mirror of
https://github.com/HifiExperiments/overte.git
synced 2025-06-20 00:20:14 +02:00
890 lines
37 KiB
C++
890 lines
37 KiB
C++
//
|
|
// Audio.cpp
|
|
// interface
|
|
//
|
|
// Created by Stephen Birarda on 1/22/13.
|
|
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
|
|
//
|
|
|
|
#include <cstring>
|
|
#include <sys/stat.h>
|
|
|
|
#include <math.h>
|
|
|
|
#ifdef __APPLE__
|
|
#include <CoreAudio/AudioHardware.h>
|
|
#endif
|
|
|
|
#include <QtCore/QBuffer>
|
|
#include <QtMultimedia/QAudioInput>
|
|
#include <QtMultimedia/QAudioOutput>
|
|
#include <QSvgRenderer>
|
|
|
|
#include <NodeList.h>
|
|
#include <PacketHeaders.h>
|
|
#include <SharedUtil.h>
|
|
#include <StdDev.h>
|
|
#include <UUID.h>
|
|
|
|
#include "Application.h"
|
|
#include "Audio.h"
|
|
#include "Menu.h"
|
|
#include "Util.h"
|
|
|
|
static const float AUDIO_CALLBACK_MSECS = (float) NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float)SAMPLE_RATE * 1000.0;
|
|
|
|
static const int NUMBER_OF_NOISE_SAMPLE_FRAMES = 300;
|
|
|
|
// Mute icon configration
|
|
static const int MUTE_ICON_SIZE = 24;
|
|
|
|
Audio::Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples, QObject* parent) :
|
|
AbstractAudioInterface(parent),
|
|
_audioInput(NULL),
|
|
_desiredInputFormat(),
|
|
_inputFormat(),
|
|
_numInputCallbackBytes(0),
|
|
_audioOutput(NULL),
|
|
_desiredOutputFormat(),
|
|
_outputFormat(),
|
|
_outputDevice(NULL),
|
|
_numOutputCallbackBytes(0),
|
|
_loopbackAudioOutput(NULL),
|
|
_loopbackOutputDevice(NULL),
|
|
_proceduralAudioOutput(NULL),
|
|
_proceduralOutputDevice(NULL),
|
|
_inputRingBuffer(0),
|
|
_ringBuffer(NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL),
|
|
_scope(scope),
|
|
_averagedLatency(0.0),
|
|
_measuredJitter(0),
|
|
_jitterBufferSamples(initialJitterBufferSamples),
|
|
_lastInputLoudness(0),
|
|
_timeSinceLastClip(-1.0),
|
|
_dcOffset(0),
|
|
_noiseGateMeasuredFloor(0),
|
|
_noiseGateSampleCounter(0),
|
|
_noiseGateOpen(false),
|
|
_noiseGateEnabled(true),
|
|
_noiseGateFramesToClose(0),
|
|
_lastVelocity(0),
|
|
_lastAcceleration(0),
|
|
_totalPacketsReceived(0),
|
|
_collisionSoundMagnitude(0.0f),
|
|
_collisionSoundFrequency(0.0f),
|
|
_collisionSoundNoise(0.0f),
|
|
_collisionSoundDuration(0.0f),
|
|
_proceduralEffectSample(0),
|
|
_numFramesDisplayStarve(0),
|
|
_muted(false)
|
|
{
|
|
// clear the array of locally injected samples
|
|
memset(_localProceduralSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
|
|
// Create the noise sample array
|
|
_noiseSampleFrames = new float[NUMBER_OF_NOISE_SAMPLE_FRAMES];
|
|
}
|
|
|
|
void Audio::init(QGLWidget *parent) {
|
|
_micTextureId = parent->bindTexture(QImage(Application::resourcesPath() + "images/mic.svg"));
|
|
_muteTextureId = parent->bindTexture(QImage(Application::resourcesPath() + "images/mute.svg"));
|
|
}
|
|
|
|
void Audio::reset() {
|
|
_ringBuffer.reset();
|
|
}
|
|
|
|
QAudioDeviceInfo getNamedAudioDeviceForMode(QAudio::Mode mode, const QString& deviceName) {
|
|
QAudioDeviceInfo result;
|
|
foreach(QAudioDeviceInfo audioDevice, QAudioDeviceInfo::availableDevices(mode)) {
|
|
if (audioDevice.deviceName().trimmed() == deviceName.trimmed()) {
|
|
result = audioDevice;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
QAudioDeviceInfo defaultAudioDeviceForMode(QAudio::Mode mode) {
|
|
#ifdef __APPLE__
|
|
if (QAudioDeviceInfo::availableDevices(mode).size() > 1) {
|
|
AudioDeviceID defaultDeviceID = 0;
|
|
uint32_t propertySize = sizeof(AudioDeviceID);
|
|
AudioObjectPropertyAddress propertyAddress = {
|
|
kAudioHardwarePropertyDefaultInputDevice,
|
|
kAudioObjectPropertyScopeGlobal,
|
|
kAudioObjectPropertyElementMaster
|
|
};
|
|
|
|
if (mode == QAudio::AudioOutput) {
|
|
propertyAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
|
|
}
|
|
|
|
|
|
OSStatus getPropertyError = AudioObjectGetPropertyData(kAudioObjectSystemObject,
|
|
&propertyAddress,
|
|
0,
|
|
NULL,
|
|
&propertySize,
|
|
&defaultDeviceID);
|
|
|
|
if (!getPropertyError && propertySize) {
|
|
CFStringRef deviceName = NULL;
|
|
propertySize = sizeof(deviceName);
|
|
propertyAddress.mSelector = kAudioDevicePropertyDeviceNameCFString;
