool OctreeElement::matchesSourceUUID(const QUuid& sourceUUID) const {
if (_sourceUUIDKey > KEY_FOR_NULL) {
if (_mapKeysToSourceUUIDs.end() != _mapKeysToSourceUUIDs.find(_sourceUUIDKey)) {
return QUuid(_mapKeysToSourceUUIDs[_sourceUUIDKey]) == sourceUUID;
}
}
return sourceUUID.isNull();
}
uint16_t OctreeElement::getSourceNodeUUIDKey(const QUuid& sourceUUID) {
uint16_t key = KEY_FOR_NULL;
QString sourceUUIDString = sourceUUID.toString();
if (_mapSourceUUIDsToKeys.end() != _mapSourceUUIDsToKeys.find(sourceUUIDString)) {
key = _mapSourceUUIDsToKeys[sourceUUIDString];
}
return key;
}
void OctreeElement::setShouldRender(bool shouldRender) {
// if shouldRender is changing, then consider ourselves dirty
if (shouldRender != _shouldRender) {
_shouldRender = shouldRender;
_isDirty = true;
markWithChangedTime();
}
}
void OctreeElement::calculateAACube() {
// copy corner into cube
glm::vec3 corner;
copyFirstVertexForCode(getOctalCode(), (float*)&corner);
// this tells you the "size" of the voxel
float voxelScale = (float)TREE_SCALE / powf(2.0f, numberOfThreeBitSectionsInCode(getOctalCode()));
corner *= (float)TREE_SCALE;
corner -= (float)HALF_TREE_SCALE;
_cube.setBox(corner, voxelScale);
}
void OctreeElement::deleteChildAtIndex(int childIndex) {
OctreeElementPointer childAt = getChildAtIndex(childIndex);
if (childAt) {
childAt.reset();
setChildAtIndex(childIndex, NULL);
_isDirty = true;
markWithChangedTime();
// after deleting the child, check to see if we're a leaf
if (isLeaf()) {
_voxelNodeLeafCount++;
}
}
}
// does not delete the node!
OctreeElementPointer OctreeElement::removeChildAtIndex(int childIndex) {
OctreeElementPointer returnedChild = getChildAtIndex(childIndex);
if (returnedChild) {
setChildAtIndex(childIndex, NULL);
_isDirty = true;
markWithChangedTime();
// after removing the child, check to see if we're a leaf
if (isLeaf()) {
_voxelNodeLeafCount++;
}
}
return returnedChild;
}
bool OctreeElement::isParentOf(const OctreeElementPointer& possibleChild) const {
if (possibleChild) {
for (int childIndex = 0; childIndex < NUMBER_OF_CHILDREN; childIndex++) {
OctreeElementPointer childAt = getChildAtIndex(childIndex);
if (childAt == possibleChild) {
return true;
}
}
}
return false;
}
AtomicUIntStat OctreeElement::_getChildAtIndexTime { 0 };
AtomicUIntStat OctreeElement::_getChildAtIndexCalls { 0 };
AtomicUIntStat OctreeElement::_setChildAtIndexTime { 0 };
AtomicUIntStat OctreeElement::_setChildAtIndexCalls { 0 };
AtomicUIntStat OctreeElement::_externalChildrenCount { 0 };
AtomicUIntStat OctreeElement::_childrenCount[NUMBER_OF_CHILDREN + 1];
OctreeElementPointer OctreeElement::getChildAtIndex(int childIndex) const {
#ifdef SIMPLE_CHILD_ARRAY
return _simpleChildArray[childIndex];
#endif // SIMPLE_CHILD_ARRAY
#ifdef SIMPLE_EXTERNAL_CHILDREN
int childCount = getChildCount();
switch (childCount) {
case 0: {
return NULL;
} break;
case 1: {
// if our single child is the one being requested, return it, otherwise
// return null
int firstIndex = getNthBit(_childBitmask, 1);
if (firstIndex == childIndex) {
return _childrenSingle;
} else {
return NULL;
}
} break;
default : {
return _externalChildren[childIndex];
} break;
}
#endif // def SIMPLE_EXTERNAL_CHILDREN
}
void OctreeElement::deleteAllChildren() {
// first delete all the OctreeElement objects...
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
OctreeElementPointer childAt = getChildAtIndex(i);
if (childAt) {
childAt.reset();
}
}
if (_childrenExternal) {
// if the children_t union represents _children.external we need to delete it here
for (int i = 0; i < NUMBER_OF_CHILDREN; i ++) {
_externalChildren[i].reset();
}
}
}
void OctreeElement::setChildAtIndex(int childIndex, const OctreeElementPointer& child) {
#ifdef SIMPLE_CHILD_ARRAY
int previousChildCount = getChildCount();
if (child) {
setAtBit(_childBitmask, childIndex);
} else {
clearAtBit(_childBitmask, childIndex);
}
int newChildCount = getChildCount();
// store the child in our child array
_simpleChildArray[childIndex] = child;
// track our population data
if (previousChildCount != newChildCount) {
_childrenCount[previousChildCount]--;
_childrenCount[newChildCount]++;
}
#endif
#ifdef SIMPLE_EXTERNAL_CHILDREN
int firstIndex = getNthBit(_childBitmask, 1);
int secondIndex = getNthBit(_childBitmask, 2);
int previousChildCount = getChildCount();
if (child) {
setAtBit(_childBitmask, childIndex);
} else {
clearAtBit(_childBitmask, childIndex);
}
int newChildCount = getChildCount();
// track our population data
if (previousChildCount != newChildCount) {
_childrenCount[previousChildCount]--;
_childrenCount[newChildCount]++;
}
if ((previousChildCount == 0 || previousChildCount == 1) && newChildCount == 0) {
_childrenSingle.reset();
} else if (previousChildCount == 0 && newChildCount == 1) {
_childrenSingle = child;
} else if (previousChildCount == 1 && newChildCount == 2) {
OctreeElementPointer previousChild = _childrenSingle;
for (int i = 0; i < NUMBER_OF_CHILDREN; i ++) {
_externalChildren[i].reset();
}
_externalChildren[firstIndex] = previousChild;
_externalChildren[childIndex] = child;
_childrenExternal = true;
_externalChildrenMemoryUsage += NUMBER_OF_CHILDREN * sizeof(OctreeElementPointer);
} else if (previousChildCount == 2 && newChildCount == 1) {
assert(!child); // we are removing a child, so this must be true!
OctreeElementPointer previousFirstChild = _externalChildren[firstIndex];
OctreeElementPointer previousSecondChild = _externalChildren[secondIndex];
for (int i = 0; i < NUMBER_OF_CHILDREN; i ++) {
_externalChildren[i].reset();
}
_childrenExternal = false;
_externalChildrenMemoryUsage -= NUMBER_OF_CHILDREN * sizeof(OctreeElementPointer);
if (childIndex == firstIndex) {
_childrenSingle = previousSecondChild;
} else {
_childrenSingle = previousFirstChild;
}
} else {
_externalChildren[childIndex] = child;
}
#endif // def SIMPLE_EXTERNAL_CHILDREN
}
OctreeElementPointer OctreeElement::addChildAtIndex(int childIndex) {
OctreeElementPointer childAt = getChildAtIndex(childIndex);
if (!childAt) {
// before adding a child, see if we're currently a leaf
if (isLeaf()) {
_voxelNodeLeafCount--;
}
unsigned char* newChildCode = childOctalCode(getOctalCode(), childIndex);
childAt = createNewElement(newChildCode);
setChildAtIndex(childIndex, childAt);
_isDirty = true;
markWithChangedTime();
}
return childAt;
}
// handles staging or deletion of all deep children
bool OctreeElement::safeDeepDeleteChildAtIndex(int childIndex, int recursionCount) {
bool deleteApproved = false;
if (recursionCount > DANGEROUSLY_DEEP_RECURSION) {
HIFI_FCDEBUG(octree(), "OctreeElement::safeDeepDeleteChildAtIndex() reached DANGEROUSLY_DEEP_RECURSION, bailing!");
return deleteApproved;
}
OctreeElementPointer childToDelete = getChildAtIndex(childIndex);
if (childToDelete) {
if (childToDelete->deleteApproved()) {
// If the child is not a leaf, then call ourselves recursively on all the children
if (!childToDelete->isLeaf()) {
// delete all it's children
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
if (childToDelete->getChildAtIndex(i)) {
deleteApproved = childToDelete->safeDeepDeleteChildAtIndex(i,recursionCount+1);
if (!deleteApproved) {
break; // no point in continuing...