|
|
getPropertyError = AudioObjectGetPropertyData(defaultDeviceID, &propertyAddress, 0,
|
|
NULL, &propertySize, &deviceName);
|
|
|
|
if (!getPropertyError && propertySize) {
|
|
// find a device in the list that matches the name we have and return it
|
|
foreach(QAudioDeviceInfo audioDevice, QAudioDeviceInfo::availableDevices(mode)) {
|
|
if (audioDevice.deviceName() == CFStringGetCStringPtr(deviceName, kCFStringEncodingMacRoman)) {
|
|
return audioDevice;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// fallback for failed lookup is the default device
|
|
return (mode == QAudio::AudioInput) ? QAudioDeviceInfo::defaultInputDevice() : QAudioDeviceInfo::defaultOutputDevice();
|
|
}
|
|
|
|
bool adjustedFormatForAudioDevice(const QAudioDeviceInfo& audioDevice,
|
|
const QAudioFormat& desiredAudioFormat,
|
|
QAudioFormat& adjustedAudioFormat) {
|
|
if (!audioDevice.isFormatSupported(desiredAudioFormat)) {
|
|
qDebug() << "The desired format for audio I/O is" << desiredAudioFormat;
|
|
qDebug("The desired audio format is not supported by this device");
|
|
|
|
if (desiredAudioFormat.channelCount() == 1) {
|
|
adjustedAudioFormat = desiredAudioFormat;
|
|
adjustedAudioFormat.setChannelCount(2);
|
|
|
|
if (audioDevice.isFormatSupported(adjustedAudioFormat)) {
|
|
return true;
|
|
} else {
|
|
adjustedAudioFormat.setChannelCount(1);
|
|
}
|
|
}
|
|
|
|
if (audioDevice.supportedSampleRates().contains(SAMPLE_RATE * 2)) {
|
|
// use 48, which is a sample downsample, upsample
|
|
adjustedAudioFormat = desiredAudioFormat;
|
|
adjustedAudioFormat.setSampleRate(SAMPLE_RATE * 2);
|
|
|
|
// return the nearest in case it needs 2 channels
|
|
adjustedAudioFormat = audioDevice.nearestFormat(adjustedAudioFormat);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
} else {
|
|
// set the adjustedAudioFormat to the desiredAudioFormat, since it will work
|
|
adjustedAudioFormat = desiredAudioFormat;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void linearResampling(int16_t* sourceSamples, int16_t* destinationSamples,
|
|
unsigned int numSourceSamples, unsigned int numDestinationSamples,
|
|
const QAudioFormat& sourceAudioFormat, const QAudioFormat& destinationAudioFormat) {
|
|
if (sourceAudioFormat == destinationAudioFormat) {
|
|
memcpy(destinationSamples, sourceSamples, numSourceSamples * sizeof(int16_t));
|
|
} else {
|
|
float sourceToDestinationFactor = (sourceAudioFormat.sampleRate() / (float) destinationAudioFormat.sampleRate())
|
|
* (sourceAudioFormat.channelCount() / (float) destinationAudioFormat.channelCount());
|
|
|
|
// take into account the number of channels in source and destination
|
|
// accomodate for the case where have an output with > 2 channels
|
|
// this is the case with our HDMI capture
|
|
|
|
if (sourceToDestinationFactor >= 2) {
|
|
// we need to downsample from 48 to 24
|
|
// for now this only supports a mono output - this would be the case for audio input
|
|
|
|
for (unsigned int i = sourceAudioFormat.channelCount(); i < numSourceSamples; i += 2 * sourceAudioFormat.channelCount()) {
|
|
if (i + (sourceAudioFormat.channelCount()) >= numSourceSamples) {
|
|
destinationSamples[(i - sourceAudioFormat.channelCount()) / (int) sourceToDestinationFactor] =
|
|
(sourceSamples[i - sourceAudioFormat.channelCount()] / 2)
|
|
+ (sourceSamples[i] / 2);
|
|
} else {
|
|
destinationSamples[(i - sourceAudioFormat.channelCount()) / (int) sourceToDestinationFactor] =
|
|
(sourceSamples[i - sourceAudioFormat.channelCount()] / 4)
|
|
+ (sourceSamples[i] / 2)
|
|
+ (sourceSamples[i + sourceAudioFormat.channelCount()] / 4);
|
|
}
|
|
}
|
|
|
|
} else {
|
|
if (sourceAudioFormat.sampleRate() == destinationAudioFormat.sampleRate()) {
|
|
// mono to stereo, same sample rate
|
|
if (!(sourceAudioFormat.channelCount() == 1 && destinationAudioFormat.channelCount() == 2)) {
|
|
qWarning() << "Unsupported format conversion" << sourceAudioFormat << destinationAudioFormat;
|
|
return;
|
|
}
|
|
for (const int16_t* sourceEnd = sourceSamples + numSourceSamples; sourceSamples != sourceEnd;
|
|
sourceSamples++) {
|
|
*destinationSamples++ = *sourceSamples;
|
|