}
}
}
} else {
deleteApproved = true; // because we got here after checking that delete was approved
}
if (deleteApproved) {
deleteChildAtIndex(childIndex);
_isDirty = true;
markWithChangedTime();
}
}
}
return deleteApproved;
}
void OctreeElement::printDebugDetails(const char* label) const {
unsigned char childBits = 0;
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
OctreeElementPointer childAt = getChildAtIndex(i);
if (childAt) {
setAtBit(childBits,i);
}
}
QString resultString;
resultString.sprintf("%s - Voxel at corner=(%f,%f,%f) size=%f\n isLeaf=%s isDirty=%s shouldRender=%s\n children=", label,
(double)_cube.getCorner().x, (double)_cube.getCorner().y, (double)_cube.getCorner().z,
(double)_cube.getScale(),
debug::valueOf(isLeaf()), debug::valueOf(isDirty()), debug::valueOf(getShouldRender()));
qCDebug(octree).nospace() << resultString;
}
float OctreeElement::getEnclosingRadius() const {
return getScale() * sqrtf(3.0f) / 2.0f;
}
ViewFrustum::intersection OctreeElement::computeViewIntersection(const ViewFrustum& viewFrustum) const {
return viewFrustum.calculateCubeKeyholeIntersection(_cube);
}
// Calculates the distance to the furthest point of the voxel to the camera
// does as much math as possible in voxel scale and then scales up to TREE_SCALE at end
float OctreeElement::furthestDistanceToCamera(const ViewFrustum& viewFrustum) const {
glm::vec3 furthestPoint;
viewFrustum.getFurthestPointFromCamera(_cube, furthestPoint);
glm::vec3 temp = viewFrustum.getPosition() - furthestPoint;
return sqrtf(glm::dot(temp, temp));
}
float OctreeElement::distanceToCamera(const ViewFrustum& viewFrustum) const {
glm::vec3 center = _cube.calcCenter();
glm::vec3 temp = viewFrustum.getPosition() - center;
float distanceToVoxelCenter = sqrtf(glm::dot(temp, temp));
return distanceToVoxelCenter;
}
float OctreeElement::distanceSquareToPoint(const glm::vec3& point) const {
glm::vec3 temp = point - _cube.calcCenter();
float distanceSquare = glm::dot(temp, temp);
return distanceSquare;
}
float OctreeElement::distanceToPoint(const glm::vec3& point) const {
glm::vec3 temp = point - _cube.calcCenter();
float distance = sqrtf(glm::dot(temp, temp));
return distance;
}
bool OctreeElement::findSpherePenetration(const glm::vec3& center, float radius,
glm::vec3& penetration, void** penetratedObject) const {
// center and radius are in meters, so we have to scale the _cube into world-frame
return _cube.findSpherePenetration(center, radius, penetration);
}
// TODO: consider removing this, or switching to using getOrCreateChildElementContaining(const AACube& box)...
OctreeElementPointer OctreeElement::getOrCreateChildElementAt(float x, float y, float z, float s) {
OctreeElementPointer child = NULL;
// If the requested size is less than or equal to our scale, but greater than half our scale, then
// we are the Element they are looking for.
float ourScale = getScale();
float halfOurScale = ourScale / 2.0f;
if(s > ourScale) {
qCDebug(octree, "UNEXPECTED -- OctreeElement::getOrCreateChildElementAt() s=[%f] > ourScale=[%f] ",
(double)s, (double)ourScale);
}
if (s > halfOurScale) {
return shared_from_this();
}
int childIndex = getMyChildContainingPoint(glm::vec3(x, y, z));
// Now, check if we have a child at that location
child = getChildAtIndex(childIndex);
if (!child) {
child = addChildAtIndex(childIndex);
}
// Now that we have the child to recurse down, let it answer the original question...
return child->getOrCreateChildElementAt(x, y, z, s);
}
OctreeElementPointer OctreeElement::getOrCreateChildElementContaining(const AACube& cube) {
OctreeElementPointer child = NULL;
int childIndex = getMyChildContaining(cube);
// If getMyChildContaining() returns CHILD_UNKNOWN then it means that our level
// is the correct level for this cube
if (childIndex == CHILD_UNKNOWN) {
return shared_from_this();
}
// Now, check if we have a child at that location
child = getChildAtIndex(childIndex);
if (!child) {
child = addChildAtIndex(childIndex);
}
// if we've made a really small child, then go ahead and use that one.
if (child->getScale() <= SMALLEST_REASONABLE_OCTREE_ELEMENT_SCALE) {
return child;
}
// Now that we have the child to recurse down, let it answer the original question...
return child->getOrCreateChildElementContaining(cube);
}
OctreeElementPointer OctreeElement::getOrCreateChildElementContaining(const AABox& box) {
OctreeElementPointer child = NULL;
int childIndex = getMyChildContaining(box);
// If getMyChildContaining() returns CHILD_UNKNOWN then it means that our level
// is the correct level for this cube
if (childIndex == CHILD_UNKNOWN) {
return shared_from_this();
}
// Now, check if we have a child at that location
child = getChildAtIndex(childIndex);
if (!child) {
child = addChildAtIndex(childIndex);
}
// if we've made a really small child, then go ahead and use that one.
if (child->getScale() <= SMALLEST_REASONABLE_OCTREE_ELEMENT_SCALE) {
return child;
}
// Now that we have the child to recurse down, let it answer the original question...
return child->getOrCreateChildElementContaining(box);
}
int OctreeElement::getMyChildContaining(const AACube& cube) const {
float ourScale = getScale();
float cubeScale = cube.getScale();
// TODO: consider changing this to assert()
if (cubeScale > ourScale) {
qCDebug(octree) << "UNEXPECTED -- OctreeElement::getMyChildContaining() -- (cubeScale > ourScale)";
qCDebug(octree) << " cube=" << cube;
qCDebug(octree) << " elements AACube=" << _cube;
qCDebug(octree) << " cubeScale=" << cubeScale;
qCDebug(octree) << " ourScale=" << ourScale;
assert(false);
}
// Determine which of our children the minimum and maximum corners of the cube live in...
glm::vec3 cubeCornerMinimum = glm::clamp(cube.getCorner(), (float)-HALF_TREE_SCALE, (float)HALF_TREE_SCALE);
glm::vec3 cubeCornerMaximum = glm::clamp(cube.calcTopFarLeft(), (float)-HALF_TREE_SCALE, (float)HALF_TREE_SCALE);
if (_cube.contains(cubeCornerMinimum) && _cube.contains(cubeCornerMaximum)) {
int childIndexCubeMinimum = getMyChildContainingPoint(cubeCornerMinimum);
int childIndexCubeMaximum = getMyChildContainingPoint(cubeCornerMaximum);
// If the minimum and maximum corners of the cube are in two different children's cubes, then we are the containing element
if (childIndexCubeMinimum != childIndexCubeMaximum) {
return CHILD_UNKNOWN;
}
return childIndexCubeMinimum; // either would do, they are the same
}
return CHILD_UNKNOWN; // since cube is not contained in our element, it can't be in one of our children
}
int OctreeElement::getMyChildContaining(const AABox& box) const {
float ourScale = getScale();
float boxLargestScale = box.getLargestDimension();
// TODO: consider changing this to assert()
if(boxLargestScale > ourScale) {
qCDebug(octree, "UNEXPECTED -- OctreeElement::getMyChildContaining() "
"boxLargestScale=[%f] > ourScale=[%f] ", (double)boxLargestScale, (double)ourScale);
}
// Determine which of our children the minimum and maximum corners of the cube live in...
glm::vec3 cubeCornerMinimum = box.getCorner();
glm::vec3 cubeCornerMaximum = box.calcTopFarLeft();
if (_cube.contains(cubeCornerMinimum) && _cube.contains(cubeCornerMaximum)) {
int childIndexCubeMinimum = getMyChildContainingPoint(cubeCornerMinimum);
int childIndexCubeMaximum = getMyChildContainingPoint(cubeCornerMaximum);
// If the minimum and maximum corners of the cube are in two different children's cubes,
// then we are the containing element
if (childIndexCubeMinimum != childIndexCubeMaximum) {
return CHILD_UNKNOWN;
}
return childIndexCubeMinimum; // either would do, they are the same
}
return CHILD_UNKNOWN; // since box is not contained in our element, it can't be in one of our children
}
int OctreeElement::getMyChildContainingPoint(const glm::vec3& point) const {
glm::vec3 ourCenter = _cube.calcCenter();
int childIndex = CHILD_UNKNOWN;
// since point is not contained in our element, it can't be in one of our children
if (!_cube.contains(point)) {
return CHILD_UNKNOWN;
}
// left half
if (point.x > ourCenter.x) {
if (point.y > ourCenter.y) {
// top left
if (point.z > ourCenter.z) {
// top left far
childIndex = CHILD_TOP_LEFT_FAR;
} else {
// top left near
childIndex = CHILD_TOP_LEFT_NEAR;
}
} else {
// bottom left
if (point.z > ourCenter.z) {
// bottom left far
childIndex = CHILD_BOTTOM_LEFT_FAR;
} else {
// bottom left near
childIndex = CHILD_BOTTOM_LEFT_NEAR;
}
}
} else {
// right half
if (point.y > ourCenter.y) {
// top right
if (point.z > ourCenter.z) {
// top right far
childIndex = CHILD_TOP_RIGHT_FAR;
} else {
// top right near
childIndex = CHILD_TOP_RIGHT_NEAR;
}
} else {
// bottom right
if (point.z > ourCenter.z) {
// bottom right far
childIndex = CHILD_BOTTOM_RIGHT_FAR;
} else {
// bottom right near
childIndex = CHILD_BOTTOM_RIGHT_NEAR;
}
}
}
return childIndex;
}