*destinationSamples++ = *sourceSamples;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// upsample from 24 to 48
|
|
// for now this only supports a stereo to stereo conversion - this is our case for network audio to output
|
|
int sourceIndex = 0;
|
|
int dtsSampleRateFactor = (destinationAudioFormat.sampleRate() / sourceAudioFormat.sampleRate());
|
|
int sampleShift = destinationAudioFormat.channelCount() * dtsSampleRateFactor;
|
|
int destinationToSourceFactor = (1 / sourceToDestinationFactor);
|
|
|
|
for (unsigned int i = 0; i < numDestinationSamples; i += sampleShift) {
|
|
sourceIndex = (i / destinationToSourceFactor);
|
|
|
|
// fill the L/R channels and make the rest silent
|
|
for (unsigned int j = i; j < i + sampleShift; j++) {
|
|
if (j % destinationAudioFormat.channelCount() == 0) {
|
|
// left channel
|
|
destinationSamples[j] = sourceSamples[sourceIndex];
|
|
} else if (j % destinationAudioFormat.channelCount() == 1) {
|
|
// right channel
|
|
destinationSamples[j] = sourceSamples[sourceIndex + (sourceAudioFormat.channelCount() > 1 ? 1 : 0)];
|
|
} else {
|
|
// channels above 2, fill with silence
|
|
destinationSamples[j] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const int CALLBACK_ACCELERATOR_RATIO = 2;
|
|
|
|
void Audio::start() {
|
|
|
|
// set up the desired audio format
|
|
_desiredInputFormat.setSampleRate(SAMPLE_RATE);
|
|
_desiredInputFormat.setSampleSize(16);
|
|
_desiredInputFormat.setCodec("audio/pcm");
|
|
_desiredInputFormat.setSampleType(QAudioFormat::SignedInt);
|
|
_desiredInputFormat.setByteOrder(QAudioFormat::LittleEndian);
|
|
_desiredInputFormat.setChannelCount(1);
|
|
|
|
_desiredOutputFormat = _desiredInputFormat;
|
|
_desiredOutputFormat.setChannelCount(2);
|
|
|
|
QAudioDeviceInfo inputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioInput);
|
|
qDebug() << "The default audio input device is" << inputDeviceInfo.deviceName();
|
|
bool inputFormatSupported = switchInputToAudioDevice(inputDeviceInfo.deviceName());
|
|
|
|
QAudioDeviceInfo outputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioOutput);
|
|
qDebug() << "The default audio output device is" << outputDeviceInfo.deviceName();
|
|
bool outputFormatSupported = switchOutputToAudioDevice(outputDeviceInfo.deviceName());
|
|
|
|
if (!inputFormatSupported || !outputFormatSupported) {
|
|
qDebug() << "Unable to set up audio I/O because of a problem with input or output formats.";
|
|
}
|
|
}
|
|
|
|
QString Audio::getDefaultDeviceName(QAudio::Mode mode) {
|
|
QAudioDeviceInfo deviceInfo = defaultAudioDeviceForMode(mode);
|
|
return deviceInfo.deviceName();
|
|
}
|
|
|
|
QVector<QString> Audio::getDeviceNames(QAudio::Mode mode) {
|
|
QVector<QString> deviceNames;
|
|
foreach(QAudioDeviceInfo audioDevice, QAudioDeviceInfo::availableDevices(mode)) {
|
|
deviceNames << audioDevice.deviceName().trimmed();
|
|
}
|
|
return deviceNames;
|
|
}
|
|
|
|
bool Audio::switchInputToAudioDevice(const QString& inputDeviceName) {
|
|
bool supportedFormat = false;
|
|
|
|
// cleanup any previously initialized device
|
|
if (_audioInput) {
|
|
_audioInput->stop();
|
|
disconnect(_inputDevice, 0, 0, 0);
|
|
_inputDevice = NULL;
|
|
|
|
delete _audioInput;
|
|
_audioInput = NULL;
|
|
_numInputCallbackBytes = 0;
|
|
|
|
_inputAudioDeviceName = "";
|
|
}
|
|
|
|
QAudioDeviceInfo inputDeviceInfo = getNamedAudioDeviceForMode(QAudio::AudioInput, inputDeviceName);
|
|
|
|
if (!inputDeviceInfo.isNull()) {
|
|
qDebug() << "The audio input device " << inputDeviceInfo.deviceName() << "is available.";
|
|
_inputAudioDeviceName = inputDeviceInfo.deviceName().trimmed();
|
|
|
|
if (adjustedFormatForAudioDevice(inputDeviceInfo, _desiredInputFormat, _inputFormat)) {
|
|
qDebug() << "The format to be used for audio input is" << _inputFormat;
|
|
|
|
_audioInput = new QAudioInput(inputDeviceInfo, _inputFormat, this);
|
|
_numInputCallbackBytes = NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL * _inputFormat.channelCount()
|
|
* (_inputFormat.sampleRate() / SAMPLE_RATE)
|
|
/ CALLBACK_ACCELERATOR_RATIO;
|
|
_audioInput->setBufferSize(_numInputCallbackBytes);
|
|
|
|
// how do we want to handle input working, but output not working?
|
|
_inputRingBuffer.resizeForFrameSize(_numInputCallbackBytes * CALLBACK_ACCELERATOR_RATIO / sizeof(int16_t));
|
|
_inputDevice = _audioInput->start();
|
|
connect(_inputDevice, SIGNAL(readyRead()), this, SLOT(handleAudioInput()));
|
|
|
|
supportedFormat = true;
|
|
}
|
|
}
|
|
return supportedFormat;
|
|
}
|
|
|
|
bool Audio::switchOutputToAudioDevice(const QString& outputDeviceName) {
|
|
bool supportedFormat = false;
|
|
|
|
// cleanup any previously initialized device
|
|
if (_audioOutput) {
|
|
_audioOutput->stop();
|
|
disconnect(_outputDevice, 0, 0, 0);
|
|
_outputDevice = NULL;
|
|
|
|
delete _audioOutput;
|
|
_audioOutput = NULL;
|
|
_numInputCallbackBytes = 0;
|
|
|
|
_loopbackOutputDevice = NULL;
|
|
delete _loopbackAudioOutput;
|
|
_loopbackAudioOutput = NULL;
|
|
|
|
_proceduralOutputDevice = NULL;
|
|
delete _proceduralAudioOutput;
|
|
_proceduralAudioOutput = NULL;
|
|
_outputAudioDeviceName = "";
|
|
}
|
|
|
|
QAudioDeviceInfo outputDeviceInfo = getNamedAudioDeviceForMode(QAudio::AudioOutput, outputDeviceName);
|
|
|
|
if (!outputDeviceInfo.isNull()) {
|
|
qDebug() << "The audio output device " << outputDeviceInfo.deviceName() << "is available.";
|
|
_outputAudioDeviceName = outputDeviceInfo.deviceName().trimmed();
|
|
|
|
if (adjustedFormatForAudioDevice(outputDeviceInfo, _desiredOutputFormat, _outputFormat)) {
|
|
qDebug() << "The format to be used for audio output is" << _outputFormat;
|
|
|
|
// setup our general output device for audio-mixer audio
|
|
_audioOutput = new QAudioOutput(outputDeviceInfo, _outputFormat, this);
|
|
_audioOutput->setBufferSize(_ringBuffer.getSampleCapacity() * sizeof(int16_t));
|
|
qDebug() << "Ring Buffer capacity in samples: " << _ringBuffer.getSampleCapacity();
|
|
_outputDevice = _audioOutput->start();
|
|
|
|
// setup a loopback audio output device
|
|
_loopbackAudioOutput = new QAudioOutput(outputDeviceInfo, _outputFormat, this);
|
|
|
|
// setup a procedural audio output device
|
|
_proceduralAudioOutput = new QAudioOutput(outputDeviceInfo, _outputFormat, this);
|
|
|
|
gettimeofday(&_lastReceiveTime, NULL);
|
|
supportedFormat = true;
|
|
}
|
|
}
|
|
return supportedFormat;
|
|
}
|
|
|
|
void Audio::handleAudioInput() {
|
|
static char monoAudioDataPacket[MAX_PACKET_SIZE];
|
|
|
|
static int numBytesPacketHeader = numBytesForPacketHeaderGivenPacketType(PacketTypeMicrophoneAudioNoEcho);
|
|
static int leadingBytes = numBytesPacketHeader + sizeof(glm::vec3) + sizeof(glm::quat);
|
|
|
|
static int16_t* monoAudioSamples = (int16_t*) (monoAudioDataPacket + leadingBytes);
|
|
|
|
static float inputToNetworkInputRatio = _numInputCallbackBytes * CALLBACK_ACCELERATOR_RATIO
|
|
/ NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL;
|
|
|
|
static unsigned int inputSamplesRequired = NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL * inputToNetworkInputRatio;
|
|
|
|
QByteArray inputByteArray = _inputDevice->readAll();
|
|
|
|
if (Menu::getInstance()->isOptionChecked(MenuOption::EchoLocalAudio) && !_muted) {
|
|
// if this person wants local loopback add that to the locally injected audio
|
|
|
|
if (!_loopbackOutputDevice && _loopbackAudioOutput) {
|
|
// we didn't have the loopback output device going so set that up now
|
|
_loopbackOutputDevice = _loopbackAudioOutput->start();
|
|
}
|
|
|
|
if (_inputFormat == _outputFormat) {
|
|
if (_loopbackOutputDevice) {
|
|
_loopbackOutputDevice->write(inputByteArray);
|
|
}
|
|
} else {
|
|
static float loopbackOutputToInputRatio = (_outputFormat.sampleRate() / (float) _inputFormat.sampleRate())
|
|
* (_outputFormat.channelCount() / _inputFormat.channelCount());
|
|
|
|
QByteArray loopBackByteArray(inputByteArray.size() * loopbackOutputToInputRatio, 0);
|
|
|
|
linearResampling((int16_t*) inputByteArray.data(), (int16_t*) loopBackByteArray.data(),
|
|
inputByteArray.size() / sizeof(int16_t),
|
|
loopBackByteArray.size() / sizeof(int16_t), _inputFormat, _outputFormat);
|
|
|
|
if (_loopbackOutputDevice) {
|
|
_loopbackOutputDevice->write(loopBackByteArray);
|
|
}
|
|
}
|
|
}
|
|
|
|
_inputRingBuffer.writeData(inputByteArray.data(), inputByteArray.size());
|
|
|
|
while (_inputRingBuffer.samplesAvailable() > inputSamplesRequired) {
|
|
|
|
int16_t* inputAudioSamples = new int16_t[inputSamplesRequired];
|
|
_inputRingBuffer.readSamples(inputAudioSamples, inputSamplesRequired);
|
|
|
|
// zero out the monoAudioSamples array and the locally injected audio
|
|
memset(monoAudioSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
|
|
|
|
// zero out the locally injected audio in preparation for audio procedural sounds
|
|
memset(_localProceduralSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
|
|
|
|
if (!_muted) {
|
|
// we aren't muted, downsample the input audio
|
|
linearResampling((int16_t*) inputAudioSamples,
|
|
monoAudioSamples,
|
|
inputSamplesRequired,
|
|
NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL,
|
|
_inputFormat, _desiredInputFormat);
|
|
|
|
//
|
|
// Impose Noise Gate
|
|
//
|
|
// The Noise Gate is used to reject constant background noise by measuring the noise
|
|
// floor observed at the microphone and then opening the 'gate' to allow microphone
|
|
// signals to be transmitted when the microphone samples average level exceeds a multiple
|
|
// of the noise floor.
|
|
//
|
|
// NOISE_GATE_HEIGHT: How loud you have to speak relative to noise background to open the gate.
|
|
// Make this value lower for more sensitivity and less rejection of noise.
|
|
// NOISE_GATE_WIDTH: The number of samples in an audio frame for which the height must be exceeded
|
|
// to open the gate.
|
|
// NOISE_GATE_CLOSE_FRAME_DELAY: Once the noise is below the gate height for the frame, how many frames
|
|
// will we wait before closing the gate.
|
|
// NOISE_GATE_FRAMES_TO_AVERAGE: How many audio frames should we average together to compute noise floor.
|
|
// More means better rejection but also can reject continuous things like singing.
|
|
// NUMBER_OF_NOISE_SAMPLE_FRAMES: How often should we re-evaluate the noise floor?
|
|
|
|
|
|
float loudness = 0;
|
|
float thisSample = 0;
|
|
int samplesOverNoiseGate = 0;
|
|
|
|
const float NOISE_GATE_HEIGHT = 7.f;
|
|
const int NOISE_GATE_WIDTH = 5;
|
|
const int NOISE_GATE_CLOSE_FRAME_DELAY = 5;
|
|
const int NOISE_GATE_FRAMES_TO_AVERAGE = 5;
|
|
const float DC_OFFSET_AVERAGING = 0.99f;
|
|
const float CLIPPING_THRESHOLD = 0.90f;
|
|
|
|
float measuredDcOffset = 0.f;
|
|
|
|
// Increment the time since the last clip
|
|
if (_timeSinceLastClip >= 0.0f) {
|
|
_timeSinceLastClip += (float) NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float) SAMPLE_RATE;
|
|
}
|
|
|
|
for (int i = 0; i < NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL; i++) {
|
|
measuredDcOffset += monoAudioSamples[i];
|
|
monoAudioSamples[i] -= (int16_t) _dcOffset;
|
|
thisSample = fabsf(monoAudioSamples[i]);
|
|
if (thisSample > (32767.f * CLIPPING_THRESHOLD)) {
|
|
_timeSinceLastClip = 0.0f;
|
|
}
|
|
loudness += thisSample;
|
|
// Noise Reduction: Count peaks above the average loudness
|
|
if (thisSample > (_noiseGateMeasuredFloor * NOISE_GATE_HEIGHT)) {
|
|
samplesOverNoiseGate++;
|
|
}
|
|
}
|
|
|
|
measuredDcOffset /= NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
|
|
if (_dcOffset == 0.f) {
|
|
// On first frame, copy over measured offset
|
|
_dcOffset = measuredDcOffset;
|
|
} else {
|
|
_dcOffset = DC_OFFSET_AVERAGING * _dcOffset + (1.f - DC_OFFSET_AVERAGING) * measuredDcOffset;
|
|
}
|
|
|
|
//
|
|
_lastInputLoudness = fabs(loudness / NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
|
|
|
|
float averageOfAllSampleFrames = 0.f;
|
|
_noiseSampleFrames[_noiseGateSampleCounter++] = _lastInputLoudness;
|
|
if (_noiseGateSampleCounter == NUMBER_OF_NOISE_SAMPLE_FRAMES) {
|
|
float smallestSample = FLT_MAX;
|
|
for (int i = 0; i <= NUMBER_OF_NOISE_SAMPLE_FRAMES - NOISE_GATE_FRAMES_TO_AVERAGE; i+= NOISE_GATE_FRAMES_TO_AVERAGE) {
|
|
float thisAverage = 0.0f;
|
|
for (int j = i; j < i + NOISE_GATE_FRAMES_TO_AVERAGE; j++) {
|
|
thisAverage += _noiseSampleFrames[j];
|
|
averageOfAllSampleFrames += _noiseSampleFrames[j];
|
|
}
|
|
thisAverage /= NOISE_GATE_FRAMES_TO_AVERAGE;
|
|
|
|
if (thisAverage < smallestSample) {
|
|
smallestSample = thisAverage;
|
|
}
|
|
}
|
|
averageOfAllSampleFrames /= NUMBER_OF_NOISE_SAMPLE_FRAMES;
|
|
_noiseGateMeasuredFloor = smallestSample;
|
|
_noiseGateSampleCounter = 0;
|
|
|
|
}
|
|
|
|
if (_noiseGateEnabled) {
|
|
if (samplesOverNoiseGate > NOISE_GATE_WIDTH) {
|
|
_noiseGateOpen = true;
|
|
_noiseGateFramesToClose = NOISE_GATE_CLOSE_FRAME_DELAY;
|
|
} else {
|
|
if (--_noiseGateFramesToClose == 0) {
|
|
_noiseGateOpen = false;
|
|
}
|
|
}
|
|
if (!_noiseGateOpen) {
|
|
memset(monoAudioSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
|
|
_lastInputLoudness = 0;
|
|
}
|
|
}
|
|
|
|
// add input data just written to the scope
|
|
QMetaObject::invokeMethod(_scope, "addSamples", Qt::QueuedConnection,
|
|
Q_ARG(QByteArray, QByteArray((char*) monoAudioSamples,
|
|
NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL)),
|
|
Q_ARG(bool, false), Q_ARG(bool, true));
|
|
} else {
|
|
// our input loudness is 0, since we're muted
|
|
_lastInputLoudness = 0;
|
|
}
|
|
|
|
// add procedural effects to the appropriate input samples
|
|
addProceduralSounds(monoAudioSamples,
|
|
NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
|
|
|
|
if (!_proceduralOutputDevice && _proceduralAudioOutput) {
|
|
_proceduralOutputDevice = _proceduralAudioOutput->start();
|
|
}
|
|
|
|
// send whatever procedural sounds we want to locally loop back to the _proceduralOutputDevice
|
|
QByteArray proceduralOutput;
|
|
proceduralOutput.resize(NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL * _outputFormat.sampleRate() *
|
|
_outputFormat.channelCount() * sizeof(int16_t) / (_desiredInputFormat.sampleRate() *
|
|
_desiredInputFormat.channelCount()));
|
|
|
|
linearResampling(_localProceduralSamples,
|
|
reinterpret_cast<int16_t*>(proceduralOutput.data()),
|
|
NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL,
|
|
proceduralOutput.size() / sizeof(int16_t),
|
|
_desiredInputFormat, _outputFormat);
|
|
|
|
if (_proceduralOutputDevice) {
|
|
_proceduralOutputDevice->write(proceduralOutput);
|
|
}
|
|
|
|
NodeList* nodeList = NodeList::getInstance();
|
|
SharedNodePointer audioMixer = nodeList->soloNodeOfType(NodeType::AudioMixer);
|
|
|
|
if (audioMixer && audioMixer->getActiveSocket()) {
|
|
MyAvatar* interfaceAvatar = Application::getInstance()->getAvatar();
|
|
glm::vec3 headPosition = interfaceAvatar->getHead()->getPosition();
|
|
glm::quat headOrientation = interfaceAvatar->getHead()->getOrientation();
|
|
|
|
// we need the amount of bytes in the buffer + 1 for type
|
|
// + 12 for 3 floats for position + float for bearing + 1 attenuation byte
|
|
|
|
int numAudioBytes = 0;
|
|
|
|
PacketType packetType;
|
|
if (_lastInputLoudness == 0) {
|
|
packetType = PacketTypeSilentAudioFrame;
|
|
|
|
// we need to indicate how many silent samples this is to the audio mixer
|
|
monoAudioSamples[0] = NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
|
|
numAudioBytes = sizeof(int16_t);
|
|
|
|
} else {
|
|
numAudioBytes = NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL;
|
|
|
|
if (Menu::getInstance()->isOptionChecked(MenuOption::EchoServerAudio)) {
|
|
packetType = PacketTypeMicrophoneAudioWithEcho;
|
|
} else {
|
|
packetType = PacketTypeMicrophoneAudioNoEcho;
|
|
}
|
|
}
|
|
|
|
char* currentPacketPtr = monoAudioDataPacket + populatePacketHeader(monoAudioDataPacket, packetType);
|
|
|
|
// memcpy the three float positions
|
|
memcpy(currentPacketPtr, &headPosition, sizeof(headPosition));
|
|
currentPacketPtr += (sizeof(headPosition));
|
|
|
|
// memcpy our orientation
|
|
memcpy(currentPacketPtr, &headOrientation, sizeof(headOrientation));
|
|
currentPacketPtr += sizeof(headOrientation);
|
|
|
|
nodeList->writeDatagram(monoAudioDataPacket, numAudioBytes + leadingBytes, audioMixer);
|
|
|
|
Application::getInstance()->getBandwidthMeter()->outputStream(BandwidthMeter::AUDIO)
|
|
.updateValue(numAudioBytes + leadingBytes);
|
|
}
|
|
delete[] inputAudioSamples;
|
|
}
|
|
}
|
|
|
|
void Audio::addReceivedAudioToBuffer(const QByteArray& audioByteArray) {
|
|
const int NUM_INITIAL_PACKETS_DISCARD = 3;
|
|
const int STANDARD_DEVIATION_SAMPLE_COUNT = 500;
|
|
|
|
timeval currentReceiveTime;
|
|
gettimeofday(¤tReceiveTime, NULL);
|
|
_totalPacketsReceived++;
|
|
|
|
double timeDiff = diffclock(&_lastReceiveTime, ¤tReceiveTime);
|
|
|
|
// Discard first few received packets for computing jitter (often they pile up on start)
|
|
if (_totalPacketsReceived > NUM_INITIAL_PACKETS_DISCARD) {
|
|
_stdev.addValue(timeDiff);
|
|
}
|
|
|
|
if (_stdev.getSamples() > STANDARD_DEVIATION_SAMPLE_COUNT) {
|
|
_measuredJitter = _stdev.getStDev();
|
|
_stdev.reset();
|
|
// Set jitter buffer to be a multiple of the measured standard deviation
|
|
const int MAX_JITTER_BUFFER_SAMPLES = _ringBuffer.getSampleCapacity() / 2;
|
|
const float NUM_STANDARD_DEVIATIONS = 3.f;
|
|
if (Menu::getInstance()->getAudioJitterBufferSamples() == 0) {
|
|
float newJitterBufferSamples = (NUM_STANDARD_DEVIATIONS * _measuredJitter) / 1000.f * SAMPLE_RATE;
|
|
setJitterBufferSamples(glm::clamp((int)newJitterBufferSamples, 0, MAX_JITTER_BUFFER_SAMPLES));
|
|
}
|
|
}
|
|
|
|
_ringBuffer.parseData(audioByteArray);
|
|
|
|
static float networkOutputToOutputRatio = (_desiredOutputFormat.sampleRate() / (float) _outputFormat.sampleRate())
|
|
* (_desiredOutputFormat.channelCount() / (float) _outputFormat.channelCount());
|
|
|
|
if (!_ringBuffer.isStarved() && _audioOutput && _audioOutput->bytesFree() == _audioOutput->bufferSize()) {
|
|
// we don't have any audio data left in the output buffer
|
|
// we just starved
|
|
//qDebug() << "Audio output just starved.";
|
|
_ringBuffer.setIsStarved(true);
|
|
_numFramesDisplayStarve = 10;
|
|
}
|
|
|
|
// if there is anything in the ring buffer, decide what to do
|
|
if (_ringBuffer.samplesAvailable() > 0) {
|
|
|
|
int numNetworkOutputSamples = _ringBuffer.samplesAvailable();
|
|
int numDeviceOutputSamples = numNetworkOutputSamples / networkOutputToOutputRatio;
|
|
|
|
QByteArray outputBuffer;
|
|
outputBuffer.resize(numDeviceOutputSamples * sizeof(int16_t));
|
|
|
|
int numSamplesNeededToStartPlayback = NETWORK_BUFFER_LENGTH_SAMPLES_STEREO + (_jitterBufferSamples * 2);
|
|
|
|
if (!_ringBuffer.isNotStarvedOrHasMinimumSamples(numSamplesNeededToStartPlayback)) {
|
|
// We are still waiting for enough samples to begin playback
|
|
// qDebug() << numNetworkOutputSamples << " samples so far, waiting for " << numSamplesNeededToStartPlayback;
|
|
} else {
|
|
// We are either already playing back, or we have enough audio to start playing back.
|
|
//qDebug() << "pushing " << numNetworkOutputSamples;
|
|
_ringBuffer.setIsStarved(false);
|
|
|
|
// copy the samples we'll resample from the ring buffer - this also
|
|
// pushes the read pointer of the ring buffer forwards
|
|
int16_t* ringBufferSamples= new int16_t[numNetworkOutputSamples];
|
|
_ringBuffer.readSamples(ringBufferSamples, numNetworkOutputSamples);
|
|
|
|
// add the next numNetworkOutputSamples from each QByteArray
|
|
// in our _localInjectionByteArrays QVector to the localInjectedSamples
|
|
|
|
// copy the packet from the RB to the output
|
|
linearResampling(ringBufferSamples,
|
|
(int16_t*) outputBuffer.data(),
|
|
numNetworkOutputSamples,
|
|
numDeviceOutputSamples,
|
|
_desiredOutputFormat, _outputFormat);
|
|
|
|
if (_outputDevice) {
|
|
_outputDevice->write(outputBuffer);
|
|
|
|
// add output (@speakers) data just written to the scope
|
|
QMetaObject::invokeMethod(_scope, "addSamples", Qt::QueuedConnection,
|
|
Q_ARG(QByteArray, QByteArray((char*) ringBufferSamples, numNetworkOutputSamples)),
|
|
Q_ARG(bool, true), Q_ARG(bool, false));
|
|
}
|
|
delete[] ringBufferSamples;
|
|
}
|
|
|
|
}
|
|
|
|
Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::AUDIO).updateValue(audioByteArray.size());
|
|
|
|
_lastReceiveTime = currentReceiveTime;
|
|
}
|
|
|
|
bool Audio::mousePressEvent(int x, int y) {
|
|
if (_iconBounds.contains(x, y)) {
|
|
toggleMute();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Audio::toggleMute() {
|
|
_muted = !_muted;
|
|
muteToggled();
|
|
}
|
|
|
|
void Audio::toggleAudioNoiseReduction() {
|
|
_noiseGateEnabled = !_noiseGateEnabled;
|
|
}
|
|
|
|
|
|
|
|
// Take a pointer to the acquired microphone input samples and add procedural sounds
|
|
void Audio::addProceduralSounds(int16_t* monoInput, int numSamples) {
|
|
float sample;
|
|
const float COLLISION_SOUND_CUTOFF_LEVEL = 0.01f;
|
|
const float COLLISION_SOUND_MAX_VOLUME = 1000.f;
|
|
const float UP_MAJOR_FIFTH = powf(1.5f, 4.0f);
|
|
const float DOWN_TWO_OCTAVES = 4.f;
|
|
const float DOWN_FOUR_OCTAVES = 16.f;
|
|
float t;
|
|
if (_collisionSoundMagnitude > COLLISION_SOUND_CUTOFF_LEVEL) {
|
|
for (int i = 0; i < numSamples; i++) {
|
|
t = (float) _proceduralEffectSample + (float) i;
|
|
|
|
sample = sinf(t * _collisionSoundFrequency)
|
|
+ sinf(t * _collisionSoundFrequency / DOWN_TWO_OCTAVES)
|
|
+ sinf(t * _collisionSoundFrequency / DOWN_FOUR_OCTAVES * UP_MAJOR_FIFTH);
|
|
sample *= _collisionSoundMagnitude * COLLISION_SOUND_MAX_VOLUME;
|
|
|
|
int16_t collisionSample = (int16_t) sample;
|
|
|
|
_lastInputLoudness = 0;
|
|
|
|
monoInput[i] = glm::clamp(monoInput[i] + collisionSample, MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
|
|
|
|
_lastInputLoudness += fabsf(monoInput[i]);
|
|
_lastInputLoudness /= numSamples;
|
|
_lastInputLoudness /= MAX_SAMPLE_VALUE;
|
|
|
|
_localProceduralSamples[i] = glm::clamp(_localProceduralSamples[i] + collisionSample,
|
|
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
|
|
|
|
_collisionSoundMagnitude *= _collisionSoundDuration;
|
|
}
|
|
}
|
|
_proceduralEffectSample += numSamples;
|
|
|
|
// Add a drum sound
|
|
const float MAX_VOLUME = 32000.f;
|
|
const float MAX_DURATION = 2.f;
|
|
const float MIN_AUDIBLE_VOLUME = 0.001f;
|
|
const float NOISE_MAGNITUDE = 0.02f;
|
|
float frequency = (_drumSoundFrequency / SAMPLE_RATE) * TWO_PI;
|
|
if (_drumSoundVolume > 0.f) {
|
|
for (int i = 0; i < numSamples; i++) {
|
|
t = (float) _drumSoundSample + (float) i;
|
|
sample = sinf(t * frequency);
|
|
sample += ((randFloat() - 0.5f) * NOISE_MAGNITUDE);
|
|
sample *= _drumSoundVolume * MAX_VOLUME;
|
|
|
|
int16_t collisionSample = (int16_t) sample;
|
|
|
|
_lastInputLoudness = 0;
|
|
|
|
monoInput[i] = glm::clamp(monoInput[i] + collisionSample, MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
|
|
|
|
_lastInputLoudness += fabsf(monoInput[i]);
|
|
_lastInputLoudness /= numSamples;
|
|
_lastInputLoudness /= MAX_SAMPLE_VALUE;
|
|
|
|
_localProceduralSamples[i] = glm::clamp(_localProceduralSamples[i] + collisionSample,
|
|
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
|
|
|
|
_drumSoundVolume *= (1.f - _drumSoundDecay);
|
|
}
|
|
_drumSoundSample += numSamples;
|
|
_drumSoundDuration = glm::clamp(_drumSoundDuration - (AUDIO_CALLBACK_MSECS / 1000.f), 0.f, MAX_DURATION);
|
|
if (_drumSoundDuration == 0.f || (_drumSoundVolume < MIN_AUDIBLE_VOLUME)) {
|
|
_drumSoundVolume = 0.f;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Starts a collision sound. magnitude is 0-1, with 1 the loudest possible sound.
|
|
void Audio::startCollisionSound(float magnitude, float frequency, float noise, float duration, bool flashScreen) {
|
|
_collisionSoundMagnitude = magnitude;
|
|
_collisionSoundFrequency = frequency;
|
|
_collisionSoundNoise = noise;
|
|
_collisionSoundDuration = duration;
|
|
_collisionFlashesScreen = flashScreen;
|
|
}
|
|
|
|
void Audio::startDrumSound(float volume, float frequency, float duration, float decay) {
|
|
_drumSoundVolume = volume;
|
|
_drumSoundFrequency = frequency;
|
|
_drumSoundDuration = duration;
|
|
_drumSoundDecay = decay;
|
|
_drumSoundSample = 0;
|
|
}
|
|
|
|
void Audio::handleAudioByteArray(const QByteArray& audioByteArray) {
|
|
// TODO: either create a new audio device (up to the limit of the sound card or a hard limit)
|
|
// or send to the mixer and use delayed loopback
|
|
}
|
|
|
|
void Audio::renderMuteIcon(int x, int y) {
|
|
|
|
_iconBounds = QRect(x, y, MUTE_ICON_SIZE, MUTE_ICON_SIZE);
|
|
glEnable(GL_TEXTURE_2D);
|
|
|
|
glBindTexture(GL_TEXTURE_2D, _micTextureId);
|
|
glColor3f(.93f, .93f, .93f);
|
|
glBegin(GL_QUADS);
|
|
|
|
glTexCoord2f(1, 1);
|
|
glVertex2f(_iconBounds.left(), _iconBounds.top());
|
|
|
|
glTexCoord2f(0, 1);
|
|
glVertex2f(_iconBounds.right(), _iconBounds.top());
|
|
|
|
glTexCoord2f(0, 0);
|
|
glVertex2f(_iconBounds.right(), _iconBounds.bottom());
|
|
|
|
glTexCoord2f(1, 0);
|
|
glVertex2f(_iconBounds.left(), _iconBounds.bottom());
|
|
|
|
glEnd();
|
|
|
|
if (_muted) {
|
|
glBindTexture(GL_TEXTURE_2D, _muteTextureId);
|
|
glBegin(GL_QUADS);
|
|
|
|
glTexCoord2f(1, 1);
|
|
glVertex2f(_iconBounds.left(), _iconBounds.top());
|
|
|
|
glTexCoord2f(0, 1);
|
|
glVertex2f(_iconBounds.right(), _iconBounds.top());
|
|
|
|
glTexCoord2f(0, 0);
|
|
glVertex2f(_iconBounds.right(), _iconBounds.bottom());
|
|
|
|
glTexCoord2f(1, 0);
|
|
glVertex2f(_iconBounds.left(), _iconBounds.bottom());
|
|
|
|
glEnd();
|
|
}
|
|
|
|
glDisable(GL_TEXTURE_2D);
|
|
}
|